首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Status and restoration of peatlands in northern Europe   总被引:3,自引:0,他引:3  
Vasander  H.  Tuittila  E.-S.  Lode  E.  Lundin  L.  Ilomets  M.  Sallantaus  T.  Heikkilä  R.  Pitkänen  M.-L.  Laine  J. 《Wetlands Ecology and Management》2003,11(1-2):51-63
Environmental management of peatlands,landscape ecology and protection of keybiotopes have created needs and pressure torestore drained peatlands to natural mireecosystems. Here, we summarize differentapproaches and restoration techniquesdeveloped for peatland management inEstonia, Sweden, and Finland wherepeatlands are abundant. Without rewetting,plant colonisation on abandoned cut-awayareas is slow due to harsh hydrological andmicroclimatic conditions. However, after restoration, cut-away peatlands may returnto a functional state close to that ofpristine mires, and therefore restore a netcarbon sink function within a few years. Inaddition, restoration techniques can helpto create buffer zones between terrestrialand limnic ecosystems that reduces thenutrient loading imposed on watercourses byforestry operations. Restoration may alsobe important for peatland conservationprograms as drained peatlands are part ofpresent and future conservation areas.Finally, restoration actions in themselvescan have negative environmental impacts.For instance, inundation of peat surfacesresulting from the rewetting process oftenincreases phosphorus leaching. Efforts onpeatland restoration should focus onenvironmental monitoring, research onrestoration and its environmental impact aswell as public relations activities. Inthat respect, knowledge transfer betweenacademics and managers should generatesynergy benefits.  相似文献   

2.
Indonesia declared an ambitious plan to restore its degraded and fire‐prone peatlands, which have been a source of significant greenhouse gas and haze. However, the progress has been slow and the plan cannot succeed without sustained social supports and political will. Although many previous studies argued for the need to see ecological restoration in socio‐economic contexts, empirical assessments have been lacking for how restoration is operationalized on the ground. We interviewed 47 key informants involved in four different projects in Central Kalimantan, Indonesia, and assessed their definitions, goals, and practices of peatland restoration. Most of the actors we interviewed defined peatland restoration primarily in an ecological context following the global concept of ecological restoration. However, all four restoration projects were designed without determining reference and trajectory conditions. Their intermediate goals and practices were more focused on engaging local communities and developing sustainable livelihood options than improving the ecological conditions of peatlands. To be internally consistent, peatland restoration needs to recognize a social dimension in its process, as well as in its goal. Setting clear trajectory conditions is also important to clarify achievable goals and measurable intermediate outcomes. We propose the following definition of peatland restoration: a process of assisting the recovery of degraded peatland ecosystems to achieve the appropriate trajectories defined through multi‐stakeholder collaboration within social‐ecological contexts. We hope to generate healthy debates to further refine the definition that encompasses both social and ecological dimensions to generate broader support for sustaining and expanding peatland restoration projects in Indonesia.  相似文献   

3.
Carbon emissions from drained peatlands converted to agriculture in South‐East Asia (i.e., Peninsular Malaysia, Sumatra and Borneo) are globally significant and increasing. Here, we map the growth of South‐East Asian peatland agriculture and estimate CO2 emissions due to peat drainage in relation to official land‐use plans with a focus on the reducing emissions from deforestation and degradation (REDD+)‐related Indonesian moratorium on granting new concession licences for industrial agriculture and logging. We find that, prior to 2010, 35% of South‐East Asian peatlands had been converted to agriculture, principally by smallholder farmers (15% of original peat extent) and industrial oil palm plantations (14%). These conversions resulted in 1.46–6.43 GtCO2 of emissions between 1990 and 2010. This legacy of historical clearances on deep‐peat areas will contribute 51% (4.43–11.45 GtCO2) of projected future peatland CO2 emissions over the period 2010–2130. In Indonesia, which hosts most of the region's peatland and where concession maps are publicly available, 70% of peatland conversion to agriculture occurred outside of known concessions for industrial plantation development, with smallholders accounting for 60% and industrial oil palm accounting for 34%. Of the remaining Indonesian peat swamp forest (PSF), 45% is not protected, and its conversion would amount to CO2 emissions equivalent to 0.7%–2.3% (5.14–14.93 Gt) of global fossil fuel and cement emissions released between 1990 and 2010. Of the peatland extent included in the moratorium, 48% was no longer forested, and of the PSF included, 40%–48% is likely to be affected by drainage impacts from agricultural areas and will emit CO2 over time. We suggest that recent legislation and policy in Indonesia could provide a means of meaningful emission reductions if focused on revised land‐use planning, PSF conservation both inside and outside agricultural concessions, and the development of agricultural practices based on rehabilitating peatland hydrological function.  相似文献   

