首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用遥感技术评估了印度北部Pali Gad山地流域过去几十年里土地利用/土地覆盖变化及其造成的土壤侵蚀程度,并基于摩根参数模型(Morgan Parametric Model)的方法来测定土壤的侵蚀程度;结果表明,由于不同的坡向受到太阳光照的不同可以引起土地覆盖的变迁;海拔和坡度已不再是阻碍人们获取自然资源的因素,人们的活动范围正转移到更高的海拔和更陡峭的坡度;揭示了土地利用/土地覆盖变化对土壤侵蚀进程有着直接的影响。  相似文献   

2.
The hydrological response to land cover changes induced by human activities in arid regions has attracted increased research interest in recent decades. The study reported herein assessed the spatial and quantitative changes in surface runoff resulting from land cover change in the Al-Baha region of Saudi Arabia between 1990 and 2000 using an ArcGIS-surface runoff model and predicted land cover and surface runoff depth in 2030 using Markov chain analysis. Land cover maps for 1990 and 2000 were derived from satellite images using ArcGIS 10.1. The findings reveal a 26% decrease in forest and shrubland area, 28% increase in irrigated cropland, 1.5% increase in sparsely vegetated land and 0.5% increase in bare soil between 1990 and 2000. Overall, land cover changes resulted in a significant decrease in runoff depth values in most of the region. The decrease in surface runoff depth ranged from 25-106 mm/year in a 7020-km2 area, whereas the increase in such depth reached only 10 mm/year in a 243-km2 area. A maximum increase of 73 mm/year was seen in a limited area. The surface runoff depth decreased to the greatest extent in the central region of the study area due to the huge transition in land cover classes associated with the construction of 25 rainwater harvesting dams. The land cover prediction revealed a greater than twofold increase in irrigated cropland during the 2000-2030 period, whereas forest and shrubland are anticipated to occupy just 225 km2 of land area by 2030, a significant decrease from the 747 km2 they occupied in 2000. Overall, changes in land cover are predicted to result in an annual increase in irrigated cropland and dramatic decline in forest area in the study area over the next few decades. The increase in surface runoff depth is likely to have significant implications for irrigation activities.  相似文献   

3.
Assessing soil erosion hazards and mapping the spatial distribution of soil erosion have an essential role in sustainable forest management. In this study, the potential soil erosion risk was evaluated through the Analytical Hierarchy Process (AHP) and Geographic Information Systems (GIS) in the Oltu forest planning unit, Erzurum. Seven erosion-related criteria, including slope, bedrock type, relative relief, drainage density and frequency, rainfall, and land use/land cover (LULC) were used for the present assessment. According to the AHP analysis, the slope was the most influential factor (21%) followed by bedrock type (19%), land cover (17%), and relative relief (14%) in the soil erosion process. The soil erosion risk in the study area was strongly influenced by the LULC where 59.46% is bare land with high erosion risk and 12.07%, with the lowest risk, is in an area with any forest cover. The estimated soil erosion risk was classified into five different classes namely very low, low, moderate, high, and very high. The results showed that this study area is highly prone to soil erosion. The larger proportion of the area (39.16%) is exposed to high to very high erosion, mainly determined by forest cover and geomorphology. To analyze the accuracy of the soil erosion risk map, 40 points were selected randomly in this study area. In these points, predicted values were compared to the real values obtained by Google Earth-colored images. The area under the ROC curve (AUC) method was applied to validate the efficiency of the AHP which showed a satisfactory accuracy of 81.00%. Findings presented that including the more influencing factors with a slope instead of including only the slope contributes to a more accurate erosion risk map. This study highlighted that GIS-based multi-criteria decision-making is a valuable and practical tool for decision-makers and land managers in creating soil erosion susceptibility maps and determining high-priority areas that require conservation measures for sustainable land use management by reducing the economic and ecological impacts of soil loss. Also, this approach can be practically applied in other planning units.  相似文献   

