首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dead wood is an important habitat for forest organisms, and wood decay fungi are the principal agents determining the dead wood properties that influence the communities of organisms inhabiting dead wood. In this study, we investigated the effects of wood decomposer fungi on the communities of myxomycetes and bryophytes inhabiting decayed logs. On 196 pine logs, 72 species of fungi, 34 species and seven varieties of myxomycetes, and 16 species of bryophytes were identified. Although white rot was the dominant decay type in sapwood and heartwood, brown and soft rots were also prevalent, particularly in sapwood. Moreover, white rot and soft rot were positively and brown rot negatively correlated with wood pH. Ordination analyses clearly showed a succession of cryptogam species during log decomposition and showed significant correlations of communities with the pH, water content, and decay type of wood. These analyses indicate that fungal wood decomposer activities strongly influence the cryptogam communities on dead wood.  相似文献   

2.
This study investigated the development of fungal community composition in arable soil during the degradation of straw residue. We explored the short-term responses of the fungal community over 28 days of decomposition in soil using culture-independent polymerase chain reaction in combination with a clone library and denaturing gradient gel electrophoresis (DGGE). Fungal cellobiohydrolase I (cbhI) genes in the soil were also characterized, and their diversity suggested the existence of a different cellulose decomposer. The DGGE profiles based on fungal internal transcribed spacer analysis showed different successions of fungal populations during residue decomposition. Members of Lecythophora and Sordariales were dominant in the early succession, while Hypocrea and Engyodontium were better adapted in the late succession. The succession of fungal communities might be related to changes of residue quality during decomposition. Collectively, sequences assigned to Ascomycota members were dominant at different stages of the fungal succession during decomposition, revealing that they were key drivers responsible for residue degradation in the arable soil tested.  相似文献   

3.
Precise knowledge of the fungal succession in the litter of coniferous forests will facilitate understanding litter decomposition, in which fungi play a major role. We investigated the development of a fungal community during 3 yr of Picea abies litter decomposition in three control forest sites and three sites where bark-beetle attacks had killed adult trees and stopped the yearly input of fresh litter, using both cultivation from needles and terminal restriction-fragment length polymorphism analysis. The two methods revealed similar dominant species during the fungal succession. Members of the Dothideales, Eurotiales and Helotiales predominated during the initial stage of decay, whereas members of Agaricales appeared only occasionally during this stage. The onset of the latter began from the seventh month, with a peak occurring after 1 yr. Bark-beetle attacks hastened litter decomposition and decreased fungal diversity only during the initial stages of decomposition.  相似文献   

4.
Plant interactions with soil biota could have a significant impact on plant successional trajectory by benefiting plants in a particular successional stage over others. The influence of soil mutualists such as mycorrhizal fungi is thought to be an important feedback component, yet they have shown benefits to both early and late successional plants that could either retard or accelerate succession. Here we first determine if arbuscular mycorrhizal (AM) fungi differ among three stages of primary sand dune succession and then if they alter growth of plants from particular successional stages. We isolated AM fungal inoculum from early, intermediate or late stages of a primary dune succession and compared them using cloning and sequencing. We then grew eight plant species that dominate within each of these successional stages with each AM fungal inoculum. We measured fungal growth to assess potential AM functional differences and plant growth to determine if AM fungi positively or negatively affect plants. AM fungi isolated from early succession were more phylogenetically diverse relative to intermediate and late succession while late successional fungi consistently produced more soil hyphae and arbuscules. Despite these differences, inocula from different successional stages had similar effects on the growth of all plant species. Host plant biomass was not affected by mycorrhizal inoculation relative to un‐inoculated controls. Although mycorrhizal communities differ among primary dune successional stages and formed different fungal structures, these differences did not directly affect the growth of plants from different dune successional stages in our experiment and therefore may be less likely to directly contribute to plant succession in sand dunes.  相似文献   

5.

Purpose

Roots are inhabited by a broad range of fungi, including pathogens and mycorrhizal fungi, with functional traits related to plant health and nutrition. Management of these fungi in agroecosystems requires profound knowledge about their ecology. The main objective of this study was to examine succession patterns of root-associated fungi in pea during a full plant growth cycle.