4.
Large areas of Indonesian peatlands have been converted for agricultural and plantation forest purposes. This requires draining with associated CO2 emissions and fire risks. In order to identify alternative management regimes for peatlands, it is important to understand the sustainability of different peatland uses as well as the economic benefits peatlands supply under different land uses. This study explores the key sustainability issues in Indonesian peatlands, the ecosystem services supplied by peatlands, and potential responses to promote more sustainable peatland use. A literature review and spatial analysis were conducted. Based on predominantly government data, we estimate the amount of Indonesian peatlands that has been converted between 2000 and 2014. We quantify increases in oil palm and plantation forest crop production in this period, and we analyse key sustainability issues, i.e. peat fires and smoke-haze, soil subsidence and flood risk, CO2 emissions, loss of habitat (in protected areas), and social conflicts that influence sustainability of Indonesian peatlands management. Among others we show that CO2 emissions from peatlands in Indonesia can be estimated at between 350 and 400 million ton CO2 per year, and that encroachment of oil palm and plantation forestry (acacia, rubber) has taken place on 28% of protected areas. However, as we examine, the uncertainties involved are substantial. Based on our findings, we distil several implications for the management of the peatlands.  相似文献   

5.
Studies of restoration ecology are well established for northern peatlands, but at an early stage for tropical peatlands. Extensive peatland areas in Southeast Asia have been degraded through deforestation, drainage and fire, leading to on- and off-site environmental and socio-economic impacts of local to global significance. To address these problems, landscape-scale restoration measures are urgently required. This paper reviews and illustrates, using information from on-going trials in Kalimantan, Indonesia, the current state of knowledge pertaining to (i) land-cover dynamics of degraded peatlands, (ii) vegetation rehabilitation, (iii) restoration of hydrology, (iv) rehabilitation of carbon sequestration and storage, and (v) promotion of sustainable livelihoods for local communities. For a 4500 km2 study site in Central Kalimantan, Indonesia, we show a 78% reduction in forest cover between 1973 and 2003 and demonstrate that fire, exacerbated by drainage, is the principal driver of land-use change. Progressive vegetation succession follows infrequent, low-intensity fires, but repeated and high-intensity fires result in retrogressive succession towards non-forest communities. Re-wetting the peat is an important key to vegetation restoration and protection of remaining peat carbon stocks. The effectiveness of hydrological restoration is discussed and likely impacts on greenhouse gas emissions evaluated. Initial results indicate that raised water levels have limited short-term impact on reducing CO2 emissions, but could be critical in reducing fire risk. We conclude that successful restoration of degraded peatlands must be grounded in scientific knowledge, relevant to socio-economic circumstances, and should not proceed without the consent and co-operation of local communities.  相似文献   

