首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitophagy, or mitochondria autophagy, plays a critical role in selective removal of damaged or unwanted mitochondria. Several protein receptors, including Atg32 in yeast, NIX/BNIP3L, BNIP3 and FUNDC1 in mammalian systems, directly act in mitophagy. Atg32 interacts with Atg8 and Atg11 on the surface of mitochondria, promoting core Atg protein assembly for mitophagy. NIX/BNIP3L, BNIP3 and FUNDC1 also have a classic motif to directly bind LC3 (Atg8 homolog in mammals) for activation of mitophagy. Recent studies have shown that receptor-mediated mitophagy is regulated by reversible protein phosphorylation. Casein kinase 2 (CK2) phosphorylates Atg32 and activates mitophagy in yeast. In contrast, in mammalian cells Src kinase and CK2 phosphorylate FUNDC1 to prevent mitophagy. Notably, in response to hypoxia and FCCP treatment, the mitochondrial phosphatase PGAM5 dephosphorylates FUNDC1 to activate mitophagy. Here, we mainly focus on recent advances in our understanding of the molecular mechanisms underlying the activation of receptor-mediated mitophagy and the implications of this catabolic process in health and disease.  相似文献   

2.
《Autophagy》2013,9(10):1712-1725
Receptor-mediated mitophagy is one of the major mechanisms of mitochondrial quality control essential for cell survival. We previously have identified FUNDC1 as a mitophagy receptor for selectively removing damaged mitochondria in mammalian systems. A critical unanswered question is how receptor-mediated mitophagy is regulated in response to cellular and environmental cues. Here, we report the striking finding that BCL2L1/Bcl-xL, but not BCL2, suppresses mitophagy mediated by FUNDC1 through its BH3 domain. Mechanistically, we demonstrate that BCL2L1, but not BCL2, interacts with and inhibits PGAM5, a mitochondrially localized phosphatase, to prevent the dephosphorylation of FUNDC1 at serine 13 (Ser13), which activates hypoxia-induced mitophagy. Our results showed that the BCL2L1-PGAM5-FUNDC1 axis is critical for receptor-mediated mitophagy in response to hypoxia and that BCL2L1 possesses unique functions distinct from BCL2.  相似文献   

3.
Receptor-mediated mitophagy is one of the major mechanisms of mitochondrial quality control essential for cell survival. We previously have identified FUNDC1 as a mitophagy receptor for selectively removing damaged mitochondria in mammalian systems. A critical unanswered question is how receptor-mediated mitophagy is regulated in response to cellular and environmental cues. Here, we report the striking finding that BCL2L1/Bcl-xL, but not BCL2, suppresses mitophagy mediated by FUNDC1 through its BH3 domain. Mechanistically, we demonstrate that BCL2L1, but not BCL2, interacts with and inhibits PGAM5, a mitochondrially localized phosphatase, to prevent the dephosphorylation of FUNDC1 at serine 13 (Ser13), which activates hypoxia-induced mitophagy. Our results showed that the BCL2L1-PGAM5-FUNDC1 axis is critical for receptor-mediated mitophagy in response to hypoxia and that BCL2L1 possesses unique functions distinct from BCL2.  相似文献   

4.
Mitophagy is a process that selectively degrades mitochondria. When mitophagy is induced in yeast, the mitochondrial outer membrane protein Atg32 is phosphorylated, interacts with the adaptor protein Atg11 and is recruited into the vacuole with mitochondria. We screened kinase‐deleted yeast strains and found that CK2 is essential for Atg32 phosphorylation, Atg32–Atg11 interaction and mitophagy. Inhibition of CK2 specifically blocks mitophagy, but not macroautophagy, pexophagy or the Cvt pathway. In vitro, CK2 phosphorylates Atg32 at serine 114 and serine 119. We conclude that CK2 regulates mitophagy by directly phosphorylating Atg32.  相似文献   

