首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的: 观察内毒素所致的心肌损伤中,钙敏感受体(CaSR)对c-Jun氨基末端激酶 (JNK)途径的影响。方法: 腹腔注射内毒素(5 mg/kg)制作新生大鼠内毒素心肌损伤模型,Wistar新生大鼠随机分为6组:对照组、内毒素组、CaSR激动剂组、CaSR抑制剂组、JNK抑制剂组、CaSR抑制剂+JNK抑制剂组。HE染色观察心肌形态, 测定血清乳酸脱氢酶(LDH)含量,PCR检测IL-6的mRNA表达,Western blot检测CaSR及JNK的蛋白表达。结果: 与对照组相比,内毒素组心肌损伤加重,LDH含量、IL-6的mRNA表达、CaSR和JNK的蛋白表达均明显增加(P<0.05)。与内毒素组比较,CaSR激动剂组心肌损伤加重,LDH含量、IL-6的mRNA表达、CaSR和JNK的蛋白表达增加(P<0.05); CaSR抑制剂组心肌损伤减轻,LDH含量、CaSR和JNK的蛋白表达减少(P<0.05);JNK抑制剂组心肌损伤进一步减轻,LDH含量、IL-6的mRNA表达、CaSR和JNK的蛋白表达均减少(P<0.05);CaSR抑制剂+JNK抑制剂组心肌损伤明显减轻,LDH含量、IL-6的mRNA表达、CaSR和JNK的蛋白表达进一步减少(P<0.05)。结论: CaSR可能通过JNK途径参与内毒素所致的心肌损伤。  相似文献   

2.
一氧化碳吸入对脂多糖诱导大鼠急性肺损伤的保护作用   总被引:14,自引:0,他引:14  
Liu SH  Ma K  Xu B  Xu XR 《生理学报》2006,58(5):483-489
血红素氧合酶(heme oxygenase,HO)降解血红素的主要代谢产物一氧化碳(carbon monoxide,CO)具有抗氧化、抗炎症和抑制细胞凋亡作用,而脂多糖(lipopolysaccharide,LPS)诱导的肺组织过氧化、炎症性损伤及大量肺泡上皮和血管内皮细胞凋亡正是导致肺损伤(lung injury,LI)的关键.由此我们猜想,CO有可能通过上述机制对LI起保护作用.通过静脉注入LPS(5 mg/kg体重)诱导大鼠LI,观察吸入室内空气或2.5×10-4(V/V)CO 3 h后,肺氧化酶学、炎症细胞因子、细胞凋亡、HO-1表达及组织形态学变化.结果显示,静脉注入LPS诱导LI后,CO吸入组大鼠肺肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)、白细胞介素6(interlukin-6,IL-6)、丙二醛(maleic dialdehyde,MDA)、髓过氧化物酶(myeloperoxidase,MPO)和细胞凋亡分别为(0.91±0.25)pg/mg蛋白、(0.64±0.05)pg/mg蛋白、(1.02±0.23)nmol/mg蛋白、(7.18±1.62)U/mg蛋白、(1.60±0.34)%,均显著低于LI组的(1.48±0.23)pg/mg蛋白、(1.16±0.26)pg/mg蛋白、(1.27+0.33)nmol/mg蛋白、(8.16+1.49)U/mg蛋白、(3.18±0.51)%(P<0.05).CO吸入组HO-1、白细胞介素10(interlukin-10,IL-10)表达和超氧化物歧化酶(superoxide dismutase,SOD)活性分别为(5.43±0.92)、(0.26±0.07)pg/mg蛋白、(60.09±10.21)U/mg蛋白,它们均显著高于LI组的(3.08±0.82)、(0.15±0.03)pg/mg蛋白、(50.98±6.88)U/mg蛋白(P<0.05).与LI组相比,CO吸入组肺损伤减轻.研究结果表明,低浓度CO吸入通过抗氧化、抗炎症、抑制细胞凋亡、上调HO-1表达而减轻LPS诱导的肺损伤.  相似文献   