6.
As most ecosystems, peatlands have been heavily exploited for different human purposes. For example, in Finland the majority is under forestry, agriculture or peat mining use. Peatlands play an important role in carbon storage, water cycle, and are a unique habitat for rare organisms. Such properties highlight their environmental importance and the need for their restoration. To monitor the success of peatland restoration sensitive indicators are needed. Here we test whether testate amoebae can be used as a reliable bioindicator for assessing peatland condition. To qualify as reliable indicators, responses in testate amoebae community structure to ecological changes must be stronger than random spatial and temporal variation. In this study, we simultaneously assessed differences between the effects of seasonality, intermediate scale spatial variation and land uses on living testate amoebae assemblages in natural, forested and restored peatlands. We expected the effects of seasonality on testate amoebae communities to be less pronounced than those of land use and within site variation. On average, natural sites harboured the highest richness and density, while the lowest numbers were found at forestry sites. Despite small changes observed in taxa dominance and differences in TA community structure between seasons and years at some sites, spatial heterogeneity, temperature, pH, nor water table depth seemed to significantly affect testate amoebae communities. Instead, observed differences were related to type of land use, which explained 75% of the community variation. Our results showed that testate amoebae community monitoring is a useful tool to evaluate impacts of human land use on boreal peatlands.  相似文献   

7.
Peatlands are the most efficient terrestrial carbon store on Earth, and deliver multiple other ecosystem services including climate regulation, water purification, preservation of ecological and archaeological records, etc. Disturbed and degraded peatlands do not provide the same ecological services and thus bear a significant cost to society. Because this cost may be alleviated by appropriate restoration measures, money is being invested in peatland restoration projects around the world. Here, we review over 25 years of restoration in Western Europe. First, we provide an overview of techniques used in different contexts and evaluate the status of the evidence base for restoration outcomes. Between 1993 and 2015, the EU‐LIFE nature programme alone invested 167.6M € in 80 projects, which aim to restore over 913 km2 of peatland habitats in Western European countries, mostly in protected sites part of the Natura 2000 EU network. This represents less than 2% of the total remaining area of peatlands in these countries, most of which have been impacted to some degree by anthropogenic disturbances. Potential for restoration should be considered in nondesignated sites. We reviewed a number of case studies covering a range of restoration approaches used in different parts of Western Europe. We found that published evidence of restoration progress was limited to specific sites/areas, and in many cases lacked baseline measurements and clear goals, that is, measurable target or contemporary reference(s). We discuss barriers and opportunities to turn the tide for peatland restoration in Western Europe and promote the establishment of robust, standardized monitoring schemes.  相似文献   

8.
Restoration of damaged ecosystems has become an important tool to slow down biodiversity loss and to maintain ecosystem services. Peatland bird populations have shown a substantial decline during the recent decades in Northern Europe as a consequence of peatland drainage. We studied whether restoration of peatlands drained for forestry affects bird communities. We conducted bird surveys at 11 peatlands in Western Finland, where each of the restored and their pristine counterparts were surveyed before restoration and yearly after restoration during 2010–2018. We used linear mixed effect models to analyze whether restoration affected the number of species and territories of peatland specialist and non‐specialist species and permutational multivariate analysis of variance to analyze the change in community composition. Drained parts of the peatlands had higher number of territories of non‐specialist species before restoration, and restoration seemed to decrease these numbers towards the level of pristine parts. By contrast, restoration did not affect the number of peatland specialists and their territories, which was lower in drained than in pristine parts of the peatlands. Bird communities in restored parts remained different from pristine parts in terms of community composition after restoration. Thus, despite the effect of restoration on non‐specialists, a substantially long time may be required for a recovery of the peatland bird communities. Based on our results, it seems that long‐term monitoring of the restored and pristine peatlands is needed to determine whether restoration is effective in recovering the peatland specialist bird species and bird communities in general.  相似文献   

9.
As the world's most abundant source of terrestrial carbon, peatlands provide numerous ecosystem services, including habitat biodiversity and freshwater quality. Land and water management practices in relation to peatlands, for either exploitation or rehabilitation, are complicated by several factors: spatial diversity in geochemistry; laborious survey methods that may be subject to confounding factors; regional and irregular climate variations; a lack of generalizability regarding appropriate strategies; and, in some countries, by non-implementation of water quality assessment policies for pollution control and land use. Such factors raise uncertainty in the effectiveness of restoration and rehabilitation strategies, while modern peatland management looks to develop land use schemes that offer minimal risk to the environment. The aims of this paper were to (1) investigate the disparate factors influencing peatland management which confound appropriate interventions for enhanced water quality (2) examine how non-implementation of national policies for water pollution control may result in adverse environmental impacts, and (3) propose an innovative peatland management methodology for a detailed and robust land analysis with water quality being the primary consideration. The paper suggests that optical, radar, and radiometric remote sensing methods may be used to identify management zones within a peatland, that may require variable management strategies during restoration. Satellite remote sensing and Earth observation methodologies are well documented; hence, the prospect and properties of a less documented airborne electromagnetic approach may present an opportunity for improved management of peatlands.  相似文献   