5.
Mitophagy, which selectively degrades mitochondria via autophagy, has a significant role in mitochondrial quality control. When mitophagy is induced in yeast, mitochondrial residential protein Atg32 binds Atg11, an adaptor protein for selective types of autophagy, and it is recruited into the vacuole along with mitochondria. The Atg11-Atg32 interaction is believed to be the initial molecular step in which the autophagic machinery recognizes mitochondria as a cargo, although how this interaction is mediated is poorly understood. Therefore, we studied the Atg11-Atg32 interaction in detail. We found that the C-terminus region of Atg11, which included the fourth coiled-coil domain, interacted with the N-terminus region of Atg32 (residues 100-120). When mitophagy was induced, Ser-114 and Ser-119 on Atg32 were phosphorylated, and then the phosphorylation of Atg32, especially phosphorylation of Ser-114 on Atg32, mediated the Atg11-Atg32 interaction and mitophagy. These findings suggest that cells can regulate the amount of mitochondria, or select specific mitochondria (damaged or aged) that are degraded by mitophagy, by controlling the activity and/or localization of the kinase that phosphorylates Atg32. We also found that Hog1 and Pbs2, which are involved in the osmoregulatory signal transduction cascade, are related to Atg32 phosphorylation and mitophagy.  相似文献   

6.
《Autophagy》2013,9(8):1203-1205
Degradation of mitochondria is a fundamental process conserved from yeast to humans that utilizes the machinery of autophagy. In contrast to starvation-induced, nonselective autophagy responsible for nutrient recycling, selective autophagy, which involves particular cues and receptors required for induction and cargo recognition, respectively, mediates mitochondria-specific breakdown. Although numerous studies highlight that mitochondria autophagy (mitophagy) contributes to homeostatic control of mitochondria, the molecular mechanisms underlying this selective clearance process are poorly understood. Using a genome-wide visual screen, we identified Atg32, a protein essential for mitophagy in budding yeast. During respiratory growth, Atg32 is highly expressed, likely in response to oxidative stress, and anchored on the surface of mitochondria. We also demonstrate that Atg32 interacts with Atg8 and Atg11, proteins critical for recognition of cargo receptors. Notably, Atg32 contains WXXI/L/V, a conserved motif that serves as a binding site for the Atg8 family members. Our recent findings suggest that Atg32 is a transmembrane receptor that directs autophagosome formation to mitochondria.  相似文献   

7.
Autophagy-related degradation selective for mitochondria (mitophagy) is an evolutionarily conserved process that is thought to be critical for mitochondrial quality and quantity control. In budding yeast, autophagy-related protein 32 (Atg32) is inserted into the outer membrane of mitochondria with its N- and C-terminal domains exposed to the cytosol and mitochondrial intermembrane space, respectively, and plays an essential role in mitophagy. Atg32 interacts with Atg8, a ubiquitin-like protein localized to the autophagosome, and Atg11, a scaffold protein required for selective autophagy-related pathways, although the significance of these interactions remains elusive. In addition, whether Atg32 is the sole protein necessary and sufficient for initiation of autophagosome formation has not been addressed. Here we show that the Atg32 IMS domain is dispensable for mitophagy. Notably, when anchored to peroxisomes, the Atg32 cytosol domain promoted autophagy-dependent peroxisome degradation, suggesting that Atg32 contains a module compatible for other organelle autophagy. X-ray crystallography reveals that the Atg32 Atg8 family-interacting motif peptide binds Atg8 in a conserved manner. Mutations in this binding interface impair association of Atg32 with the free form of Atg8 and mitophagy. Moreover, Atg32 variants, which do not stably interact with Atg11, are strongly defective in mitochondrial degradation. Finally, we demonstrate that Atg32 forms a complex with Atg8 and Atg11 prior to and independent of isolation membrane generation and subsequent autophagosome formation. Taken together, our data implicate Atg32 as a bipartite platform recruiting Atg8 and Atg11 to the mitochondrial surface and forming an initiator complex crucial for mitophagy.  相似文献   