Methods

Plants were grown in pots with field soil in a growth chamber under controlled conditions. Fungal communities in pea roots were analyzed at different plant growth stages including the vegetative growth, flowering and senescence, using 454 pyrosequencing.

Results

One hundred and twenty one non-singleton operational taxonomic units (OTUs) representing fungal species were detected. Pathogenic and arbuscular mycorrhizal fungi dominated during the vegetative growth stage, whereas saprotrophic fungi dominated during plant senescence.

Conclusions

In conclusion, the results from the present study demonstrated highly diverse fungal communities in pea roots with clear succession patterns related to fungal traits.  相似文献   

6.
在森林生态系统中,枯死木是一个重要的组成部分,为很多生物提供栖息地,有助于养分循环以及碳和水的储存.木材分解是森林生态系统养分循环、土壤形成和碳收支的决定性过程,越来越受到森林生态学家、病理学家和管理者的重视.在此过程中,木腐真菌通过分泌多种酶降解木材主要成分,实现生态系统中的物质循环,具有极为关键和重要的作用.木腐真...  相似文献   

7.

Arbuscular mycorrhizal (AM) fungi can form symbiosis with 90% of the vascular plants and play important roles in ecosystem. To realize the AM fungal colonization at different succession stages in saline-alkali land and screen AM fungi species with great functions, roots and soil samples were collected from the three succession stages of Songnen saline-alkali grassland. The soil properties and AM fungal colonization were measured, and the fungus distributed extensively in three stages was annotated by sequencing for AML1/AML2 target, subsequently, maize was selected as the host to verify its colonization. The results showed that the soil properties improved with the succession of saline-alkali grassland. The plants’ communities of the three stages could be colonized by AM fungi, and the colonization rate of Leymus chinensis (the third stage) ranged from 66.67% to 100%, Puccinellia tenuiflora (the second stage) ranged from 50% to 80%, while the Suaeda glauca (the first stage) was only 35%–60%. Glomeraceae sp1 was identified as the dominant AM fungi species which occurred frequently in the succession of saline-alkali land with the isolation frequency, relative abundance, and importance value of 100%, 18.1%, and 59.1%, respectively. The colonization rate of Glomeraceae sp1 in maize ranged from 80% to 87% and similar mycorrhizal characteristics were detected in the roots of P. tenuiflora, S. glauca, and L. chinensis, indicating that Glomeraceae sp1 colonized the samples in the field. The correlation matrix indicated that colonization rate, colonization intensity, and vesicle abundance were closely related to soil conditions most, and they were related significantly to all the soil properties except cellulase activity. Besides, redundancy analysis (RDA) showed that soil properties drove the changes of AM fungal colonization and sporulation. These results will provide theoretical support for realizing the relationship between AM fungal colonization and soil conditions, and also for the exploration of AM fungi species with great functions.

  相似文献   

8.
Soil factors and host plant identity can both affect the growth and functioning of mycorrhizal fungi. Both components change during primary succession, but it is unknown if their relative importance to mycorrhizas also changes. This research tested how soil type and host plant differences among primary successional stages determine the growth and plant effects of arbuscular mycorrhizal (AM) fungal communities. Mycorrhizal fungal community, plant identity, and soil conditions were manipulated among three stages of a lacustrine sand dune successional series in a fully factorial greenhouse experiment. Late succession AM fungi produced more arbuscules and soil hyphae when grown in late succession soils, although the community was from the same narrow phylogenetic group as those in intermediate succession. AM fungal growth did not differ between host species, and plant growth was similarly unaffected by different AM fungal communities. These results indicate that though ecological filtering and/or adaptation of AM fungi occurs during this primary dune succession, it more strongly reflects matching between fungi and soils, rather than interactions between fungi and host plants. Thus, AM fungal performance during this succession may not depend directly on the sequence of plant community succession.  相似文献   