10.
Ecological restoration is considered to play an important role in mitigating climate change, protecting biodiversity, and preventing environmental degradation. Yet, there are often multiple perspectives on what outcomes restoration should be aiming to achieve, and how we should get to that point. In this study we interview a range of policymakers, academics, and non‐governmental organization (NGO) representatives to explore the range of perspectives on the restoration of Indonesia's tropical peatlands—key global ecosystems that have undergone large‐scale degradation. Thematic analysis suggests that participants agreed about the importance of restoration, but had differing opinions on how effective restoration activities to date have been and what a restored peatland landscape should look like. These results exemplify how ecological restoration can mean different things to different people, but also highlight important areas of consensus for moving forward with peatland restoration strategies.  相似文献   

11.
Tropical peatlands store a significant portion of the global soil carbon (C) pool. However, tropical mountain peatlands contain extensive peat soils that have yet to be mapped or included in global C estimates. This lack of data hinders our ability to inform policy and apply sustainable management practices to these peatlands that are experiencing unprecedented high rates of land use and land cover change. Rapid large‐scale mapping activities are urgently needed to quantify tropical wetland extent and rate of degradation. We tested a combination of multidate, multisensor radar and optical imagery (Landsat TM/PALSAR/RADARSAT‐1/TPI image stack) for detecting peatlands in a 2715 km2 area in the high elevation mountains of the Ecuadorian páramo. The map was combined with an extensive soil coring data set to produce the first estimate of regional peatland soil C storage in the páramo. Our map displayed a high coverage of peatlands (614 km2) containing an estimated 128.2 ± 9.1 Tg of peatland belowground soil C within the mapping area. Scaling‐up to the country level, páramo peatlands likely represent less than 1% of the total land area of Ecuador but could contain as much as ~23% of the above‐ and belowground vegetation C stocks in Ecuadorian forests. These mapping approaches provide an essential methodological improvement applicable to mountain peatlands across the globe, facilitating mapping efforts in support of effective policy and sustainable management, including national and global C accounting and C management efforts.  相似文献   

12.

The current drainage-based peatland management systems in Indonesia result in high fire risks, soil subsidence and CO2 emissions. This study aims to assess different alternatives of peatland crops in order to help prevent further degradation of peatlands in Indonesia. We focus on tropical peatland crops that provide food and that are of particular interest to smallholders. We compare various peatland food crops that are commonly grown with no drainage (paludiculture) or drainage below 50 cm in our study area, Central Kalimantan, Indonesia in terms of sustainability, profitability, scalability of the market and acceptability to farmers. Our results show that sago (Metroxylon sagu), banana (Musa paradisiaca) and pineapple (Ananas comosus) followed by water spinach/kangkong (Ipomoea aquatica), kelakai/edible fern (Stenochlaena palustris), illipe nut/tengkawang (Shorea spp.), dragon fruit (Hylocereus undatus), mangosteen (Garcinia mangostana) and sweet melon/melon (Cucumis melo) are the best options based on the aggregated scores for these criteria (but precaution should be taken when planting crops that require low drainage). Sago palm and illipe nut have the highest scores for both sustainability and scalability of market, whereas banana, pineapple and sweet melon have the highest scores in term of the scalability of market and acceptability to farmers. We also address key opportunities and bottlenecks for the development of paludiculture food crops and present recommendations for the implementation of paludiculture in Indonesian peatlands.