8.
Autophagy, the primary recycling pathway of cells, plays a critical role in mitochondrial quality control under normal growth conditions and in the response to cellular stress. The Hsp90-Cdc37 chaperone complex coordinately regulates the activity of select kinases to orchestrate many facets of the stress response. Although both maintain mitochondrial integrity, the relationship between Hsp90-Cdc37 and autophagy has not been well characterized. Ulk1, one of the mammalian homologs of yeast Atg1, is a serine-threonine kinase required for mitophagy. Here we show that the interaction between Ulk1 and Hsp90-Cdc37 stabilizes and activates Ulk1, which in turn is required for the phosphorylation and release of Atg13 from Ulk1, and for the recruitment of Atg13 to damaged mitochondria. Hsp90-Cdc37, Ulk1, and Atg13 phosphorylation are all required for efficient mitochondrial clearance. These findings establish a direct pathway that integrates Ulk1- and Atg13-directed mitophagy with the stress response coordinated by Hsp90 and Cdc37.  相似文献   

9.
Mitophagy, the autophagic removal of mitochondria, occurs through a highly selective mechanism. In the yeast Saccharomyces cerevisiae, the mitochondrial outer membrane protein Atg32 confers selectivity for mitochondria sequestration as a cargo by the autophagic machinery through its interaction with Atg11, a scaffold protein for selective types of autophagy. The activity of mitophagy in vivo must be tightly regulated considering that mitochondria are essential organelles that produce most of the cellular energy, but also generate reactive oxygen species that can be harmful to cell physiology. We found that Atg32 was proteolytically processed at its C terminus upon mitophagy induction. Adding an epitope tag to the C terminus of Atg32 interfered with its processing and caused a mitophagy defect, suggesting the processing is required for efficient mitophagy. Furthermore, we determined that the mitochondrial i-AAA protease Yme1 mediated Atg32 processing and was required for mitophagy. Finally, we found that the interaction between Atg32 and Atg11 was significantly weakened in yme1∆ cells. We propose that the processing of Atg32 by Yme1 acts as an important regulatory mechanism of cellular mitophagy activity.  相似文献   

10.
Autophagy is a catabolic cellular process that targets cytosolic material, including mitochondria, to the vacuole or lysosomes for degradation. The selective degradation of mitochondria by autophagy is termed mitophagy. Dysfunctional mitophagy, which leads to the accumulation of damaged mitochondria, has been implicated in Parkinson’s disease, cancer, cardiac disease and metabolic disease. In Saccharomyces cerevisiae, mitophagy is initiated by the autophagy receptor Atg32, an outer mitochondrial membrane protein. A lack of structural information for Atg32 has hindered our understanding of the molecular mechanisms of mitophagy initiation. To gain new structural insight into Atg32, we have identified the location of a structured domain within the cytosolic region of Atg32 and completed the backbone and side chain resonance assignments for this domain.  相似文献   

11.
Degradation of mitochondria via selective autophagy, termed mitophagy, contributes to mitochondrial quality and quantity control whose defects have been implicated in oxidative phosphorylation deficiency, aberrant cell differentiation, and neurodegeneration. How mitophagy is regulated in response to cellular physiology remains obscure. Here, we show that mitophagy in yeast is linked to the phospholipid biosynthesis pathway for conversion of phosphatidylethanolamine to phosphatidylcholine by the two methyltransferases Cho2 and Opi3. Under mitophagy‐inducing conditions, cells lacking Opi3 exhibit retardation of Cho2 repression that causes an anomalous increase in glutathione levels, leading to suppression of Atg32, a mitochondria‐anchored protein essential for mitophagy. In addition, loss of Opi3 results in accumulation of phosphatidylmonomethylethanolamine (PMME) and, surprisingly, generation of Atg8–PMME, a mitophagy‐incompetent lipid conjugate of the autophagy‐related ubiquitin‐like modifier. Amelioration of Atg32 expression and attenuation of Atg8–PMME conjugation markedly rescue mitophagy in opi3‐null cells. We propose that proper regulation of phospholipid methylation is crucial for Atg32‐mediated mitophagy.  相似文献   