4.
包妲  李杰  刘锋  胡金明 《生态学报》2021,41(17):6960-6969
缅甸土地利用变化对其生态系统服务的影响与中缅绿色"一带一路"、中缅经济走廊建设等重大战略的长期合作息息相关。利用缅甸1995年和2015年的土地利用数据,结合Costanza生态系统服务价值系数表,分析缅甸土地利用变化对生态系统服务价值的影响。结果表明:(1)1995-2015年,缅甸土地利用类型以林地(71%)和耕地(26%)为主,林地和草地面积减少,而其他地类增加;林地和耕地之间的转化显著。(2)缅甸生态系统服务价值约4600-4700亿美元,林地贡献最大;调节(48%)和支持(29%)服务价值比重较大;(3)生态系统服务总价值增加了66.26亿美元,调节、供给和支持服务价值增加,而文化服务价值减少;生态系统服务二级类型中:废物处理、食物供给、生境/避难所等增加,气候调节、遗传资源、水土保持功能等减少;(4)缅甸土地利用变化对生态系统服务总价值和生态系统服务一级类型总价值影响较小,但生态系统服务二级类型价值的"此消彼长"会影响缅甸生态安全和生物多样性,在未来中缅"一带一路"建设中需要重点关注。  相似文献   

5.
页岩气开发对植被和土壤的影响研究进展   总被引:1,自引:0,他引:1  
陈宏坤  杜显元  张心昱  吴骞  郭宇 《生态学报》2018,38(18):6383-6390
页岩气开发和生产过程影响水资源与水质、土地利用与植被覆盖、土壤侵蚀与土壤质量。综述了页岩气开发和生产过程可能存在的生态环境影响,并重点评价了国际上不同区域页岩气开发和生产对土地利用和植被覆被变化、景观破碎化的影响,以及对土壤侵蚀和土壤质量的影响。研究发现页岩气开发平台、运输道路和管线占用农田、牧场、森林,造成不同程度的景观破碎化,在坡地开发页岩气会导致土壤侵蚀与沉积风险增大。截止2015年末,在我国重庆涪陵焦石坝页岩气产建区55.8%的面积(146.56 km~2)存在土壤侵蚀和石漠化生态风险。我国页岩气开发区水基钻屑固化填埋未对周边土壤造成污染。建议页岩气开发设计应考虑占地、景观破碎化的影响,并及时开展页岩气开发暂时占地的复垦工作。  相似文献   

6.
武汉市位于桐柏山大别山国家级水土流失预防区与幕阜山省级水土流失治理区之间,其土壤侵蚀问题对长江中游生态安全具有重要影响。基于2009-2018年武汉市蔡店、磨盘山、西湖流域、燕子山等4个水土保持监测站35个径流小区的观测数据(139组),定量分析了坡度、侵蚀性降水量、土地利用和水土保持措施对土壤侵蚀的影响,并借鉴USLE模型识别土壤侵蚀主导因子。结果表明,裸地小区的平均土壤侵蚀模数最高(2597.57 t km-2 a-1),其次是经济林、草地和耕地小区且三者的侵蚀模数相差不大,土壤侵蚀模数与侵蚀性降雨量、坡度之间呈显著二元线性或幂函数关系;与天然植被小区相比,植物篱(草带、茶树、紫穗槐)及石坎梯田措施均显著降低了土壤侵蚀模数,其中植物篱措施的效果更优,且草带植物篱小区的侵蚀模数最低(46.13 t km-2 a-1);3个坡度等级(0-10°、10-20°、20-25°)小区平均侵蚀模数分别为892.07、911.15、2087.60 t km-2 a-1,表明坡度超过20°后土壤侵蚀严重加剧;武汉市土壤侵蚀的主导因子为水土保持措施、植被覆盖与管理因子。研究结果可为武汉市水土保持措施合理布设及侵蚀预报模型的完善提供依据,基于径流小区长期观测数据的土壤侵蚀定量研究值得进一步深入。  相似文献   