3.
Widely identified in bacteria, yeasts and human beings, 2,3-butanediol has been studied for decades.This chemical reportedly functions as a neutralization agent to counteract lethal acidification by bacterial growth and as a signaling molecule involved in interactions among insects, and between bacteria and the plant host. While 2,3-butanediol is produced by many pathogenic bacterial species, its significance and effect on mammals remains basically uncharacterized. Herein, we show that gastric intubation of 2,3-butanediol in rats significantly ameliorates acute lung injury (ALI) and the inflammatory responses induced by the bacterial endotoxin lipopolysaccharide (LPS), with an efficacy comparable to that of the polyphenol compound resveratrol. Such effect was further demonstrated to occur via modulation of the NF-kappaB signaling pathway. These results indicate that bacterial metabolite, 2,3-butanediol has a negative regulatory effect on host innate immunity response, suggesting bacteria may use some metabolites for host immune evasion.  相似文献   

4.

Background

Alveolar macrophages play an important role during the development of acute inflammatory lung injury. In the present study, in vivo alveolar macrophage depletion was performed by intratracheal application of dichloromethylene diphosphonate-liposomes in order to study the role of these effector cells in the early endotoxin-induced lung injury.

Methods

Lipopolysaccharide was applied intratracheally and the inflammatory reaction was assessed 4 hours later. Neutrophil accumulation and expression of inflammatory mediators were determined. To further analyze in vivo observations, in vitro experiments with alveolar epithelial cells and alveolar macrophages were performed.

Results

A 320% increase of polymorphonuclear leukocytes in bronchoalveolar lavage fluid was observed in macrophage-depleted compared to macrophage-competent lipopolysaccharide-animals. This neutrophil recruitment was also confirmed in the interstitial space. Monocyte chemoattractant protein-1 concentration in bronchoalveolar lavage fluid was significantly increased in the absence of alveolar macrophages. This phenomenon was underlined by in vitro experiments with alveolar epithelial cells and alveolar macrophages. Neutralizing monocyte chemoattractant protein-1 in the airways diminished neutrophil accumulation.

Conclusion

These data suggest that alveolar macorphages play an important role in early endotoxin-induced lung injury. They prevent neutrophil influx by controlling monocyte chemoattractant protein-1 production through alveolar epithelial cells. Alveolar macrophages might therefore possess robust anti-inflammatory effects.  相似文献   

5.
Wan M  Ling YL  Gu ZY  Zhang JL  Huang SS 《生理学报》1999,51(1):80-86
本实验观察了家兔静脉内注入内毒素的主要成分脂多糖(LPS)后平均动脉血压(MAP)、肺动脉压(PAP)及入、出肺血NO含量的变化,并观察了静脉内预注入NO生成抑制剂Nω-硝基-L-精氨酸(L-NNA)及诱生型NO生成抑制剂氨基胍(AG)后PAP和肺损伤的变化.结果观察到:家兔LPS注入后,MAP均明显下降,LPS注入后0.5、1、1.5、2h PAP明显增高(P<0.05).LPS注入后PAP的高峰期(1h)入肺血NO含量明显降低,出肺血NO无明显变化.与对照组相比,LPS注入后3h出肺血NO含量和5h入、出肺血NO含量均明显增多.相关分析表明,兔LPS注入前和LPS注入后1h PAP与入肺血NO含量呈明显的负相关,而LPS注入后 3h和5h两者相关不明显.静脉预注入L-NNA后,LPS处理组的动物PAP明显增高,入、出肺血丙二醛(MDA)含量也明显增高,动物生存率明显降低.肺组织光镜下可见肺萎陷和小血管淤血加重,白细胞明显增加.静脉预注入AG后,LPS处理组的动物MAP在3~5h明显增高,此时PAP无明显改变,但5h时血中MDA含量明显减低,5h时与LPS组相比肺萎陷和小血管淤血减轻,白细胞也明显减少.以上结果提示,内毒素入血后较早期阶段可出现PAP的升高,此时入肺血NO的减少是参与肺动脉压增高(PAH)的机制之一.家兔内毒素进入血后较早期阶段NO对减轻内毒素引起的PAH和肺损伤起重要作用,而较晚的时期当诱生型NO合酶(iNOS)诱生后释放的NO则参与内毒素引起的肺组织炎症反应和肺损伤.  相似文献   