12.
Mitochondria are targeted for degradation by mitophagy, a selective form of autophagy. In Saccharomyces cerevisiae, mitophagy is dependent on the autophagy receptor, Atg32, an outer mitochondrial membrane protein. Once activated, Atg32 recruits the autophagy machinery to mitochondria, facilitating mitochondrial capture in phagophores, the precursors to autophagosomes. However, the mechanism of Atg32 activation remains poorly understood. To investigate this crucial step in mitophagy regulation, we examined the structure of Atg32. We have identified a structured domain in Atg32 that is essential for the initiation of mitophagy, as it is required for the proteolysis of the C-terminal domain of Atg32 and the subsequent recruitment of Atg11. The solution structure of this domain was determined by NMR spectroscopy, revealing that Atg32 contains a previously undescribed pseudo-receiver (PsR) domain. Our data suggests that the PsR domain of Atg32 regulates Atg32 activation and the initiation of mitophagy.

Abbreviations:AIM: Atg8-interacting motif; GFP: green fluorescent protein; LIR: LC3-interacting region; NMR: nuclear magnetic resonance; NOESY: nuclear Overhauser effect spectroscopy; PDB: protein data bank; PsR: pseudo-receiver; RMSD: root-mean-square deviation  相似文献   


13.
Mitophagy is an evolutionarily conserved autophagy pathway that selectively degrades mitochondria. Although it is well established that this degradation system contributes to mitochondrial quality and quantity control, mechanisms underlying mitophagy remain largely unknown. Here, we report that protein N-terminal acetyltransferase A (NatA), an enzymatic complex composed of the catalytic subunit Ard1 and the adaptor subunit Nat1, is crucial for mitophagy in yeast. NatA is associated with the ribosome via Nat1 and acetylates the second amino acid residues of nascent polypeptides. Mitophagy, but not bulk autophagy, is strongly suppressed in cells lacking Ard1, Nat1, or both proteins. In addition, loss of NatA enzymatic activity causes impairment of mitochondrial degradation, suggesting that protein N-terminal acetylation by NatA is important for mitophagy. Ard1 and Nat1 mutants exhibited defects in induction of Atg32, a protein essential for mitophagy, and formation of mitochondria-specific autophagosomes. Notably, overexpression of Atg32 partially recovered mitophagy in NatA-null cells, implying that this acetyltransferase participates in mitophagy at least in part via Atg32 induction. Together, our data implicate NatA-mediated protein modification as an early regulatory step crucial for efficient mitophagy.  相似文献   

14.
Abeliovich H 《Autophagy》2007,3(3):275-277
The degradation and recycling of mitochondria is an important household chore in eukaryotic cells. It is thought that mitochondrial autophagy, or mitophagy, is the major route by which mitochondria are degraded. In this view, the cell would selectively induce mitophagy to expunge malfunctioning mitochondria, thus ridding the cell of troublesome sources of reactive oxygen species, apoptosis-inducing factors, or unnecessary metabolic burden. This standard view of mitophagy, in addition to some experimental reports, points to a pro-survival role of mitophagy. However, there is also a significant amount of evidence that suggests a pro-death role of this process, some of it coming from studies in yeast. Aup1 is a protein phosphatase homolog that shows a genetic interaction with the Atg1 protein kinase, localizes to mitochondria, and is required for mitophagy under stationary phase conditions in lactate medium. In contrast with previous yeast studies on mitophagy, deletion of AUP1 results in decreased viability under mitophagy-inducing conditions, suggesting a pro-survival role under physiologically relevant conditions. Thus, the Janus-faced nature of mitophagy is conserved between yeast and mammalian systems.  相似文献   