7.
Deforestation changes the hydrological, geomorphological, and biochemical states of streams by decreasing evapotranspiration on the land surface and increasing runoff, river discharge, erosion and sediment fluxes from the land surface. Deforestation has removed about 55% of the native vegetation and significantly altered the hydrological and morphological characteristics of an 82,632 km2 watershed of the Araguaia River in east-central Brazil. Observed discharge increased by 25% from the 1970s to the 1990s and computer simulations suggest that about 2/3 of the increase is from deforestation, the remaining 1/3 from climate variability. Changes of this scale are likely occurring throughout the 2,000,000 km2 savannah region of central Brazil.  相似文献   

8.
冯源  朱建华  曾立雄  肖文发 《生态学报》2021,41(9):3381-3393
土地利用/覆被变化是全球变化的研究热点,评估县域土地利用变化对生态系统服务价值损益的影响对促进生态环境保护和推动城乡区域协调发展具有重要意义。基于重庆市巴南区2000年以来连续5期遥感影像及CLUE-S模型,量化土地利用变化对生态系统服务价值的影响并预测2020-2030年服务价值损益的时空动态。结果表明2000-2020年巴南区土地利用变化主要表现为耕地持续转化为其他用地类型和林地面积的大幅增长,该趋势将在未来10年内延续。2000-2030年耕地占巴南区面积的比例下降了39.58%,而林地占比将增长28.86%并在2025年后取代耕地成为最主要的地类;建设用地、水域和未利用地面积占比分别增长8.29%、2.25%和0.18%。土地利用类型变化下巴南区生态系统服务价值在2000-2020年由11.69亿元增长到27.64亿元,并将持续增长至2030年的30.19亿元。耕地和林地转化为建设用地、耕地转化为林地(尤其是转化为针叶林和针阔混交林)分别是服务价值损失及增益的主要方式。2000-2030年巴南区生态系统服务价值总损失0.58亿元、总增益19.09亿元,净增益18.50亿元。土地利用结构变化和生态系统服务当量因子价值升高分别贡献了净增益的70.96%和29.04%。巴南区生态系统服务价值损益与地形密切相关。2000-2030年间巴南区生态系统服务价值由匀质分布逐渐形成北低南高的发展格局;价值损益在全局和局域尺度上均呈现出显著的正向空间自相关特性。巴南区现有的土地利用模式能够兼顾经济发展及生态环境保护两方面的需求。未来需要继续实行生态保护工程、合理规划城市用地边界、严守耕地红线以推动城乡区域协调发展。  相似文献   

9.
In this paper we estimate the living carbon lost from Ecuador’s mangrove forests since the advent of export-focused shrimp aquaculture. We use remote sensing techniques to delineate the extent of mangroves and aquaculture at approximately decadal periods since the arrival of aquaculture in each Ecuadorian estuary. We then spatiotemporally calculate the carbon values of the mangrove forests and estimate the amount of carbon lost due to direct displacement by aquaculture. Additionally, we calculate the new carbon stocks generated due to mangrove reforestation or afforestation. This research introduces time and LUCC (land use / land cover change) into the tropical forest carbon literature and examines forest carbon loss at a higher spatiotemporal resolution than in many earlier analyses. We find that 80 percent, or 7,014,517 t of the living carbon lost in Ecuadorian mangrove forests can be attributed to direct displacement of mangrove forests by shrimp aquaculture. We also find that IPCC (Intergovernmental Panel on Climate Change) compliant carbon grids within Ecuador’s estuaries overestimate living carbon levels in estuaries where substantial LUCC has occurred. By approaching the mangrove forest carbon loss question from a LUCC perspective, these findings allow for tropical nations and other intervention agents to prioritize and target a limited set of land transitions that likely drive the majority of carbon losses. This singular cause of transition has implications for programs that attempt to offset or limit future forest carbon losses and place value on forest carbon or other forest good and services.  相似文献   