6.
Acute respiratory distress syndrome (ARDS) is a type of acute lung injury (ALI), which causes high morbidity and mortality. So far, effective clinical treatment of ARDS is still limited. Recently, miR-146b has been reported to play a key role in inflammation. In the present study, we evaluated the functional role of miR-146b in ARDS using the murine model of lipopolysaccharide (LPS)-induced ALI. The miR-146b expression could be induced by LPS stimulation, and miR-146b overexpression was required in the maintenance of body weight and survival of ALI mice; after miR-146b overexpression, LPS-induced lung injury, pulmonary inflammation, total cell and neutrophil counts, proinflammatory cytokines, and chemokines in bronchial alveolar lavage (BAL) fluid were significantly reduced. The promotive effect of LPS on lung permeability through increasing total protein, albumin and IgM in BAL fluid could be partially reversed by miR-146b overexpression. Moreover, in murine alveolar macrophages, miR-146b overexpression reduced LPS-induced TNF-α and interleukin (IL)-1β releasing. Taken together, we demonstrated that miR-146b overexpression could effectively improve the LPS-induced ALI; miR-146b is a promising target in ARDS treatment.  相似文献   

7.
Glycosaminoglycan synthesis in endotoxin-induced lung injury   总被引:2,自引:0,他引:2  
Endotoxin-induced lung injury has previously been shown to produce lesions that resemble emphysema morphologically and biochemically as demonstrated by the reduction in the content of lung elastin. The purpose of this study was to define the changes in one other connective tissue component, glycosaminoglycans, during the acute phase of the lung injury. Intravenous administration of a single dose of endotoxin in rats resulted in an increase in the total synthesis of glycosaminoglycans by the pulmonary parenchyma. There was a significant increase in the proportion of dermatan sulfate synthesized during the first 48 hr and a concomitant decrease in heparin/heparan sulfate synthesis. At 48 hr the increased synthesis of dermatan sulfate had reached 7.3 times control values and began to decline, whereas the synthesis of chondroitin-4-sulfate rose from 4.1 to 10.7 times control values between 48 and 72 hr. Analysis of the rates of synthesis revealed that the total amount of heparin/heparan sulfate remained constant while the synthesis of chondroitin-6-sulfate increased proportionally to the overall synthesis of glycosaminoglycans. These findings indicate that dramatic changes in glycosaminoglycan synthesis are an integral part of endotoxin lung injury.  相似文献   

8.
Radiation-induced lung injury (RILI) is a potentially fatal and dose-limiting complication of thoracic radiotherapy. This study was to investigate the protective effects of grape seed pro-anthocyanidins (GSPs), an efficient antioxidant and anti-carcinogenic agent, on RILI. In our study, it was demonstrated that acute and late RILI was ameliorated after GSPs treatment possibly through suppressing TGF-β1/Smad3/Snail signalling pathway and modulating the levels of cytokines (interferon-γ, IL-4 and IL-13) derived from Th1/Th2 cells. In addition, a sustained high level of PGE2 was also maintained by GSPs treatment to limited fibroblast functions. As shown by electron spin resonance spectrometry, GSPs could scavenge hydroxyl radical (•OH) in a dose-dependent manner, which might account for the mitigation of lipid peroxidation and consequent apoptosis of lung cells. In vitro, GSPs radiosensitized lung cancer cell A549 while mitigating radiation injury on normal alveolar epithelial cell RLE-6TN. In conclusion, the results showed that GSPs protects mice from RILI through scavenging free radicals and modulating RILI-associated cytokines, suggesting GSPs as a novel protective agent in RILI.  相似文献   