15.
Mitochondria are critical for supplying energy to the cell, but during catabolism this organelle also produces reactive oxygen species that can cause oxidative damage. Accordingly, quality control of mitochondria is important to maintain cellular homeostasis. It has been assumed that autophagy is the pathway for mitochondrial recycling, and that the selective degradation of mitochondria via autophagy (mitophagy) is the primary mechanism for mitochondrial quality control, although there is little experimental evidence to support this idea. Recent studies in yeast identified several mitophagy‐related genes and have uncovered components involved in the molecular mechanism and regulation of mitophagy. Similarly, studies of Parkinson disease and reticulocyte maturation reveal that Parkin and Nix, respectively, are required for mitophagy in mammalian cells, and these analyses have revealed important physiological roles for mitophagy. Here, we review the current knowledge on mitophagy, in particular on the molecular mechanism and regulation of mitophagy in yeast. We also discuss some of the differences between yeast and mammalian mitophagy.  相似文献   

16.
《Autophagy》2013,9(8):924-926
Ulk1 is a serine/threonine kinase and the mammalian functional homolog of yeast Atg1. It acts at the initiation step of autophagy and forms a complex with mAtg13, FIP200 and Atg101. Assembly of this complex is independent of mTOR signaling, indicating the regulation of autophagy initiation in mammals is different from that in yeast. In a recent study, we reported that Ulk1 can be phosphorylated by mTOR and AMPK kinases. AMPK associates with Ulk1 in nutrient-dependent manner. Rapid dissociation between Ulk1 and AMPK primes cells for fast autophagy induction upon nutrient withdrawal. These studies show that both mTOR and AMPK directly regulate Ulk1 and coordinate the mammalian autophagy initiation.  相似文献   

17.
Shang L  Wang X 《Autophagy》2011,7(8):924-926
Ulk1 is a serine/threonine kinase and the mammalian functional homolog of yeast Atg1. It acts at the initiation step of autophagy and forms a complex with mAtg13, FIP200 and Atg101. Assembly of this complex is independent of mTOR signaling, indicating the regulation of autophagy initiation in mammals is different from that in yeast. In a recent study, we reported that Ulk1 can be phosphorylated by mTOR and AMPK kinases. AMPK associates with Ulk1 in nutrient-dependent manner. Rapid dissociation between Ulk1 and AMPK primes cells for fast autophagy induction upon nutrient withdrawal. These studies show that both mTOR and AMPK directly regulate Ulk1 and coordinate the mammalian autophagy initiation.  相似文献   

18.
Phagophore-derived autophagosomes deliver cytoplasmic material to lysosomes for degradation and reuse. Autophagy mediated by the incompletely characterized actions of Atg proteins is involved in numerous physiological and pathological settings including stress resistance, immunity, aging, cancer, and neurodegenerative diseases. Here we characterized Atg17/FIP200, the Drosophila ortholog of mammalian RB1CC1/FIP200, a proposed functional equivalent of yeast Atg17. Atg17 disruption inhibits basal, starvation-induced and developmental autophagy, and interferes with the programmed elimination of larval salivary glands and midgut during metamorphosis. Upon starvation, Atg17-positive structures appear at aggregates of the selective cargo Ref(2)P/p62 near lysosomes. This location may be similar to the perivacuolar PAS (phagophore assembly site) described in yeast. Drosophila Atg17 is a member of the Atg1 kinase complex as in mammals, and we showed that it binds to the other subunits including Atg1, Atg13, and Atg101 (C12orf44 in humans, 9430023L20Rik in mice and RGD1359310 in rats). Atg17 is required for the kinase activity of endogenous Atg1 in vivo, as loss of Atg17 prevents the Atg1-dependent shift of endogenous Atg13 to hyperphosphorylated forms, and also blocks punctate Atg1 localization during starvation. Finally, we found that Atg1 overexpression induces autophagy and reduces cell size in Atg17-null mutant fat body cells, and that overexpression of Atg17 promotes endogenous Atg13 phosphorylation and enhances autophagy in an Atg1-dependent manner in the fat body. We propose a model according to which the relative activity of Atg1, estimated by the ratio of hyper- to hypophosphorylated Atg13, contributes to setting low (basal) vs. high (starvation-induced) autophagy levels in Drosophila.  相似文献   

