首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyanobacteria are the main dominant species in inland eutrophic lakes during algae blooms, and measures of cyanobacteria abundance can be used for monitoring and early detection of algal blooms by remote sensing. During May 2013 and August 2016, a total 137 water samples were collected from Lake Taihu and Lake Chaohu. Remote-sensing reflectance was measured, surface water was collected in the field, and chlorophyll-a concentration, phycocyanin concentration, suspended-matter concentration and phytoplankton pigment absorption parameters were measured in the laboratory. The composition and density of planktonic algae were also detected by microscope examination. The remote-sensing reflectance at 15 MERIS bands was simulated based on our measured spectral data, and a two-step method for detecting cyanobacteria abundance using the partial least squares model based on 5 MERIS bands was developed. The results showed that the estimation algorithm can predict cyanobacteria abundance in inland eutrophic lakes with satisfactory accuracy, with RMSE of 7.56 and MAPE of 13.44 %. This algorithm was successfully applied to the MERIS image acquired on August 12, 2010, and showed a reasonable spatial distribution of cyanobacteria abundance in Lake Taihu. It demonstrated that the developed estimation method was an effective way to monitor cyanobacteria abundance in water with a potential to be successfully applied to Sentinel-3 images.  相似文献   

2.
Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying cyanoHABs in multiple water bodies and across geo-political boundaries. An assessment method was developed using MEdium Resolution Imaging Spectrometer (MERIS) imagery to quantify cyanoHAB surface area extent, transferable to different spatial areas, in Florida, Ohio, and California for the test period of 2008 to 2012. Temporal assessment was used to evaluate changes in satellite resolvable inland waterbodies for each state of interest. To further assess cyanoHAB risk within the states, the World Health Organization’s (WHO) recreational guidance level thresholds were used to categorize surface area of cyanoHABs into three risk categories: low, moderate, and high-risk bloom area. Results showed that in Florida, the area of cyanoHABs increased largely due to observed increases in high-risk bloom area. California exhibited a slight decrease in cyanoHAB extent, primarily attributed to decreases in Northern California. In Ohio (excluding Lake Erie), little change in cyanoHAB surface area was observed. This study uses satellite remote sensing to quantify changes in inland cyanoHAB surface area across numerous water bodies within an entire state. The temporal assessment method developed here will be relevant into the future as it is transferable to the Ocean Land Colour Instrument (OLCI) on Sentinel-3A/3B missions.  相似文献   

3.
Monitoring programs for harmful algal blooms (HABs) are currently reactive and provide little or no means for advance warning. Given this, the development of algal forecasting systems would be of great use because they could guide traditional monitoring programs and provide a proactive means for responding to HABs. Forecasting systems will require near real-time observational capabilities and hydrodynamic/biological models designed to run in the forecast mode. These observational networks must detect and forecast over ecologically relevant spatial/ temporal scales. One solution is to incorporate a multiplatform optical approach utilizing remote sensing and in situ moored technologies. Recent advances in instrumentation and data-assimilative modeling may provide the components necessary for building an algal forecasting system. This review will outline the utility and hurdles of optical approaches in HAB detection and monitoring. In all the approaches, the desired HAB information must be isolated and extracted from the measured bulk optical signals. Examples of strengths and weaknesses of the current approaches to deconvolve the bulk optical properties are illustrated. After the phytoplankton signal has been isolated, species-recognition algorithms will be required, and we demonstrate one approach developed for Gymnodinium breve Davis. Pattern-recognition algorithms will be species-specific, reflecting the acclimation state of the HAB species of interest.Field data will provide inputs to optically based ecosystem models, which are fused to the observational networks through data-assimilation methods. Potential model structure and data-assimilation methods are reviewed.  相似文献   

4.
The detection of dense harmful algal blooms (HABs) by satellite remote sensing is usually based on analysis of chlorophyll-a as a proxy. However, this approach does not provide information about the potential harm of bloom, nor can it identify the dominant species. The developed HAB risk classification method employs a fully automatic data-driven approach to identify key characteristics of water leaving radiances and derived quantities, and to classify pixels into “harmful”, “non-harmful” and “no bloom” categories using Linear Discriminant Analysis (LDA). Discrimination accuracy is increased through the use of spectral ratios of water leaving radiances, absorption and backscattering. To reduce the false alarm rate the data that cannot be reliably classified are automatically labelled as “unknown”. This method can be trained on different HAB species or extended to new sensors and then applied to generate independent HAB risk maps; these can be fused with other sensors to fill gaps or improve spatial or temporal resolution. The HAB discrimination technique has obtained accurate results on MODIS and MERIS data, correctly identifying 89% of Phaeocystis globosa HABs in the southern North Sea and 88% of Karenia mikimotoi blooms in the Western English Channel. A linear transformation of the ocean colour discriminants is used to estimate harmful cell counts, demonstrating greater accuracy than if based on chlorophyll-a; this will facilitate its integration into a HAB early warning system operating in the southern North Sea.  相似文献   