  相似文献   

13.
Tropical peat swamp forests (TPSFs) are found mainly in Southeast Asia and especially Indonesia. A total of 61% were lost between 1990 and 2015 and 6% remained in a pristine condition by 2015. Tropical peat swamps store vast amounts of carbon in their peat, but peat degradation, through drainage and fire, leads to high greenhouse gas emissions. This is gaining much international attention and, with it, policy initiatives and funding for restoration from local to landscape scales are being promoted. Unfortunately, although there is a now strong desire and need for TPSF restoration, methods are lacking. Ecological understanding is still at an early stage, and, even more so, in its applied use. There is an imbalance between the activities of TPSF restoration and sound ecological application. Furthermore, while many activities are underway and knowledge is being gained, these techniques are yet to be published. This article has been written to provide a common‐sense, practical guide to tropical peatland forest restoration which summarizes what we know to date, while acknowledging the gaps in our understanding. Topics covered include species selection, land assessment, land selection, and appropriate nursery, transplanting, and monitoring methods. The authors make no apologies that in places this reads like a manual as, given the importance of tropical peatland recovery and the recent attention and funding opportunities available, it is essential we now provide techniques to restoration practitioners working on the ground, and a basic common‐sense approach must be the starting point.  相似文献   

14.
Drainage and afforestation of peatlands cause extensive habitat degradation and species losses. Restoration supports peatland biodiversity by creating suitable habitat conditions, including stable high water tables. However, colonization by characteristic species can take decades or even fail. Peatland recovery is often monitored shortly after restoration, but initial trends may not continue, and results might differ among taxonomic groups. This study analyzes trends in plant, dragonfly, and butterfly diversity within 18 years after rewetting of montane peatlands in central Germany. We compared diversity and species composition of 19 restored sites with three drained peatlands and one near‐natural reference site. Restoration resulted in improved habitat conditions and benefited species diversity, but there were marked differences among taxonomic groups. Dragonflies rapidly colonized small water bodies but their diversity did not further increase in older restoration sites. Characteristic peatland vegetation recovered slowly, since it depended on a high water holding capacity that was only reached after peat started accumulating. Generally, plant diversity developed toward reference conditions albeit incompletely, even 18 years after restoration. Butterflies responded less to peatland restoration; generalists increased only temporarily and specialists could not establish. In conclusion, peatland restoration improves habitat conditions and biodiversity, while trajectories of recovery are nonlinear and incomplete after two decades. This highlights the need for long‐term monitoring and a strategic selection of indicator species for evaluation of restoration success.  相似文献   

15.
Many peatlands have a recent history of being degraded by extraction, drainage, burning, overgrazing and atmospheric pollution often leading to erosion and loss of peat mass. Restoration schemes have been implemented aimed at rewetting peatlands, encouraging revegetation of bare peat or shifting the present vegetation assemblage to an alternative. Here we demonstrate the use of palaeoecological techniques that allow reconstruction of the historical development of a blanket peatland and provide a historical context from which legitimate restoration targets can be determined and supported. We demonstrate the applicability of simple stratigraphic techniques to provide a catchment-wide peatland development history and reinforce this with a detailed macrofossil reconstruction from a central core. Analysis at Keighley Moor Reservoir Catchment in northern England showed that the present vegetation state was ‘atypical’ and has been characteristic for only the last c. 100 years. Sphagnum moss was an important historic contributor to the vegetation cover between 1500 years ago and the early 1900s. Until the early 1900s Sphagnum occurrence fluctuated with evidence of fire, routinely returning after fire demonstrating good resilience of the ecosystem. However, from the turn of the 20th century, Sphagnum levels declined severely, coincident initially with a wildfire event but remaining extremely diminished as the site regularly underwent managed burning to support grouse moor gun sports where practitioners prefer a dominant cover of heather. It is suggested that any intention to alter land management at the site to raise water tables and encourage greater Sphagnum abundance is in line with peatland development at the site over the past 1500 years. Similar palaeoecological studies providing historical context could provide support for restoration targets and changes to peatland management practice for sites globally.  相似文献   