19.
《Autophagy》2013,9(3):453-467
Phagophore-derived autophagosomes deliver cytoplasmic material to lysosomes for degradation and reuse. Autophagy mediated by the incompletely characterized actions of Atg proteins is involved in numerous physiological and pathological settings including stress resistance, immunity, aging, cancer, and neurodegenerative diseases. Here we characterized Atg17/FIP200, the Drosophila ortholog of mammalian RB1CC1/FIP200, a proposed functional equivalent of yeast Atg17. Atg17 disruption inhibits basal, starvation-induced and developmental autophagy, and interferes with the programmed elimination of larval salivary glands and midgut during metamorphosis. Upon starvation, Atg17-positive structures appear at aggregates of the selective cargo Ref(2)P/p62 near lysosomes. This location may be similar to the perivacuolar PAS (phagophore assembly site) described in yeast. Drosophila Atg17 is a member of the Atg1 kinase complex as in mammals, and we showed that it binds to the other subunits including Atg1, Atg13, and Atg101 (C12orf44 in humans, 9430023L20Rik in mice and RGD1359310 in rats). Atg17 is required for the kinase activity of endogenous Atg1 in vivo, as loss of Atg17 prevents the Atg1-dependent shift of endogenous Atg13 to hyperphosphorylated forms, and also blocks punctate Atg1 localization during starvation. Finally, we found that Atg1 overexpression induces autophagy and reduces cell size in Atg17-null mutant fat body cells, and that overexpression of Atg17 promotes endogenous Atg13 phosphorylation and enhances autophagy in an Atg1-dependent manner in the fat body. We propose a model according to which the relative activity of Atg1, estimated by the ratio of hyper- to hypophosphorylated Atg13, contributes to setting low (basal) vs. high (starvation-induced) autophagy levels in Drosophila.  相似文献   

20.
《Autophagy》2013,9(6):808-809
Yeast Atg8, a key factor in the autophagic process, is a ubiquitin-like protein that undergoes a unique conjugation to phosphatidylethanolamine (PE). Atg8 plays a dual role in early stages of autophagosome formation: It was implicated in recruitment of cargo proteins such as Atg19 and Atg32 for Cvt and mitophagy, respectively, and in autophagosome biogenesis, serving as an elongation factor by mediating membrane hemi-fusion. Similarly, the mammalian Atg8 proteins, LC3s and GABARAPs, recruit cargo into autophagosomes by binding to adaptor proteins such as p62, NBR1 and Nix. These functions, however, are not essential for bulk autophagic flux. Other studies in which the activity of the mammalian Atg8s was blocked either by knockout of the E2-like enzyme Atg3 or by using a dominant negative mutant of the promiscuous protease Atg4B revealed, in agreement with the yeast Atg8 data, that the mammalian factors are crucial for the formation of normal and mature autophagosomes. While it seems that the single yeast Atg8 and the mammalian Atg8s share similar roles, it is still unclear why the mammalian system employs several homologs. Recent publications demonstrated that the mammalian Atg8s differ in their cargo specificity, as Nix, for example, binds exclusively to GABARAP-L1. This may suggest that these proteins exhibit distinct activity also in autophagosome biogenesis. In our study we divided the mammalian Atg8s into two subfamilies of homologs based on amino acid similarity, the LC3 and GABARAP/GATE-16 subfamilies, and tested their essentiality and role in autophagy. In agreement with previous studies we found that the mammalian Atg8s are essential for autophagy but, more importantly, that each of these subfamilies has a distinct role in the process of autophagosome biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号