首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 342 毫秒
1.
孟嘉仪  张国晶  周凤恩  王楠  周义发  原野 《微生物学报》1963,(收录汇总):3129-3143
【目的】克隆表达浸麻类芽孢杆菌(Paenibacillus macerans)的葡甘露聚糖降解酶,研究其性质和功能,丰富葡甘露聚糖降解酶资源,了解浸麻类芽孢杆菌降解葡甘露聚糖机制。【方法】检索浸麻类芽孢杆菌的葡甘露聚糖降解酶基因,构建重组菌株,表达纯化重组酶,系统研究其功能及在降解葡甘露聚糖中的作用。【结果】克隆表达了5个葡甘露聚糖降解酶组分。结果显示PmMan1和PmMan2为内切β-甘露聚糖酶,PmGlc1、PmGlc2和PmGlc3为外切β-葡萄糖苷酶。其中PmGlc1只能水解pNPβGlc,PmGlc2能水解二糖和人参皂苷的β-1,6-葡萄糖苷键,而PmGlc3对β-葡萄糖苷键的选择性较为广泛。PmMan1、PmMan2、PmGlc2和PmGlc3能够降解葡甘露寡糖,PmMan1和PmMan2可以降解葡甘露聚糖。共同降解葡甘露聚糖时,PmGlc2和PmGlc3与PmMan2具有协同效应,且PmGlc3与PmMan2的协同作用更为显著。【结论】从浸麻类芽孢杆菌中获得了4种葡甘露聚糖降解酶,阐明了该菌葡甘露聚糖降解酶系成员的作用,丰富了酶资源和理论研究成果的同时,为酶法制备活性葡甘露寡糖提供了有效工具。  相似文献   

2.
通过DEAE-纤维素阴离子交换层析、30%~80%(NH3)2SO3盐析、Sepharose CL-6B凝胶过滤层析和Mono Q HR5/5阴离子交换层析,从毁灭枉孢菌培养液中部分纯化出一种能够水解人参皂苷Rb,的β-葡萄糖苷酶F-I。F—I具有较好的pH稳定性和热稳定性,在pH4.0~11.0范围内和55℃以下表现出良好的β-葡萄糖苷酶活性,其最适pH为5.0,最适温度为55℃。EDTA、Cu^2+和Zn^2+对该酶活性有较强的抑制作用。底物专一性分析表明,F—I能高特异性水解人工合成的底物pNPG,还能水解β-葡萄糖苷键连接的二糖如纤维二糖和龙胆二糖,说明此酶为一种β-葡萄糖苷酶。F—I对人参皂苷Rb1表现了较强的水解活性,而对人参皂苷Rb2和Rc的水解活性较低。该酶水解人参皂苷Rb1的路径为Rb1→Rd→F2→C—K。F—I对人参皂苷Rb1的这种高效水解为稀有人参皂苷的工业制备奠定了基础。  相似文献   

3.
人参皂苷是人参中的主要活性成分。人参皂苷中含量较高的主要成分如Rb1、Rb2、Rc、Rd、Rg1和Re均是在人参皂苷的苷元原人参二醇(APPD)或苷元原人参三醇(APPT)上加上不同数量的葡萄糖基、阿拉伯糖基、木糖基或鼠李糖基等糖基形成的。这些主要人参皂苷脱去部分或全部的糖基的产物具有更强的生物活性及更好的人体吸收率。去除糖基的产物如Rg3、Rh2、化合物K(C-K)、F2、Rh1、Rg1、APPD、APPT在天然人参中不存在或含量极低,因此也被称为稀有人参皂苷。稀有人参皂苷可以通过糖苷酶水解主要人参皂苷获得。已报道的具备人参皂苷水解活力的糖苷酶有β-葡萄糖苷酶、α-L-阿拉伯吡喃糖苷酶、α-L-阿拉伯呋喃糖苷酶、β-半乳糖苷酶及β-木糖苷酶。我们简要综述近5年来糖苷酶用于制备稀有人参皂苷的研究进展。  相似文献   