9.
Abstract Interspecific fungal interactions are important ecological processes, whereas their physiological mechanisms are little understood. The aim of this work was to study how activity of fungal extracellular laccase was changed across mycelia during interactions between white- and brown-rot basidiomycetes from different wood decay stages. Qualitative assay of eight species interacting with each other in all combinations showed four spatial patterns of laccase activity: (I) laccase activity present both in contact zone and mycelium, (II) laccase activity only in contact zone, (III) laccase activity in mycelium but not in contact zone, (IV) no laccase activity. Presence of laccase activity only in the contact zone was more frequent than expected from random samples associated with mycelia that replaced other ones. On the other hand, the presence of laccase activity in the mycelium but not in the contact zone was only attributed to fungal species that were replaced by their antagonists. After one month, laccase activity was distributed over mycelia more homogeneously than after 6 days of interactions. In interacting mycelia, laccase activity was higher than in control and increasing with time. Saprotrophic fungi from late successional stages of wood decay generally had higher laccase activity than early succession saprotrophic and pathogenic fungi. The qualitative assays were confirmed by quantitative assay of total laccase activity. Significance of the results in antagonistic fungal interactions as well as in the processes of hyphal tip growth and mycelium senescence is discussed. Received: 6 October 1999; Accepted: 1 February 2000; Online Publication: 5 May 2000  相似文献   

10.
The relationship between forest succession and microfungal diversity has been poorly studied. Fungi provide important ecosystem services that may deteriorate in deforested or highly disturbed forests. To determine the possible effects of deforestation and forest succession on microfungi, species diversity of hypocrealean fungi (Ascomycota) was compared in forest stands in Eastern Costa Rica representing three stages of succession: 1–2, 25–27 yr old, and an old growth forest. Species diversity in a second‐growth forest fragment surrounded by timber plantations and second‐growth forest was also compared to that of a stand surrounded by old growth forest. The results show that the overall diversity of hypocrealean fungi was inversely proportional to the age of the forest stand, and each family showed different successional trends. Clavicipitaceae was more diverse in the old‐growth forest and was positively related to the age of the forest stand. Nectriaceae was highly diverse in the 1‐ to 2‐yr‐old stand and less diverse in the old‐growth stand. Saprobic and plant pathogenic fungal species were more diverse in the 1‐ to 2‐yr‐old stand and their diversity was inversely proportional to the age of the forest stand. The diversity of insect pathogens was positively related to the age of the forest stand. The 20‐ to 22‐yr‐old forest fragment had the lowest number of species overall. Based on the data gathered in this study, hypocrealean fungal species diversity is related to the successional stage and fragmentation of tropical forest.  相似文献   

11.
Fungal symbioses with plants are ubiquitous, ancient, and vital to both ecosystem function and plant health. However, benefits to fungal symbionts are not well explored, especially in non‐mycorrhizal fungi. The Foraging Ascomycete hypothesis proposes that some wood‐decomposing fungi may shift life‐history strategies to endophytism to bridge gaps in time and space between suitable substrates. To test this hypothesis we examine spatial relationships of Xylaria endophytic fungi in the forest canopy with Xylaria decomposer fungi on the forest floor. We sampled for fungi of the genus Xylaria using a spatially explicit sampling scheme in a remote Ecuadorian cloud forest, and concurrently carried out an extensive culture‐based sampling of fungal foliar endophytes. We found 36 species of Xylaria in our 0.5 ha plot, 31 of which were found to only occur as fruiting bodies. All five species of Xylaria found as endophytes were also found as fruiting bodies. We also tested the relationships of both stages of these fungi to environmental variables. Decomposer fungi were differentiated by species‐specific habitat preferences, with three species being found closer to water than expected by chance. In contrast, endophytes displayed no sensitivity to environmental conditions, such as host, moisture, or canopy cover. We found evidence of spatial linkage between life stages in two species. We also demonstrate that direct transmission of endophytes from leaves to woody substrates is possible. These results indicate that endophytism may represent one way for decomposer fungi to escape moisture limitation, and that endophytic fungi may act as sources of dispersal for decomposer fungi consistent with predictions of the Foraging Ascomycete hypothesis.  相似文献   