10.
海湾型城市拥有丰富的海陆资源和较大的环境承载力,但人口和产业环绕海湾高密度聚集也让海湾型城市成为典型的生态环境脆弱区.本研究以典型的海湾型城市泉州市为例,基于土地利用数据、气象站点数据、地形数据和统计数据等多源数据,运用Logistic-CA-Markov耦合模型,设置自然情景、规划情景和保护情景,模拟了2030年3种不同情景下泉州市的土地利用及景观格局的变化,并进一步预测和估算了保水、保土、固碳(净初级生产力)和食物供给4种关键的生态系统服务功能及权衡关系.结果表明: 3种情景之下,2030年泉州市的耕地和建设用地面积增加,林地、草地和水体面积有不同程度减少,土地利用的破碎化程度加剧.与2015年相比,除保土服务功能外,泉州市2030年的保水、固碳和食物供给服务功能都出现了不同程度的下降;自然情景下生态系统服务功能的降幅更大,保护情景下的降幅低于规划情景.在保护情景和规划情景下,2030年的保水服务与保土服务、保水服务与固碳服务、保土服务与固碳服务的协同关系均增强,权衡关系减弱.  相似文献   

11.
不同土地利用情景下汾河上游地区碳储量评估   总被引:9,自引:4,他引:5  
张燕  师学义  唐倩 《生态学报》2021,41(1):360-373
陆地生态系统碳储量对预测气候变化、温室气体排放和减少等具有重要意义,而土地利用格局变化是研究陆地生态系统碳储量的基础,它直接影响陆地生态系统结构及分布情况,进而改变陆地生态系统碳储量。运用SDCLUE-S复合模型模拟了未来不同情景下汾河上游土地利用情况,并采用InVEST模型测算了不同时期下研究区碳储量情况。结果表明:2007—2017年汾河上游草地、未利用地及水体面积减少,耕地、建设用地、林地增加,自然增长情景与生态保护情景下2030年土地利用格局差异较大,耕地、建设用地、林地及水体呈相反趋势发展。2017年汾河上游生态系统碳储量和碳密度分别为58977910.98t和147.54t/hm2,与2007年相比增加了1237143.02t和3.09t/hm2。2017—2030年自然增长情景下汾河上游生态系统碳储量和碳密度显著下降,主要原因是林地、草地面积减少,建设用地增加,生态保护情景下显著增加,碳储量和碳密度分别为59142210.16t和147.95t/hm2。生态保护情景能够有效提高区域生态系统碳储量,但同时要考虑社会经济可持续发展,因此研究区在未来发展规划中应基于生态保护情景,统筹各项资源,保障经济发展。  相似文献   

12.
Large‐scale conversion of traditional agricultural cropping systems to biofuel cropping systems is predicted to have significant impact on the hydrologic cycle. Changes in the hydrologic cycle lead to changes in rainfall and its erosive power, and consequently soil erosion that will have onsite impacts on soil quality and crop productivity, and offsite impacts on water quality and quantity. We examine regional change in rainfall erosivity and soil erosion resulting from biofuel policy‐induced land use/land cover (LULC) change. Regional climate is simulated under current and biofuel LULC scenarios for the period 1979–2004 using the Weather Research Forecast (WRF) model coupled to the NOAH land surface model. The magnitude of change in rainfall erosivity under the biofuel scenario is 1.5–3 times higher than the change in total annual rainfall. Over most of the conterminous United States (~56%), the magnitude of the change in erosivity is between ?2.5% and +2.5%. A decrease in erosivity of magnitude 2.5–10% is predicted over 23% of the area, whereas an increase of the same magnitude is predicted over 14% of the area. Corresponding to the changes in rainfall erosivity and crop cover, a decrease in soil loss is predicted over 60% of the area under the biofuel scenario. In Kansas and Oklahoma, the states in which a large fraction of land area is planted with switchgrass under the biofuel scenario, soil loss is estimated to decrease 12% relative to the baseline. This reduction in soil loss is due more to changes in the crop cover factor than changes in rainfall or rainfall erosivity. This indicates that the changes in LULC, due to future cellulosic biofuel feedstock production, can have significant implications for regional soil and water resources in the United States and we recommend detailed investigation of the trade‐offs between land use and management options.  相似文献   