16.
中国生物多样性就地保护成效与展望   总被引:1,自引:0,他引:1  
王伟  李俊生 《生物多样性》2021,29(2):133-1754
生物多样性就地保护是指通过开展自然保护地体系的建立与管理, 结合自然保护地以外其他有效的基于区域的保护措施(other effective area-based conservation measures, OECMs), 从而实现物种种群及其栖息地的保护与恢复以及保障和提升生态系统服务的目标。就地保护是实现2020年全球生物多样性保护目标最为重要的措施之一。本文从自然保护地数量与面积、代表性、有效性, 以及其他生物多样性就地保护措施等方面, 整理和综述了国内外近年来的相关报道。总体来看, 我国基本建立了具有中国特色的生物多样性就地保护与管理体系, 实施了各项生物多样性保护恢复措施, 取得了一系列重大进展。自然保护地的面积和数量均呈现上升趋势, 已覆盖陆域国土面积的18%, 对一些重要生态系统及重点保护物种的保护取得了一定成效。正在建设的10处国家公园体制试点提升了部分重点物种的保护连通性。自然保护区总体管理状况相对较好, 保护了90%以上的哺乳动物和97%的兰科植物。此外, 其他有效的基于区域的保护措施亦为生物多样性就地保护贡献了民间力量。在此基础上, 本文对照《中国生物多样性保护战略与行动计划(2011-2030年)》中对“加强生物多样性就地保护”的各项要求, 分析总结了当前我国生物多样性就地保护仍然存在的问题与不足, 具体表现在以下几个方面: 自然保护地整体保护能力仍有待提升; 生物多样性保护优先区域仍然存在保护空缺; 自然保护区管理质量有待提升; 缺乏公共协商机制; 自然保护地以外的其他就地保护工作仍在探索阶段等。在此基础上, 对将来我国生物多样性就地保护提出了进一步建议与展望: (1)制定更为具体和量化的生物多样性就地保护目标; (2)加大力度减少物种受威胁程度, 特别是受关注较少的物种; (3)以保障和提升生态系统服务为目标, 提升生态系统保护修复的系统性与整体性; (4)加强自然保护地以外的生物多样性就地保护; (5)完善长期监测体系, 为生物多样性就地保护成效评估提供数据支撑。本文可为“2020年后全球生物多样性框架”特别是就地保护目标的制定与实施提供参考。  相似文献   

17.
The capacity of peatlands in the northern hemisphere to provide carbon storage, maintain water quality and support northern biodiversity is threatened by a combination of climate change and inappropriate land management. Historical drainage and increasing temperatures threaten the maintenance of the high water tables required for effective peatland functioning, and there is an urgent need to develop appropriate adaptation strategies. Here we use a large‐scale replicated experimental design to test the effects of artificial drainage and drain blocking upon soil moisture and cranefly (Diptera: Tipulidae) abundance. Craneflies constitute a key component of peatland biological communities; they are important herbivores and a major prey item for breeding birds. However, they are also susceptible to drought, so are at risk from future climate change. We found that cranefly abundance increased with soil moisture, in a wedge‐shaped relationship; high soil moisture is a necessary condition for high cranefly abundance. Blocking drains increased both soil moisture (by 0.06 m3 m?3 in 2009 and 0.23 m3 m?3 in 2010) and cranefly abundance (1.3‐fold in 2009, 4.5‐fold in 2010), but the strength and significance of the effects varied between years. The benefits of restoring ecosystem moisture levels are likely to be greatest during dry years and at dry sites. This study provides some of the first evidence that adaptation management can potentially reduce some of the negative effects of climate change on vulnerable peatland systems. Management to maintain or increase soil moisture in peatlands can therefore be expected to increase populations of craneflies and their avian predators (which are of conservation and economic interest), but also increase the resilience of the ecosystem to future warming and increasingly frequent droughts, and improve carbon storage and water quality.  相似文献   