5.
With the global expansion of harmful algal blooms (HABs), several measures, including molecular approaches, have been undertaken to monitor its occurrence. Many reports have indicated the significant roles of bacteria in controlling algal bloom dynamics. Attempts have been made to utilize the bacteria/harmful algae relationship in HAB monitoring. In this study, bacterial assemblages monitored during coastal HABs and bacterial communities in induced microcosm blooms were investigated. Samples were analysed using denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA gene. DGGE bands with peculiar patterns before, during, and after algal blooms were isolated and identified. Probes for six ribotypes representing organisms associated with Chatonella spp., Heterocapsa circularisquama, or Heterosigma akashiwo were used for analysis on NanoChip electronic microarray. In addition, a new approach using cultured bacteria species was developed to detect longer (533 bp) polymerase chain reaction-amplified products on the electronic microarray. The use of fluorescently labelled primers allowed the detection of individual species in single or mixed DNA conditions. The developed approach enabled the detection of the presence or absence and relative abundance of the HAB-related ribotypes in coastal and microcosm blooms. This study indicates the ability of electronic microarray platform to detect or monitor bacteria in natural and induced environments.  相似文献   

6.
In order to control harmful algal blooms, many biological approaches have been tried. Specially, there have recently been discussions concerning the roles of bacteria in algal bloom dynamics. Then, algicidal bacteria are expected as an agent considerate for harmful algal blooms control. Development of these organisms as biological control agents involves isolation from environmental samples. With the aim of develop eco-technology controlling water blooms in fresh waters, we isolated the diatom-lysing bacteria from the sediments of Lake Seokchon and Pal¡¯tang River-Reservoir. A soft agar-overlay technique was used to isolate the diatom lytic bacteria. The SK-02 showed a diatom lytic activity against Stephanodiscus hantzschii . Taxonomic identification including 16S rDNA base sequencing, and phylogenetic analysis indicated that the isolate SK-02 had a 99.20% homology in its 16S rDNA base sequence with Pseudomonas putida . The nature of these diatom-lying components is still under investigation. These results suggest that the indigenous bacteria isolated from the sediments may have a potential in the application and development of eco-technology controlling harmful water blooms in the fresh water environments.  相似文献   

7.
《Harmful algae》2009,8(1):77-93
Historically most harmful algal species (HAS) have been thought to be strictly phototrophic. Mixotrophy, the use of phototrophy and heterotrophy in combination, has been emphasized as operative mainly in nutrient-poor habitats as a mechanism for augmenting nutrient supplies. Here we examine an alternate premise, that many harmful algae which thrive in eutrophic habitats are mixotrophs that respond both directly to nutrient inputs, and indirectly through high abundance of bacterial and algal prey that are stimulated by the elevated nutrients. From review and synthesis of the available data, mixotrophy occurs in all HAS examined thus far in the organic substrate- and prey-rich habitats of eutrophic estuarine and marine coastal waters. Where data are available comparing phototrophy versus mixotrophy, mixotrophy in eutrophic habitats generally is significant in nutrient acquisition and growth of HAS and, therefore, likely important in the development and maintenance of their blooms. In eutrophic habitats phagotrophic mixotrophs, in particular, have been shown to attain higher growth than when in phototrophic mode. Yet for many HAS, quantitative data about the role of mixotrophy in nutrition, growth, and blooms are lacking, especially relating laboratory information to natural field assemblages, so that the relative importance of photosynthesis, dissolved organic nutrients, and ingestion of prey largely remain unknown. Research is needed to assess simultaneously the roles of phototrophy, osmotrophy and phagotrophy in the nutritional ecology of HAS in eutrophic habitats, spanning bloom initiation, development and senescence. From these data, models that include the role of mixotrophy can be developed to gain more realistic insights about the nutritional factors that control harmful algae in eutrophic waters, and to strengthen predictive capability in predicting their blooms. An overall forecast that can be tested, as well, is that harmful mixotrophic algae will become more abundant as their food supplies increase in many estuaries and coastal waters that are sustaining chronic, increasing cultural eutrophication.  相似文献   