9.
Acute lung injury (ALI) by smoke inhalation with subsequent pneumonia and sepsis represents a major cause of morbidity and mortality in burn patients. The aim of the present study was to develop a murine model of ALI and sepsis to enhance the knowledge of mechanistic aspects and pathophysiological changes in patients with these injuries. In deeply anesthetized female C57BL/6 mice, injury was induced by four sets of cotton smoke using an inhalation chamber. Afterward, live Pseudomonas aeruginosa (3.2 × 107 colony-forming units) was administered intranasally. The indicated dose of bacteria was determined based on the results of a dose-response study (n = 47). The following study groups were monitored for survival over 96 h: (1) sham injury group, (2) only smoke inhalation group, (3) only bacteria group, and (4) smoke inhalation plus bacteria group. Each group included 10 mice. The survival rates were 100%, 90%, 30%, and 10%, respectively. The double hit injury was associated with excessive releases of pro-inflammatory cytokines in the plasma, and enhanced neutrophil accumulation, increased lipid peroxidation, and excessive formation of reactive nitrogen species in the lung. In mice receiving only smoke inhalation injury, no systemic cytokine release and increased lung tissue lipid peroxidation were observed. However, smoke alone significantly increased neutrophil accumulation and formation of reactive nitrogen species in lung tissue. In conclusion, bacterial pneumonia is predominantly responsible for mortality and morbidity in this novel murine model of smoke inhalation and pulmonary sepsis. Reactive oxygen and nitrogen species mediate the severity of lung injury.  相似文献   

10.
TNF-alpha in smoke inhalation lung injury   总被引:2,自引:0,他引:2  
Hales, Charles A., T. H. Elsasser, Peter Ocampo, and OlgaEfimova. TNF- in smoke inhalation lung injury.J. Appl. Physiol. 82(5):1433-1437, 1997.Adult respiratory distress syndrome is a majorcause of morbidity in fire victims. Tumor necrosis factor- (TNF-)is edematogenic and has been associated with the etiology of otherforms of adult respiratory distress syndrome. In the sheep lymphfistula model, we measured TNF- after 48 (n = 7) or 128 (n = 3) breaths of cotton smoke andcompared this with sham controls (n = 5) or controls in which left atrial pressure was elevated to 20 mmHg(n = 5) to increase lymph flow in the absence of inflammation. Smoke induced a rise in lymph flow and pulmonary arterial pressure with either no fall in lymph-to-plasma protein ratio (128 breaths) or a modest fall in lymph-to-plasma proteinratio (48 breaths), consistent with a change in microvascular permeability as well as a rise in microvascular pressure.Lymph concentration of TNF- fell in both groups, although lymph flux (concentration × flow) transiently rose in both. In neither case did TNF- flux exceed that induced by left atrial pressure elevation. TNF- was detectable in only one out of five sheep in alveolar lavage. Thus, by utilizing a sensitive and specific radioimmunoassay, we were unable to demonstrate a role for TNF- in smoke-induced microvascular lung injury in sheep.