4.
【目的】克隆表达浸麻类芽孢杆菌(Paenibacillus macerans)的葡甘露聚糖降解酶,研究其性质和功能,丰富葡甘露聚糖降解酶资源,了解浸麻类芽孢杆菌降解葡甘露聚糖机制。【方法】检索浸麻类芽孢杆菌的葡甘露聚糖降解酶基因,构建重组菌株,表达纯化重组酶,系统研究其功能及在降解葡甘露聚糖中的作用。【结果】克隆表达了5个葡甘露聚糖降解酶组分。结果显示Pm Man1和Pm Man2为内切β-甘露聚糖酶,Pm Glc1、Pm Glc2和Pm Glc3为外切β-葡萄糖苷酶。其中Pm Glc1只能水解p NPβGlc,Pm Glc2能水解二糖和人参皂苷的β-1,6-葡萄糖苷键,而Pm Glc3对β-葡萄糖苷键的选择性较为广泛。Pm Man1、Pm Man2、Pm Glc2和Pm Glc3能够降解葡甘露寡糖,Pm Man1和Pm Man2可以降解葡甘露聚糖。共同降解葡甘露聚糖时,Pm Glc2和Pm Glc3与Pm Man2具有协同效应,且Pm Glc3与Pm Man2的协同作用更为显著。【结论】从浸麻类芽孢杆菌中获得了4种葡甘露聚糖降解酶,阐明了该菌葡甘露聚糖降解酶系成员的作用,丰富了酶资源...  相似文献   

5.
【背景】许多微生物能够对皂苷类化合物进行生物转化,因此,通过微生物对皂苷类化合物不同位置结构的修饰能获得高活性的皂苷成分。【目的】从分离纯化的菌株中筛选能将人参皂苷Rb1转化为药理活性较高的稀有人参皂苷。【方法】从三七根际土壤及三七茎中分离纯化了36株真菌,首先利用产β-葡萄糖苷酶的方法对菌株进行皂苷转化活性初筛,再以人参皂苷Rb1为底物进行皂苷转化活性复筛,通过薄层色谱(thinlayerchromatography,TLC)、高效液相色谱(high performance liquid chromatography, HPLC)和质谱(mass spectrometry, MS)等方法对转化产物进行分析。【结果】筛选出一株对人参皂苷Rb1具有较高转化活性的菌株F17,通过形态学观察及对内转录间隔区(internaltranscribedspacer,ITS)序列分析,菌株F17被鉴定为拟盘多毛孢属菌(Pestalotiopsis biciliata)。P. biciliata可将人参皂苷Rb1转...  相似文献   

6.
人参皂苷是一类具有抗疲劳及提高免疫力等功能的固醇类化合物,其中含量极少的稀有人参皂苷Rg_3、Rh_2等还具有抗癌的功效,是主要活性成分,拥有广阔的应用前景。研究发现真菌可以产生能够水解人参皂苷糖基的β-葡萄糖苷酶,可以有效水解人参皂苷的糖基,将大量的常见皂苷转化为稀有皂苷,是大量获得稀有人参皂苷的新途径。本文对人参皂苷合成途径、糖基分布及数量与抗肿瘤的效果、β-葡萄糖苷酶的性质及其催化人参皂苷单体转换的规律进行了综述。相信随着现代分子生物学技术和酶工程的发展,工业上大规模获得稀有人参皂苷将有望实现。  相似文献   

7.
人参皂苷是五加科人参属植物的主要活性成分之一。研究表明,人参皂苷经过体内代谢后生成的稀有皂苷在抗肿瘤、抗炎、抗衰老等方面的药理作用要强于原型皂苷,因此,稀有皂苷的制备成为目前人参研究领域的热点内容。人参皂苷的酶转化是稀有人参皂苷制备的主要途径之一,近些年取得了突破性的进展,以不同种类的糖苷酶为切入点,将相关研究内容进行了综述,分别讨论了不同类型的糖苷酶在稀有皂苷生物转化过程中的应用,以期为稀有皂苷的大规模开发利用奠定基础。  相似文献   