12.
We studied the effect of forest tree species on a community of decomposers that colonize cellulose strips. Both fungal and bacterial communities were targeted in a native forest dominated by beech and oak and 30-year-old beech and spruce plantations, growing in similar ecological conditions in the Breuil-Chenue experimental forest site in Morvan (France). Microbial ingrowths from the 3rd to 10th month of strip decomposition (May to December 2004) were studied. Community composition was assessed using temperature gradient gel electrophoresis with universal fungal (ITS1F, ITS2) and bacterial (1401r, 968f) primers. Soil temperature and moisture as well as fungal biomass were also measured to give additional information on decomposition processes. Changing the dominant tree species had no significant influence in the number of decomposer species. However, decomposer community composition was clearly different. If compared to the native forest, where community composition highly differed, young monocultures displayed similar species structure for fungi and bacteria. Both species numbers and community composition evolved during the decay process. Time effect was found to be more important than tree species. Nevertheless, the actual environmental conditions and seasonal effect seemed to be even more determining factors for the development of microbial communities. The course and correlations of the explored variables often differed between tree species, although certain general trends were identified. Fungal biomass was high in summer, despite that species richness (SR) decreased and conversely, that high SR did not necessarily mean high biomass values. It can be concluded that the growth and development of the microbiological communities that colonized a model material in situ depended on the combination of physical and biological factors acting collectively and interdependently at the forest soil microsite.  相似文献   

13.
Soil invertebrate contributions to decomposition are climate dependent. Understanding the influence of abiotic factors on soil invertebrate population dynamics will strengthen predictions regarding ecosystem functioning under climate change. As well as being important secondary decomposers, mycophagous collembola exert a strong influence on the growth and activity of primary decomposers, particularly fungi. Species-specific grazing preferences for different fungi enable fungal community composition to influence the direct impacts of climate change on collembola populations. We investigate the interactive roles of altered abiotic conditions (warming, wetting and drying) and the identity of the dominant decomposer fungus in determining collembola community dynamics in woodland soil mesocosms. The bottom-up influence of the dominant component of the fungal resource base was an important mediator of the direct climatic impacts on collembola populations. The positive influences of warming and wetting, and the negative influence of drying, on collembola abundance and diversity were much less pronounced in fungal-inoculation treatments, in which populations were reduced compared with uninoculated mesocosms. We conclude that the thick, sclerotised cords of the competitively dominant decomposer fungi reduced the biomass of smaller, more palatable soil fungi, limiting the size of collembola populations and their ability to respond to altered abiotic conditions.  相似文献   

14.
Parameters characterizing the structure of the decomposer food web, biomass of the soil microflora (bacteria and fungi) and soil micro-, meso- and macrofauna were studied at 14 non-reclaimed 1– 41-year-old post-mining sites near the town of Sokolov (Czech Republic). These observations on the decomposer food webs were compared with knowledge of vegetation and soil microstructure development from previous studies. The amount of carbon entering the food web increased with succession age in a similar way as the total amount of C in food web biomass and the number of functional groups in the food web. Connectance did not show any significant changes with succession age, however. In early stages of the succession, the bacterial channel dominated the food web. Later on, in shrub-dominated stands, the fungal channel took over. Even later, in the forest stage, the bacterial channel prevailed again. The best predictor of fungal bacterial ratio is thickness of fermentation layer. We argue that these changes correspond with changes in topsoil microstructure driven by a combination of plant organic matter input and engineering effects of earthworms. In early stages, soil is alkaline, and a discontinuous litter layer on the soil surface promotes bacterial biomass growth, so the bacterial food web channel can dominate. Litter accumulation on the soil surface supports the development of the fungal channel. In older stages, earthworms arrive, mix litter into the mineral soil and form an organo-mineral topsoil, which is beneficial for bacteria and enhances the bacterial food web channel.  相似文献   