  相似文献   

11.
The role of Toll-like receptors in non-infectious lung injury   总被引:2,自引:0,他引:2  
Jiang D  Liang J  Li Y  Noble PW 《Cell research》2006,16(8):693-701
The role of Toll-like receptors (TLRs) in pathogen recognition has been expeditiously advanced in recent years. However, investigations into the function of TLRs in non-infectious tissue injury have just begun. Previously, we and others have demonstrated that fragmented hyaluronan (HA) accumulates during tissue injury. CD44 is required to clear HA during tissue injury, and impaired clearance of HA results in unremitting inflammation. Additionally, fragmented HA stimulates the expression of inflammatory genes by inflammatory cells at the injury site. Recently, we identified that HA fragments require both TLR2 and TLR4 to stimulate mouse macrophages to produce inflammatory chemokines and cytokines. In a non-infectious lung injury model, mice deficient in both TLR2 and TLR4 show an impaired transepithelial migration of inflammatory cells, increased tissue injury, elevated lung epithelial cell apoptosis, and decreased survival. Lung epithelial cell overexpression of high molecular mass HA protected mice against acute lung injury and apoptosis, in part through TLR-dependent basal activation of NF-κB. The exaggerated injury in TLR2 and TLR4 deficient mice appears to be due to impaired HA-TLR interactions on epithelial cells. These studies identify that host matrix component HA and TLR interactions provide signals that initiate inflammatory responses, maintain epithelial cell integrity, and promote recovery from acute lung injury.  相似文献   

12.
急性肺损伤是一种临床常见的危重病症,临床上传统的治疗方法一般以尽早去除诱因、控制感染、机械通气及器官功能支持治疗为主。间充质干细胞属于成体干细胞的一种,能主动归巢至肺损伤部位,并通过向肺泡和支气管上皮细胞分化参与组织修复,同时间充质干细胞能够调节急性肺损伤时局部和全身炎症反应和免疫紊乱,从而发挥治疗作用,可能是治疗急性肺损伤的一个很有前景的方法。作者就间充质干细胞移植治疗急性肺损伤的研究进展进行综述。  相似文献   

13.

Background

Acute lung injury (ALI) and its most severe form acute respiratory distress syndrome (ARDS) have been the leading cause of morbidity and mortality in intensive care units (ICU). Currently, there is no effective pharmacological treatment for acute lung injury. Curcumin, extracted from turmeric, exhibits broad anti-inflammatory properties through down-regulating inflammatory cytokines. However, the instability of curcumin limits its clinical application.

Methods

A series of new curcumin analogs were synthesized and screened for their inhibitory effects on the production of TNF-α and IL-6 in mouse peritoneal macrophages by ELISA. The evaluation of stability and mechanism of active compounds was determined using UV-assay and Western Blot, respectively. In vivo, SD rats were pretreatment with c26 for seven days and then intratracheally injected with LPS to induce ALI. Pulmonary edema, protein concentration in BALF, injury of lung tissue, inflammatory cytokines in serum and BALF, inflammatory cell infiltration, inflammatory cytokines mRNA expression, and MAPKs phosphorylation were analyzed. We also measured the inflammatory gene expression in human pulmonary epithelial cells.

Results

In the study, we synthesized 30 curcumin analogs. The bioscreeening assay showed that most compounds inhibited LPS-induced production of TNF-α and IL-6. The active compounds, a17, a18, c9 and c26, exhibited their anti-inflammatory activity in a dose-dependent manner and exhibited greater stability than curcumin in vitro. Furthermore, the active compound c26 dose-dependently inhibited ERK phosphorylation. In vivo, LPS significantly increased protein concentration and number of inflammatory cells in BALF, pulmonary edema, pathological changes of lung tissue, inflammatory cytokines in serum and BALF, macrophage infiltration, inflammatory gene expression, and MAPKs phosphorylation . However, pretreatment with c26 attenuated the LPS induced increase through ERK pathway in vivo. Meanwhile, compound c26 reduced the LPS-induced inflammatory gene expression in human pulmonary epithelial cells.

Conclusions

These results suggest that the novel curcumin analog c26 has remarkable protective effects on LPS-induced ALI in rat. These effects may be related to its ability to suppress production of inflammatory cytokines through ERK pathway. Compound c26, with improved chemical stability and bioactivity, may have the potential to be further developed into an anti-inflammatory candidate for the prevention and treatment of ALI.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0199-1) contains supplementary material, which is available to authorized users.  相似文献   

14.

Aims

Anethole, the major component of the essential oil of star anise, has been reported to have antioxidant, antibacterial, antifungal, anti-inflammatory, and anesthetic properties. In this study, we investigated the anti-inflammatory effects of anethole in a mouse model of acute lung injury induced by lipopolysaccharide (LPS).