8.
【背景】β-葡萄糖苷酶(EC 3.2.1.21,β-glucosidase),是纤维素分解酶系中的重要组成部分,目前工业上应用的β-葡萄糖苷酶多数来源于植物和真菌,来源于细菌的较少,且应用中还存在酶活力偏低、热稳定性差、反应条件适用范围窄、酶活力易受产物反馈抑制等问题,增加了经济成本。嗜热微生物具有特殊的遗传信息资源,极有可能从中挖掘到酶学性质优良的新型β-葡萄糖苷酶,从而解决工业难题。【目的】从嗜热淀粉芽孢杆菌(Bacillus thermoamylovorans)基因组中挖掘新型β-葡萄糖苷酶基因,通过基因重组、异源表达和蛋白纯化技术制备新型β-葡萄糖苷酶,并探究其酶学性质,为新型β-葡萄糖苷酶在纤维素水解等领域的应用奠定基础。【方法】人工合成新型β-葡萄糖苷酶基因bgl52,构建重组表达质粒pET22b-bgl52,并用电脉冲法转化到大肠杆菌BL21(DE3)中实现可溶性表达,利用Ni-NTA亲和层析纯化得到高纯度的β-葡萄糖苷酶Bgl52。【结果】实现重组表达质粒pET22b-bgl52在大肠杆菌BL21(DE3)中的可溶性表达,并获得β-葡萄糖苷酶Bgl52纯蛋白,蛋白分子量为52 kD,在70°C和pH 6.5条件下表现出最佳活性;以p-nitrophenyl-β-D-glucopyranoside (p NPG)为底物时的比酶活为223.7±5.3 U/mg;K_m为9.3±1.2 mmol/L,V_(max)为270.3±4.3μmol/(min·mg);Bgl52偏好性水解β-1,4糖苷键的底物;Fe~(2+)和Mg~(2+)对酶的激活作用明显,Co~(2+)、Cu~(2+)和SDS可抑制其活性;Bgl52是少有的几种葡萄糖和木糖激活型β-葡萄糖苷酶之一,当反应体系中外源添加0.2 mol/L葡萄糖时可提升活力至2.84倍,外源添加0.4 mol/L木糖时可提升活力至3.24倍,同时Bgl52在生理条件下基本不受产物的反馈抑制。【结论】利用嗜热微生物基因组中蕴藏的遗传信息资源,通过现代生物技术方法,可以从中挖掘到酶学性质优良的β-葡萄糖苷酶,为其在纤维素降解等工业领域的应用奠定基础。  相似文献   

9.
【目的】克隆嗜热脱氮土壤芽孢杆菌中的β-葡萄糖苷酶基因bglB,在E.coli中异源表达,纯化并研究其酶学性质。【方法】利用PCR技术从嗜热脱氮土壤芽孢杆菌的基因组DNA中克隆得到bglB基因,将该基因克隆到表达载体pGEX-2TL上并在大肠杆菌BL21(DE3)中表达,对纯化后的β-葡萄糖苷酶的酶学性质及寡聚状态进行分析。【结果】重组表达的β-葡萄糖苷酶最适温度为65°C,最适pH为7.0,能在pH 5-10、60°C下稳定存在4 h,并能在较高的离子强度(880 mmol/L K+)下发挥其功能。Al3+离子对其有强烈的激活作用,Co2+有一定的抑制作用。最适反应条件下该酶比活力为0.043 IU/mg。该酶具有多种寡聚体形式,这些寡聚体均有β-葡萄糖苷酶活性。【结论】获得一个耐热耐盐的中性β-葡萄糖苷酶,为进一步研究β-葡萄糖苷酶的催化作用机理,提高其热稳定性提供一定的帮助。  相似文献   

10.
【目的】分离获得β-葡萄糖苷酶高产菌株,确定该菌分类地位,并对其所产β-葡萄糖苷酶的酶学性质进行初步研究。【方法】采用七叶灵显色法从土壤样品中筛选β-葡萄糖苷酶产生菌,再用对硝基苯基-β-D-吡喃葡萄糖苷(PNPG)显色法进行复筛;通过形态特征、生理生化特征及16S rDNA序列相似性分析等方法确定其分类学地位;利用超滤、疏水层析、阴离子层析、分子筛层析法对β-葡萄糖苷酶进行分离纯化;以PNPG为底物,测定β-葡萄糖苷酶的最适反应pH及最适反应温度,通过双倒数作图法确定β-葡萄糖苷酶催化不同底物水解的米氏常数Km值。【结果】从土壤样品中筛选得到一株β-葡萄糖苷酶高产菌株ZF-6C,初步鉴定为Bacillus korlensis;芽胞杆菌ZF-6C所产β-葡萄糖苷酶的分子量约为90 kD,最适反应pH和温度分别为7.0和40°C,该酶具有水解β(1,4)糖苷键的活性,最适底物为邻硝基苯-β-D-吡喃葡萄糖苷,Km值为0.73 mmol/L。金属离子Ca2+、Pb2+增强酶活,而Cu2+、Fe2+抑制酶活。【结论】首次报道从Bacillus korlensis中分离得到β-葡萄糖苷酶,Bacillus korlensis ZF-6C所产β-葡萄糖苷酶在分子量、最适反应条件及底物特异性等方面均不同于已知酶,可能为一结构新颖且催化效率较高的β-葡萄糖苷酶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号