15.
Saprotrophic cord-forming basidiomycetes are important decomposers of lignocellulosic substrates in soil. The production of extracellular hydrolytic enzymes was studied during the growth of two saprotrophic basidiomycetes, Hypholoma fasciculare and Phanerochaete velutina, across the surface of nonsterile soil microcosms, along with the effects of these basidiomycetes on fungi and bacteria within the soil. Higher activities of α-glucosidase, β-glucosidase, cellobiohydrolase, β-xylosidase, phosphomonoesterase and phosphodiesterase, but not of arylsulphatase, were recorded beneath the mycelia. Despite the fact that H. fasciculare, with exploitative hyphal growth, produced much denser hyphal cover on the soil surface than P. velutina, with explorative growth, both fungi produced similar amounts of extracellular enzymes. In the areas where the mycelia of H. fasciculare and P. velutina interacted, the activities of N-acetylglucosaminidase, α-glucosidase and phosphomonoesterase, the enzymes potentially involved in hyphal cell wall damage, and the utilization of compounds released from damaged hyphae of interacting fungi, were particularly increased. No significant differences in fungal biomass were observed between basidiomycete-colonized and noncolonized soil, but bacterial biomass was reduced in soil with H. fasciculare. The increases in the activities of β-xylosidase, β-glucosidase, phosphomonoesterase and cellobiohydrolase with increasing fungal:bacterial biomass ratio indicate the positive effects of fungal enzymes on nutrient release and bacterial abundance, which is reflected in the positive correlation of bacterial and fungal biomass content.  相似文献   

16.
Wood decay under the microscope   总被引:3,自引:0,他引:3  
Many aspects of the interactions between host wood structure and fungal activity can be revealed by high resolution light microscopy, and this technique has provided much of the information discussed here. A wide range of different types of decay can result from permutations of host species, fungal species and conditions within wood. Within this spectrum, three main types are commonly recognised: brown rot, white rot and soft rot. The present review explores parts of the range of variation that each of these encompasses and emphasizes that degradation modes appear to reflect a co-evolutionary adaptation of decay fungi to different wood species or the lignin composition within more primitive and advanced wood cell types. One objective of this review is to provide evidence that the terms brown rot, white rot and soft rot may not be obsolete, but rigid definitions for fungi that are placed into these categories may be less appropriate than thought previously. Detailed knowledge of decomposition processes does not only aid prognosis of decay development in living trees for hazard assessment but also allows the identification of wood decay fungi that can be used for biotechnology processes in the wood industry. In contrast to bacteria or commercial enzymes, hyphae can completely ramify through solid wood. In this review evidence is provided that wood decay fungi can effectively induce permeability changes in gymnospermous heartwood or can be applied to facilitate the identification of tree rings in diffuse porous wood of angiosperms. The specificity of their enzymes and the mild conditions under which degradation proceeds is partly detrimental for trees, but also make wood decay fungi potentially efficient biotechnological tools.  相似文献   

17.
Decomposition of plant matter is a key ecosystem process and considerable research has examined plant litter decay processes in freshwater habitats. Fungi are common inhabitants of the decomposer microbial community and representatives of all major fungal phyla have been identified within freshwater systems. Development and application of quantitative methods over the last several decades have firmly established that fungi are central players in the decomposition of plant litter in freshwaters and are important mediators of energy and nutrient transfer to higher trophic levels. Despite the critical roles that fungi play in carbon and nutrient cycling in freshwater ecosystems, there are notable differences in the types and adaptations of fungal communities between lotic and lentic habitats. These differences can be explained by the wide range of hydrologic, physical, chemical and biological conditions within freshwater systems, all of which can influence the presence, type, and activity of fungal decomposers and their impact on litter decomposition. This paper seeks to provide a brief overview of the types, adaptations, and role of fungi within lotic and lentic freshwater ecosystems, with a particular emphasis on their importance to litter decomposition and the key environmental conditions that impact their growth and decay activities. This discussion will specifically focus on fungal dynamics occurring on plant litter in forested headwater streams and emergent freshwater marshes, since published data concerning their role in these systems is considerably more abundant in comparison to other freshwater habitats.  相似文献   