Main methods

BALB/C mice were intraperitoneally administered anethole (62.5, 125, 250, or 500 mg/kg) 1 h before intratracheal treatment with LPS (1.5 mg/kg) and sacrificed after 4 h. The anti-inflammatory effects of anethole were assessed by measuring total protein and cell levels and inflammatory mediator production and by histological evaluation and Western blot analysis.

Key findings

LPS significantly increased total protein levels; numbers of total cells, including macrophages and neutrophils; and the production of inflammatory mediators such as matrix metalloproteinase 9 (MMP-9), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and nitric oxide (NO) in bronchoalveolar lavage fluid. Anethole (250 mg/kg) decreased total protein concentrations; numbers of inflammatory cells, including neutrophils and macrophages; and the inflammatory mediators MMP-9, TNF-α and NO. In addition, pretreatment with anethole decreased LPS-induced histopathological changes. The anti-inflammatory mechanism of anethole in LPS-induced acute lung injury was assessed by investigating the effects of anethole on NF-κB activation. Anethole suppressed the activation of NF-κB by blocking IκB-α degradation.

Significance

These results, showing that anethole prevents LPS-induced acute lung inflammation in mice, suggest that anethole may be therapeutically effective in inflammatory conditions in humans.  相似文献   

15.
The mammalian target of rapamycin (mTOR) is a central regulator of many major cellular processes including protein and lipid synthesis and autophagy, and is also implicated in an increasing number of pathological conditions. Emerging evidence suggests that both mTOR and autophagy are critically involved in the pathogenesis of pulmonary diseases including acute lung injury (ALI). However, the detailed mechanisms of these pathways in disease pathogenesis require further investigations. In certain cases within the same disease, the functions of mTOR and autophagy may vary from different cell types and pathogens. Here we review recent advances about the basic machinery of mTOR and autophagy, and their roles in ALI. We further discuss and propose the likelihood of cell type- and pathogen-dependent functions of these pathways in ALI pathogenesis.  相似文献   

16.
SARS相关急性肺损伤与抗粘附免疫调节   总被引:1,自引:0,他引:1  
孙桂芝  李晓  周同  张冬青  邓伟吾  陈楠 《生命科学》2003,15(3):134-136,188
SARS作为急性呼吸道传染病,其肺损伤的早期与急性呼吸窘迫综合征(ARDS)有关,后期表现为肺纤维化。患者体内免疫防御机制可出现针对SARS病毒的过度激活,造成肺部白细胞免疫炎性损伤。粘附分子及其介导的白细胞粘附可能参与了SARS的急性肺损伤。设想在病毒感染早期,通过抗粘附免疫调节,抑制患者过激的免疫防御机制,阻抑活化白细胞的粘附级联反应,进而减轻肺损伤,以减轻或延缓病变的进一步发展。  相似文献   

17.
Spinal cord injury (SCI) is one kind of severe traumatic injury, resulting in systemic inflammatory response syndrome and secondary lung injury, which is an important pathological basis of respiratory complications. The nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome is an important cytosolic protein complex in many inflammatory diseases. Hence, it is inescapable to explore the effect of inhibition of NLRP3 inflammasome by inhibitors in a mouse SCI model, which was conducted by using the method of 30-G closing force aneurysm clipping at T6–T7 spinal segment for 1 min, followed by assessment of edema, histology, alveolar type II cell apoptosis, mitochondrial dysfunction, and neutrophil infiltration. In brief, our results showed that, NLRP3 inflammasome inhibitor BAY 11-7082 or A438079 inhibited activation of NLRP3 inflammasome, alleviated mitochondrial dysfunction, the number of macrophage and neutrophil, thereby attenuating alveolar type II cell apoptosis, lung edema, and histological injury. Taken together, our data reveal that NLRP3 inflammasome inhibitor BAY 11-7082 or A438079 attenuates the inflammatory response, reverses mitochondrial dysfunction, and subsequently alleviates secondary lung injury following SCI.  相似文献   