8.
In order to control harmful algal blooms, many biological approaches have been tried. Specially, there have recently been discussions concerning the roles of bacteria in algal bloom dynamics. Then, algicidal bacteria are expected as an agent considerate for harmful algal blooms control. Development of these organisms as biological control agents involves isolation from environmental samples. With the aim of develop eco‐technology controlling water blooms in fresh waters, we isolated the diatom‐lysing bacteria from the sediments of Lake Seokchon and Pal¡¯tang River‐Reservoir. A soft agar‐overlay technique was used to isolate the diatom lytic bacteria. The SK‐02 showed a diatom lytic activity against Stephanodiscus hantzschii. Taxonomic identification including 16S rDNA base sequencing, and phylogenetic analysis indicated that the isolate SK‐02 had a 99.20% homology in its 16S rDNA base sequence with Pseudomonas putida. The nature of these diatom‐lying components is still under investigation. These results suggest that the indigenous bacteria isolated from the sediments may have a potential in the application and development of eco‐technology controlling harmful water blooms in the fresh water environments.  相似文献   

9.
湖泊富营养化导致的水华藻类频繁暴发已成为当今世界性的环境问题,溶藻微生物作为生物法防治有害藻类水华具有广泛的研究前景,通过查阅文献对微生物控制有害藻类水华进行概述,并探讨进一步的研究趋势和应用前景,以期对微生物溶藻方面的研究及开发应用有一定的参考价值。  相似文献   

10.
Reasons for the emergent interest in HABs are abundant, including concerns associated with human health, adverse effects on biological resources, economic losses attributed to recreation, tourism and seafood related industries, and the cost of maintaining public advisory services and monitoring programs for shellfish toxins and water quality. The impact of HABs can potentially be mitigated by early warning of their development. In this regard the project ASIMUTH (Applied Simulations and Integrated Modelling for the Understanding of Toxic and Harmful algal blooms) was borne in order to develop short term HAB alert systems for Atlantic Europe. This was achieved using information on the most current marine conditions (weather, water characteristics, toxicity, harmful algal presence etc.) combined with high resolution local numerical predictions. This integrated, multidisciplinary, trans-boundary approach to the study of HABs developed during ASIMUTH led to a better understanding of the physical, chemical and ecological factors controlling these blooms, as well as their impact on human activities. The outcome was an appropriate alert system for an effective management of areas that are usually associated with HAB events and where these episodes may have a more significant negative impact on human activities. Specifically for the aquaculture industry, the information provided enabled farmers to adapt their working practices in time to prevent mortalities in finfish farms and/or manage their shellfish harvest more effectively. This paper summarises the modelling and alert developments generated by the ASIMUTH project.  相似文献   

11.
The new satellite ocean color sensors offer a means of detecting and monitoring algal blooms in the ocean and coastal zone. Beginning with SeaWiFS (Sea Wide Field-of-view Sensor) in September 1997, these sensors provide coverage every 1 to 2 days with 1-km pixel view at nadir. Atmospheric correction algorithms designed for the coastal zone combined with regional chlorophyll algorithms can provide good and reproducible estimates of chlorophyll, providing the means of monitoring various algal blooms. Harmful algal blooms (HABs) caused by Karenia brevis in the Gulf of Mexico are particularly amenable to remote observation. The Gulf of Mexico has relatively clear water and K. brevis, in bloom conditions, tends to produce a major portion of the phytoplankton biomass. A monitoring program has begun in the Gulf of Mexico that integrates field data from state monitoring programs with satellite imagery, providing an improved capability for the monitoring of K. brevis blooms.  相似文献   

12.
Summer heatwaves promote blooms of harmful cyanobacteria   总被引:13,自引:0,他引:13  
Dense surface blooms of toxic cyanobacteria in eutrophic lakes may lead to mass mortalities of fish and birds, and provide a serious health threat for cattle, pets, and humans. It has been argued that global warming may increase the incidence of harmful algal blooms. Here, we report on a lake experiment where intermittent artificial mixing failed to control blooms of the harmful cyanobacterium Microcystis during the summer of 2003, one of the hottest summers ever recorded in Europe. To understand this failure, we develop a coupled biological–physical model investigating how competition for light between buoyant cyanobacteria, diatoms, and green algae in eutrophic lakes is affected by the meteorological conditions of this extreme summer heatwave. The model consists of a phytoplankton competition model coupled to a one-dimensional hydrodynamic model, driven by meteorological data. The model predicts that high temperatures favour cyanobacteria directly, through increased growth rates. Moreover, high temperatures also increase the stability of the water column, thereby reducing vertical turbulent mixing, which shifts the competitive balance in favour of buoyant cyanobacteria. Through these direct and indirect temperature effects, in combination with reduced wind speed and reduced cloudiness, summer heatwaves boost the development of harmful cyanobacterial blooms. These findings warn that climate change is likely to yield an increased threat of harmful cyanobacteria in eutrophic freshwater ecosystems.  相似文献   