13.
植被覆盖度的时间变化及其防风蚀效应   总被引:21,自引:0,他引:21       下载免费PDF全文
 在防治风蚀过程中过去人们只关注植被覆盖度的空间特性,但对其随时间变化的特性未引起足够的重视。该文着重强调了植被覆盖度随时间变化的特性,并对不同类型植物覆盖度的动态变化特征进行了研究。通过调查研究与理论分析,在土壤风蚀量与植被覆盖度及风蚀气候侵蚀因子三者之间建立了随时间变化的定量关系,并利用该公式计算和比较了不同类型植物防风治沙性能的动态差异、总植被覆盖度及相应的总土壤风蚀量的动态变化。结果表明在防风蚀的作用效应中灌木>多年生牧草>林木>作物>一年生牧草;总时空植被覆盖度与总土壤风蚀量呈“反相位”的动态变化;风蚀季节总植被覆盖度较低,介于0.11~0.14之间,低于20%的临界覆盖度,这也是该地区风蚀危害严重的一个重要原因所在。  相似文献   

14.
Both local and regional filters can determine the invasion of alien species into native plant communities. However, their relative importance is essentially unknown. We used plot data from fragments of indigenous forests in southeastern New Zealand to infer which factors are important in explaining invasibility, measured as alien species richness. Twenty-eight predictor variables comprising both local factors (stand structure and soil) and regional ones (climate and land cover) were assessed. Reduction or increase in deviance in linear models was assessed, both individually and with a forward and backward stepwise variable selection procedure using the Akaike information criterion (AIC).
We found that higher alien species richness was mainly associated with forest fragments of small area in warm and dry climates and where there were only small areas of surrounding indigenous forest. Local soil and stand structure variables had considerably smaller effects on alien species richness than the regional land cover and climate variables. Alien species richness showed no relationship with native species richness. We conclude that in the forest fragments investigated here, of the variables included in the analyses, regional land cover and climate variables are potentially important drivers for alien species richness at plot level. This has implications for projections of alien species spread in the future under different climate change and land use scenarios.  相似文献   

15.
Massive land-use/cover changes (LUCC) have been observed in many regions worldwide over several decades. Modelling frameworks based on spatially explicit land-use/cover maps are particular suitable for analysing the impacts of LUCC on ecosystems and on related functions and services. Spatial allocation procedures have to meet specific characteristics of the study area and mountain regions require particular attention due to their complex topography. The aims of the study were to (1) develop SPatial Allocation procedures of LUCC (SPA-LUCC) adapted to the specific situation of mountain regions — in particular of the Alps, (2) generate land-use/cover scenario maps considering different patterns of socioeconomic development, and (3) evaluate LUCC spatially. Examining historical maps of the Stubai Valley (Austria), we identified biophysical factors as well as socioeconomic drivers. For validation, the 2003 land-use pattern was modelled based on the land-use pattern for 1973, providing an overall accuracy of 73%. Furthermore, we tested SPA-LUCC in other regions of the Alps in France, Germany, Italy and Switzerland successfully (accuracy ranged between 63% and 84%). Hence, SPA-LUCC was proven to be valid for 75% of the Alps. Likely future land-use patterns were modelled for three different socioeconomic scenarios for the Stubai Valley: (a) continuation of previous land-use changes, (b) reduction of use and (c) diversification of use. Results showed that agricultural land in particular is affected by significant changes, whereas the forest belt and near-natural grassland undergo only minor changes. Thus, SPA-LUCC lays the foundation for evaluating future landscape dynamics in the Alps. To provide practitioners with a user-friendly instrument, SPA-LUCC was elaborated as an ArcGIS®-toolbox.  相似文献   