18.
Many trees species form symbiotic associations with ectomycorrhizal (ECM) fungi, which improve nutrient and water acquisition of their host. Until now it is unclear whether the species richness of ECM fungi is beneficial for tree seedling performance, be it during moist conditions or drought. We performed a pot experiment using Pinus sylvestris seedlings inoculated with four selected ECM fungi (Cenococcum geophilum, Paxillus involutus, Rhizopogon roseolus and Suillus granulatus) to investigate (i) whether these four ECM fungi, in monoculture or in species mixtures, affect growth of P. sylvestris seedlings, and (ii) whether this effect can be attributed to species number per se or to species identity. Two different watering regimes (moist vs. dry) were applied to examine the context-dependency of the results. Additionally, we assessed the activity of eight extracellular enzymes in the root tips. Shoot growth was enhanced in the presence of S. granulatus, but not by any other ECM fungal species. The positive effect of S. granulatus on shoot growth was more pronounced under moist (threefold increase) than under dry conditions (twofold increase), indicating that the investigated ECM fungi did not provide additional support during drought stress. The activity of secreted extracellular enzymes was higher in S. granulatus than in any other species. In conclusion, our findings suggest that ECM fungal species composition may affect seedling performance in terms of aboveground biomass.  相似文献   

19.
Decaying wood plays an important role in forest biodiversity, nutrient cycling and carbon balance. Community structure of wood-inhabiting fungi changes with mass loss of wood, but the relationship between substrate quality and decomposers is poorly understood. This limits the extent to which these ecosystem services can be effectively managed. We studied the fungal community and physico-chemical quality (stage of decay, dimensions, density, moisture, C : N ratio, lignin and water or ethanol extractives) of 543 Norway spruce logs in five unmanaged boreal forest sites of southern Finland. Fungi were identified using denaturing gradient gel electrophoresis and sequencing of DNA extracted directly from wood samples. Macroscopic fruiting bodies were also recorded. Results showed a fungal community succession with decreasing wood density and C : N ratio, and increasing moisture and lignin content. Fungal diversity peaked in the most decayed substrates. Ascomycetes typically colonized recently fallen wood. Brown-rot fungi preferred the intermediate decay stages. White-rot fungi represented approximately one-fifth of sequenced species in all decay phases excluding the final phase, where ectomycorrhizal (ECM) fungi became dominant. Lignin content of logs with white-rot fungi was low, and ECM fungi were associated with substrates containing abundant nitrogen. Macroscopic fruiting bodies were observed for only a small number of species detected with molecular techniques.  相似文献   

20.
Cellulose is the major component of plant biomass, and microbial cellulose utilization is a key step in the decomposition of plant detritus. Despite this, little is known about the diversity of cellulolytic microbial communities in soil. Fungi are well known for their cellulolytic activity and mediate key functions during the decomposition of plant detritus in terrestrial ecosystems. We developed new oligonucleotide primers for fungal exocellulase genes (cellobiohydrolase, cbhI) and used these to isolate distinct cbhI homologues from four species of litter-decomposing basidiomycete fungi (Clitocybe nuda, Clitocybe gibba, Clitopilus prunulus, and Chlorophyllum molybdites) and two species of ascomycete fungi (Xylaria polymorpha and Sarcoscypha occidentalis). Evidence for cbhI gene families was found in three of the four basidiomycete species. Additionally, we isolated and cloned cbhI genes from the forest floor and mineral soil of two upland forests in northern lower Michigan, one dominated by oak (Quercus velutina, Q. alba) and the other dominated by sugar maple (Acer saccharum) and American basswood (Tilia americana). Phylogenetic analysis demonstrated that cellobiohydrolase genes recovered from the floor of both forests tended to cluster with Xylaria or in one of two unidentified groups, whereas cellobiohydrolase genes recovered from soil tended to cluster with Trichoderma, Alternaria, Eurotiales, and basidiomycete sequences. The ability to amplify a key fungal gene involved in plant litter decomposition has the potential to unlock the identity and dynamics of the cellulolytic fungal community in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号