13.
Cyanobacteria have adapted to survive in a variety of environments and have been found globally. Toxin-producing cyanobacterial harmful algal blooms (CHABs) have been increasing in frequency worldwide and pose a threat to drinking and recreational water. In this study, the prevalence, impact of CHABs and mitigation efforts were reviewed, focusing on the Lake Erie region and Ohio’s inland lakes that have been impacted heavily as an example so that the findings can be transferrable to other parts of the world that face the similar problems due to the CHABs in their freshwater environments. This paper provides a basic introduction to CHABs and their toxins as well as an overview of public health implications including exposure routes, health effects, and drinking water issues, algal bloom advisory practices in Ohio, toxin measurements results in Ohio public water supplies, and mitigation efforts.  相似文献   

14.
Despite the potential negative human health, ecological and economic impact, the ecology of harmful benthic dinoflagellate blooms remains largely unknown. This is probably due to the complex interactions among biotic and abiotic drivers that influence blooms, but also to the difficulty in quantifying cell abundance in a comparable way over large spatial and temporal scales. One of the recognized priorities for bHABs (benthic Harmful Algal Blooms) assessment is developing and standardizing methods that can provide comparable data. In this context, the Benthic Dinoflagellates Integrator (BEDI), a new non-destructive quantification method for benthic dinoflagellate abundances, has been developed and tested within the present study. The rationale behind the BEDI standard assessment method is that mechanical resuspension of cells enables the quantification of abundances as cells per unit of seabed surface area (i.e. cells mm−2) or as Potentially Resuspended cells per unit of volume (PRcells ml−1), by integrating both cells in the biofilm and those in the surrounding water. Estimations of Ostreopsis performed with BEDI method are independent of the substratum (i.e. macroalgal species) or the dominant ecosystem (i.e. algal forests or turfs, seagrass beds, coral reefs) and potentially allow the comparison of benthic dinoflagellate blooms over broad temporal and spatial scales. The first application of the BEDI method, presented in this study, gave encouraging results: the characterization of blooms of Ostreopsis cf. ovata at three sites in the NW Mediterranean Sea is consistent with results derived from the other commonly applied methods. Quantification of the ratio between abundances of cells in the biofilm and in the surrounding water was calculated for the first time per unit of seabed surface area, demonstrating that the highest abundances of cells (the stock), and therefore the associated risk for human health, are in the biofilm. For risk assessment purposes, conversion values for commonly used monitoring alert thresholds of Mediterranean Ostreopsis blooms are provided.  相似文献   

15.
Microalgal bloom events can cause major ecosystem disturbances, devastate local marine economies, and endanger public health. Therefore, detecting and monitoring harmful microalgal taxa is essential to ensure effective risk management in waterways used for fisheries, aquaculture, recreational activity, and shipping. To fully understand the current status and future direction of algal bloom distributions, we need to know how populations and ecosystems have changed over time. This baseline knowledge is critical for predicting ecosystem responses to future anthropogenic change and will assist in the future management of coastal ecosystems. We explore a NGS metabarcoding approach to rapidly identify potentially harmful microalgal taxa in 63 historic and modern Australian marine port and ballast tank sediment samples. The results provide a record of past microalgal distribution and important baseline data that can be used to assess the efficacy of shipping guidelines, nutrient pollution mitigation, and predict the impact of climate change. Critically, eDNA surveys of archived sediments were able to detect harmful algal taxa that do not produce microscopic fossils, such as Chattonella, Heterosigma, Karlodinium, and Noctiluca. Our data suggest a potential increase in Australian harmful microalgal taxa over the past 30 years, and confirm ship ballast tanks as key dispersal vectors. These molecular mapping tools will assist in the creation of policies aimed at reducing the global increase and spread of harmful algal taxa and help prevent economic and public‐health problems caused by harmful algal blooms.  相似文献   