18.
Acute lung injury (ALI) is a complex disorder associated with an acute inflammatory response thought to contribute to tissue injury. Desmosine, a cross-linking amino acid present in elastin, is released during matrix degradation and cleared by the kidney. Results from animal models and human disease studies have suggested that ALI is associated with the release of desmosine, resulting in increased urinary desmosine. A radioimmunoassay was used to monitor urinary desmosine levels over 10 days in ten patients with ALI. The concentration of desmosine was measured with and without acid hydrolysis. Baseline urinary desmosine was increased in two of ten patients. The concentration of desmosine at baseline did not appear to be related to age, gender, neutrophil elastase (NE)/α1-antiprotease complex concentration or PaO2/FiO2 ratio. No meaningful changes in desmosine levels were noted after removal from mechanical ventilation. Baseline desmosine concentrations did not appear to correlate with the risk of death. The limited sensitivity, predictive correlations and dynamic modulation would suggest that urine desmosine has a limited role as a biomarker for ALI. Hydrolysis of urine samples appears necessary for optimal measurement of urine desmosine.  相似文献   

19.
A hallmark of acute lung injury is the accumulation of a protein rich edema which impairs gas exchange and leads to hypoxemia. The resolution of lung edema is effected by active sodium transport, mostly contributed by apical Na+ channels and the basolateral located Na,K-ATPase. It has been reported that the decrease of Na,K-ATPase function seen during lung injury is due to its endocytosis from the cell plasma membrane into intracellular pools. In alveolar epithelial cells exposed to severe hypoxia, we have reported that increased production of mitochondrial reactive oxygen species leads to Na,K-ATPase endocytosis and degradation. We found that this regulated process follows what is referred as the Phosphorylation–Ubiquitination–Recognition–Endocytosis–Degradation (PURED) pathway. Cells exposed to hypoxia generate reactive oxygen species which activate PKCζ which in turn phosphorylates the Na,K-ATPase at the Ser18 residue in the N-terminus of the α1-subunit leading the ubiquitination of any of the four lysines (K16, K17, K19, K20) adjacent to the Ser18 residue. This process promotes the α1-subunit recognition by the μ2 subunit of the adaptor protein-2 and its endocytosis trough a clathrin dependent mechanism. Finally, the ubiquitinated Na,K-ATPase undergoes degradation via a lysosome/proteasome dependent mechanism.  相似文献   

20.
Excessive inflammatory response induced by lipopolysaccharide (LPS) plays a critical role in the development of acute lung injury (ALI). Paralemmin-3 (PALM3) is a novel protein that can modulate LPS-stimulated inflammatory responses in alveolar epithelial A549 cells. However, it remains unclear whether it is involved in the progression of ALI in vivo. Therefore, we studied the role of PALM3 in the pathogenesis of ALI induced by LPS. ALI was induced by LPS peritoneal injection in C57BL/6J mice. Lentivirus-mediated small interfering RNA (siRNA) targeting the mouse PALM3 gene and a negative control siRNA were intranasally administered to the mice. We found that the expression of PALM3 was up-regulated in the lung tissues obtained from the mouse model of LPS-induced ALI. The LPS-evoked inflammatory response (neutrophils and the concentrations of proinflammatory cytokines [IL-6, IL-1β, TNF-α, MIP-2] in the bronchoalveolar lavage fluid [BALF]), histologic lung injury (lung injury score), permeability of the alveolar capillary barrier (lung wet/dry weight ratio and BALF protein concentration) and mortality rates were attenuated in the PALM3 siRNA-treated mice. These results indicate that PALM3 contributes to the development of ALI in mice challenged with LPS. Inhibiting PALM3 through the intranasal application of specific siRNA protected against LPS-induced ALI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号