18.
Clarification of carbon content characteristics, on their spatial variability in density, of tropical peatlands is needed for more accurate estimates of the C pools and more detailed C cycle understandings. In this study, the C density characteristics of different peatland types and at various depths within tropical peats in Central Kalimantan were analyzed. The peatland types and the land cover types were classified by land system map and remotely sensed data of multi-temporal AVHRR composites (1-km pixel size), respectively. Differences in the mean values of volumetric C density (CDV) were found among peatland types owing to the variability in physical consolidation from peat decomposition or nutrient inputs, although no vertical trends of CDV were found. Using a step-wise regression technique, geographic variables and the categories of peatland type and land cover type were found to explain 54% of the variability of CDV within tropical peatlands in some conditions.  相似文献   

19.
We studied the effects of restoration on water‐table depth (WTD), element concentrations of peat and vegetation composition of peatlands drained for forestry in southern Finland. The restoration aimed to return the trajectory of vegetation succession toward that of undisturbed systems through the blockage of ditches and the removal of trees. Permanent plots established on a bog and a fen were sampled 1 year before, and 1, 2, 3, and 10 years after the restoration. The restoration resulted in a long‐term rise of the water‐table in both peatlands. Ten years after restoration, the mineral element concentrations (Ca, K, Mg, Mn, and P) of peat corresponded to those reported from comparable pristine peatlands. In particular, the increase of K and Mn concentrations at both sites suggests the recovery of ecosystem functionality in terms of nutrient cycling between peat and plants. The restoration resulted in the succession of plant communities toward the targeted peatland vegetation of wetter condition at both sites. This was evident from the decreased abundance of species benefiting from drainage and the corresponding increase of peatland species. However, many species typical of pristine peatlands were missing 10 years after restoration. We conclude that the restoration led to a reversal of the effects of drainage in vegetation and studied habitat conditions. However, due to the slow recovery of peatland ecosystems and the possibility that certain failures in the restoration measures may become apparent only after extended time periods, long‐term monitoring is needed to determine whether the goals of restoration will be met.  相似文献   

20.
珠三角城市群生态空间分区方法与管控对策   总被引:2,自引:0,他引:2  
陈新闯  李锋  李小倩  胡印红  韩婧  胡盼盼 《生态学报》2021,41(13):5233-5241
生态空间管控是维护区域生态安全,解决区域生态供需矛盾的重要手段。生态空间分区一直是生态管控的热点问题,对促进城市群可持续发展具有重要意义。以珠三角城市群为例,基于政策目标、民众需求、专家知识等方面综合构建评价体系,开展了基于生态空间质量和生态系统健康评价的生态空间分区的探索研究。结果表明:珠三角城市群生态空间约占城市群面积的82.8%,生态空间质量好,但生态系统健康水平低。城市尺度肇庆市、深圳市生态空间质量较高,珠海市、中山市生态空间质量较低;惠州市、肇庆市生态系统健康水平较高,佛山市、中山市生态系统健康水平较低。综合生态空间质量和生态系统健康,区域尺度将城市群生态空间分为重点保护区、重点修复区、潜在修复区和生态保育区。重点保护区占生态空间总面积的10.1%,是区域生态源地,应实行最严格的环境保护制度,划定生态保护红线和自然保护地,加强生态建设和生物多样性保护,并加强生态连通性建设,提升区域整体生态系统服务;重点修复区占生态空间总面积的21.6%,以生态修复,实施生态治理工程,推进生态产业为主;潜在修复区占生态空间总面积的13.1%,以保护优先、自然恢复为主,对生态空间进行全面的养护,保护和提升品质,重点提升生态系统服务;生态保育区占生态空间总面积的55.2%,重点实施生态廊道建设,同时加强区域高标准农田建设,在保护生态空间的基础上合理开展生产建设活动。对生态空间分区管控的研究可方便决策者对生态修复空间和生态保护空间进行识别和分类管理,有效指导国土空间规划和区域生态环境管理体系的完善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号