16.
17.
Cyanobacterial harmful algal blooms (cyanoHABs) and associated toxins, such as microcystin, are a major global water-quality issue. Water-resource managers need tools to quickly predict when and where toxin-producing cyanoHABs will occur. This could be done by using site-specific models that estimate the potential for elevated toxin concentrations that cause public health concerns. With this study, samples were collected at three Ohio lakes to identify environmental and water-quality factors to develop linear-regression models to estimate microcystin levels. Measures of the algal community (phycocyanin, cyanobacterial biovolume, and cyanobacterial gene concentrations) and pH were most strongly correlated with microcystin concentrations. Cyanobacterial genes were quantified for general cyanobacteria, general Microcystis and Dolichospermum, and for microcystin synthetase (mcyE) for Microcystis, Dolichospermum, and Planktothrix. For phycocyanin, the relations were different between sites and were different between hand-held measurements on-site and nearby continuous monitor measurements for the same site. Continuous measurements of parameters such as phycocyanin, pH, and temperature over multiple days showed the highest correlations to microcystin concentrations. The development of models with high R2 values (0.81–0.90), sensitivities (92%), and specificities (100%) for estimating microcystin concentrations above or below the Ohio Recreational Public Health Advisory level of 6 μg L−1 was demonstrated for one site; these statistics may change as more data are collected in subsequent years. This study showed that models could be developed for estimates of exceeding a microcystin threshold concentration at a recreational freshwater lake site, with potential to expand their use to provide relevant public health information to water resource managers and the public for both recreational and drinking waters.  相似文献   

18.
太湖水华程度及其生态环境因子的时空分布特征   总被引:2,自引:0,他引:2  
张艳会  李伟峰  陈求稳 《生态学报》2016,36(14):4337-4345
湖泊水华是全世界面临的严重生态环境问题之一,对人类和生态系统健康都有重大影响。由于湖泊水华受流域面源、点源污染、气候、水文因子以及湖泊生态系统自身特征等众多因素影响,水华是否爆发、其严重程度及时空分布特征呈现明显的复杂性。以我国太湖为研究区域,基于近年的水华及水环境的监测数据,用自组织特征映射神经网络对太湖不同监测点的水华程度进行了自动聚类分析。结果表明,太湖水华程度呈现为明显的无水华、轻度、中度和重度水华4类。不同程度水华的叶绿素a、水温、COD_(Mn)、营养盐、浮游植物生物量以及藻种(蓝藻、绿藻、硅藻)结构的时空差异显著,不同变量间的关系复杂,有助于深入认识太湖近年水华发生的时空变异特性。  相似文献   

19.
Strategic placement of moorings as an integrated element of ocean observing systems will be essential in the effective monitoring of harmful algal blooms that impact the sustainability of seafood harvest as well as human and marine animal health. Recent efforts have focused on in situ collection and analysis of biological samples, an arguably more difficult task than the measurement of chemical and physical parameters that has been automated for many years. Remote sampling and preservation of samples for later analysis can fill a gap that will allow analysis of time-series data that are essential for establishing interannual trends in coastal regions and provide timely warning of approaching harmful algal blooms. In addition, stored samples for subsequent laboratory analysis will provide important control samples needed to validate in situ, robotic analysis of biological samples. This monitoring for harmful algae and their toxins on moorings, gliders and other autonomous platforms as part of ocean observing systems requires consideration of sampling locations as well other factors such as preservative type used for sample collection and storage combined with a compatible method for toxin analysis. To that end, Pseudo-nitzschia abundance and domoic acid concentrations in seawater were measured from samples collected with a remote sampler moored in Willapa Bay, Washington, during the spring and summer from 2002 through 2006, and compared to data from two adjacent beach sites, Twin Harbors Beach and Long Beach, by Olympic Region Harmful Algal Bloom (ORHAB) personnel. Using enzyme-linked immunosorbent assay (ELISA), total toxin measurements in formalin-preserved whole water samples from Willapa Bay were shown to correlate well with changes in particulate domoic acid concentrations in filtered (particulate) seawater samples from adjacent beaches. A series of experiments confirm, for the first time, that formalin, but not Lugol's iodine or glutaraldehyde, is an effective preservative for phytoplankton samples that are stored for later analysis of domoic acid by ELISA. Together, these data confirm that placement of moorings for in situ sampling of biological and environmental parameters in the sheltered environment of Willapa Bay can accurately detect the arrival of harmful algal blooms that originate from offshore hotspots to shellfish harvesting beaches.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号