16.
不同植被类型对土壤水蚀的影响因子是计算土壤水蚀速率以及选择适当土地利用方式的基本参数.本文以土壤侵蚀模型中的植被因子(C因子)为指标,研究不同植被类型对土壤水蚀的影响.根据6个水土保持试验项目33个小区共195个小区年的资料,计算了剌槐、柠条、沙棘、沙棘-杨树,沙棘-油松、沙打旺、红豆草、苜蓿和草木樨等9种林草植被因子值.林地植被因子介于0.004到0.164之间,以刺槐林的C值最低.草地植被因子介于0.071到0.377之间,以第一年的草木樨C值为最高.定量对比说明林草植被的水土保持效益明显优于农作物.本项研究结果可以用于定量比较不同植被类型覆盖下的土壤流失速率,对于北方农牧交错带退耕还林还草政策的实施具有参考价值.  相似文献   

17.
Case studies of land use change have suggested that deforestation across Southern Mexico is accelerating. However, forest transition theory predicts that trajectories of change can be modified by economic factors, leading to spatial and temporal heterogeneity in rates of change that may take the form of the Environmental Kuznets Curve (EKC). This study aimed to assess the evidence regarding potential forest transition in Southern Mexico by classifying regional forest cover change using Landsat imagery from 1990 through to 2006. Patterns of forest cover change were found to be complex and non-linear. When rates of forest loss were averaged over 342 municipalities using mixed-effects modelling the results showed a significant (p<0.001) overall reduction of the mean rate of forest loss from 0.85% per year in the 1990-2000 period to 0.67% in the 2000-2006 period. The overall regional annual rate of deforestation has fallen from 0.33% to 0.28% from the 1990s to 2000s. A high proportion of the spatial variability in forest cover change cannot be explained statistically. However analysis using spline based general additive models detected underlying relationships between forest cover and income or population density of a form consistent with the EKC. The incipient forest transition has not, as yet, resulted in widespread reforestation. Forest recovery remains below 0.20% per year. Reforestation is mostly the result of passive processes associated with reductions in the intensity of land use. Deforestation continues to occur at high rates in some focal areas. A transition could be accelerated if there were a broader recognition among policy makers that the regional rate of forest loss has now begun to fall. The changing trajectory provides an opportunity to actively restore forest cover through stimulating afforestation and stimulating more sustainable land use practices. The results have clear implications for policy aimed at carbon sequestration through reducing deforestation and enhancing forest growth.  相似文献   

18.
基于土地利用/覆被变化的荒漠绿洲碳储量动态评估   总被引:2,自引:0,他引:2  
孔君洽  杨荣  苏永中  付志德 《生态学报》2018,38(21):7801-7812
以典型的荒漠绿洲区为研究对象,基于不同时期土地利用/覆被类型图,运用Bookkeeping模型,结合土壤、植被碳密度基础资料及调查数据,评估了近30年临泽绿洲土地利用/覆被变化特征及其对碳储量的影响。结果表明:(1)临泽荒漠绿洲区的土地利用/覆被变化特征主要表现为:居民及建设用地、耕地、林地呈增加趋势,增幅分别为90.2%、75%、46.5%;盐碱地、水体、沙地、荒漠草地则呈减少趋势,减幅分别为73.9%、67.8%、46.2%、5.5%。(2) 30 a耕地面积增加了269.38 km~2,其中耕地开垦面积为372.57 km~2,开垦主要来源于盐碱地、荒漠草地和沙地,分别占耕地开垦面积的24.7%、24.4%和21.05%。耕地转变为其他土地覆被类型的面积为103.19 km~2,转变后的主要去向分别是居民及建设用地、盐碱地和荒漠草地,分别占耕地转变为其他土地覆被类型面积的32.78%、17.8%和15.37%。(3)土地利用/覆被变化导致总碳储量增加5.89×10~5t,其中土壤碳储量增加量为4.02×10~5t,植被碳储量增加量为1.86×10~5t;耕地变化使碳储量增加4.91×10~5t,其中使碳储量增加的转变分别是荒漠草地-耕地、沙地-耕地、盐碱地-耕地、耕地-林地,相反的转变则使碳储量减少。总体来看,临泽荒漠绿洲土地利用/覆被面积和结构均发生了变化,耕地开垦为最主要的土地利用/覆被变化,土地利用/覆被变化导致碳储量总体呈增加趋势,耕地变化是影响碳储量变化的主要因素。  相似文献   

19.
Soil inorganic carbon storage pattern in China   总被引:1,自引:0,他引:1  
Soils with pedogenic carbonate cover about 30% (3.44 × 106 km2) of China, mainly across its arid and semiarid regions in the Northwest. Based on the second national soil survey (1979–1992), total soil inorganic carbon (SIC) storage in China was estimated to be 53.3±6.3 PgC (1 Pg=1015 g) to the depth investigated to 2 m. Soil inorganic carbon storages were 4.6, 10.6, 11.1, and 20.8 Pg for the depth ranges of 0–0.1, 0.1–0.3, 0.3–0.5, and 0.5–1 m, respectively. Stocks for 0.1, 0.3, 0.5, and 1 m of depth accounted for 8.7%, 28.7%, 49.6%, and 88.9% of total SIC, respectively. In contrast with soil organic carbon (SOC) storage, which is highest under 500–800 mm yr−1 of mean precipitation, SIC storage peaks where mean precipitation is <400 mm yr−1. The amount and vertical distribution of SIC was related to climate and land cover type. Content of SIC in each incremental horizon was positively related with mean annual temperature and negatively related with mean annual precipitation, with the magnitude of SIC content across land cover types showing the following order: desert, grassland >shrubland, cropland >marsh, forest, meadow. Densities of SIC increased generally with depth in all ecosystem types with the exception of deserts and marshes where it peaked in intermediate layers (0.1–0.3 m for first and 0.3–0.5 m for latter). Being an abundant component of soil carbon stocks in China, SIC dynamics and the process involved in its accumulation or loss from soils require a better understanding.  相似文献   

20.
湄公河流域土壤侵蚀空间特征及其优先治理区确定   总被引:1,自引:0,他引:1  
吴芳  朱源  许丁雪  施晶晶  江源 《生态学报》2019,39(13):4761-4772
湄公河流域拥有丰富的自然生态系统,为沿岸居民提供了食物、交通等众多方面支持,在东南亚地区具有极其重要的地位。土壤侵蚀是该流域主要环境问题,易引发土地退化和河流泥沙淤积。基于气候、土壤、遥感等区域数据产品,使用通用土壤流失方程(USLE,Universal Soil Loss Equation),对湄公河流域土壤侵蚀状况及空间分布特征进行探究,并通过联合信息熵方法,确定该流域土壤侵蚀的主导因素。结果表明,湄公河流域平均土壤侵蚀模数为1.98×10~3 t km~(-2) a~(-1),属轻度侵蚀;流域内近40%区域存在不同强度的土壤侵蚀,侵蚀较严重的地区主要包括11个子流域(M4—M7、M9、T4—T6、T8、T10、T20),是未来土壤侵蚀重点治理区域。土地利用类型、坡度和海拔是该流域土壤侵蚀的主导因素,其中灌丛和裸地/稀疏植被分别为强烈和极强烈侵蚀,土壤侵蚀模数与坡度的关系为随坡度的增加呈先增加后减小的趋势,和土壤侵蚀模数与海拔的关系相同。流域内剧烈程度侵蚀发生区主要特点为:土地利用类型为裸地/稀疏植被和灌木,海拔在500—2000 m,坡度在8—25°。基于优先级理论,对湄公河子流域的优先治理次序进行排序和划分等级,共分为4个等级,达到第一级的共3个子流域。通过以上研究分析以期能为湄公河流域今后的水土保持规划和管理工作提供一定的科学参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号