首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Centrins in vertebrates have traditionally been associated with microtubule-nucleating centers such as the centrosome. Unexpectedly, we found centrin 2 to associate biochemically with nucleoporins, including the Xenopus laevis Nup107-160 complex, a critical subunit of the vertebrate nuclear pore in interphase and of the kinetochores and spindle poles in mitosis. Immunofluorescence of Xenopus cells and in vitro reconstituted nuclei indeed revealed centrin 2 localized at the nuclear pores. Use of the mild detergent digitonin in immunofluorescence also allowed centrin 2 to be clearly visualized at the nuclear pores of human cells. Disruption of nuclear pores using RNA interference of the pore assembly protein ELYS/MEL-28 resulted in a specific decrease of centrin 2 at the nuclear rim of HeLa cells. Functionally, excess expression of either the N- or C-terminal calcium-binding domains of human centrin 2 caused a dominant-negative effect on both mRNA and protein export, leaving protein import intact. The mRNA effect mirrors that found for the Saccharomyes cerevisiae centrin Cdc31p at the yeast nuclear pore, a role until now thought to be unique to yeast. We conclude that in vertebrates, centrin 2 interacts with major subunits of the nuclear pore, exhibits nuclear pore localization, and plays a functional role in multiple nuclear export pathways.  相似文献   

2.
Inhibiting cAMP-dependent protein kinase (A-kinase) in mammalian fibroblasts through microinjection of a modified specific inhibitor peptide, PKi(m) or the purified inhibitor protein, PKI, resulted in rapid and pronounced chromatin condensation at all phases of the cell cycle. Together with these changes in chromatin, a marked reorganization of microtubule network occurred, accompanied in G2 cells by extensive alterations in cell shape which have many similarities to the premitotic phenotype previously observed after activation of p34cdc2 kinase, including the lack of spindle formation and the persistence of a nuclear envelope. In order to examine whether A-kinase inhibition and p34cdc2 kinase form part of the same or different inductive pathways, PKI and p34cdc2 kinase were injected together. Co-injection of both components resulted in nuclear envelope disassembly, an event not observed with injection of either component alone. This result implies that p34cdc2 and A-kinase inhibition have complementary and additive effects on the process of nuclear envelope breakdown in living fibroblasts, a conclusion further supported by our observation of a pronounced dephosphorylation of lamins A and C in cells after injection of PKi(m). Taken together, these data suggest that down-regulation of A-kinase is a distinct and essential event in the induction of mammalian cell mitosis which co-operates with the p34cdc2 pathway.  相似文献   

3.
4.
The fundamental process of nucleocytoplasmic transport takes place through the nuclear pore. Peripheral pore structures are presumably poised to interact with transport receptors and their cargo as these receptor complexes first encounter the pore. One such peripheral structure likely to play an important role in nuclear export is the basket structure located on the nuclear side of the pore. At present, Nup153 is the only nucleoporin known to localize to the surface of this basket, suggesting that Nup153 is potentially one of the first pore components an RNA or protein encounters during export. In this study, anti-Nup153 antibodies were used to probe the role of Nup153 in nuclear export in Xenopus oocytes. We found that Nup153 antibodies block three major classes of RNA export, that of snRNA, mRNA, and 5S rRNA. Nup153 antibodies also block the NES protein export pathway, specifically the export of the HIV Rev protein, as well as Rev-dependent RNA export. Not all export was blocked; Nup153 antibodies did not impede the export of tRNA or the recycling of importin beta to the cytoplasm. The specific antibodies used here also did not affect nuclear import, whether mediated by importin alpha/beta or by transportin. Overall, the results indicate that Nup153 is crucial to multiple classes of RNA and protein export, being involved at a vital juncture point in their export pathways. This juncture point appears to be one that is bypassed by tRNA during its export. We asked whether a physical interaction between RNA and Nup153 could be observed, using homoribopolymers as sequence-independent probes for interaction. Nup153, unlike four other nucleoporins including Nup98, associated strongly with poly(G) and significantly with poly(U). Thus, Nup153 is unique among the nucleoporins tested in its ability to interact with RNA and must do so either directly or indirectly through an adaptor protein. These results suggest a unique mechanistic role for Nup153 in the export of multiple cargos.  相似文献   

5.
Two interacting ribosome biogenesis factors, Ebp2 and Rrs1, associate with Mps3, an essential inner nuclear membrane protein. Both are found in foci along the nuclear periphery, like Mps3, as well as in the nucleolus. Temperature-sensitive ebp2 and rrs1 mutations that compromise ribosome biogenesis displace the mutant proteins from the nuclear rim and lead to a distorted nuclear shape. Mps3 is known to contribute to the S-phase anchoring of telomeres through its interaction with the silent information regulator Sir4 and yKu. Intriguingly, we find that both Ebp2 and Rrs1 interact with the C-terminal domain of Sir4, and that conditional inactivation of either ebp2 or rrs1 interferes with both the clustering and silencing of yeast telomeres, while telomere tethering to the nuclear periphery remains intact. Importantly, expression of an Ebp2-Mps3 fusion protein in the ebp2 mutant suppresses the defect in telomere clustering, but not its defects in growth or ribosome biogenesis. Our results suggest that the ribosome biogenesis factors Ebp2 and Rrs1 cooperate with Mps3 to mediate telomere clustering, but not telomere tethering, by binding Sir4.  相似文献   

6.
Interleukin-24 (IL-24), a member of the IL-10 cytokine family, is an immunomodulatory cytokine that also displays broad cancer-specific suppressor effects. The tumor suppressor activities of IL-24 include inhibition of angiogenesis, sensitization to chemotherapy, and cancer-specific apoptosis. We show that Sigma 1 Receptor (S1R), a ligand-regulated protein chaperone contributes to IL-24 induction of apoptosis. IL-24 generated from an adenovirus expressing IL-24 (Ad.IL-24) induces cancer-specific apoptosis by inducing an endoplasmic reticulum (ER) stress, reactive oxygen species production, and calcium mobilization. The present studies reveals that S1R is required for Ad.IL-24-induced cell death. We provide several lines of evidence to confirm a physical and functional interaction between IL-24 and S1R including: (a) S1R and IL-24 co-localize, as judged by immunocytochemical analysis studies; (b) S1R and IL-24 co-immunoprecipitate using either S1R or IL-24 antibody; (c) S1R agonist (+)-SKF10047 inhibits apoptosis by Ad.IL-24; (d) (+)-SKF10047-mediated inhibition of Ad.IL-24 results in: diminished ER stress protein expression; (e) Calcium mobilization; and (f) ROS production. Collectively, these data demonstrate that S1R interacts with IL-24 and suggest that IL-24:S1R interaction determines apoptosis induction by Ad.IL-24. These studies define Sigma 1 Receptor as a key initial mediator of IL-24 induction of cancer-specific killing. These findings have important implications for our understanding of IL-24 as a tumor suppressor protein as well as an immune modulating cytokine.  相似文献   

7.
Metazoan Tap-p15 (also called Nxf1-Nxt1) and yeast Mex67-Mtr2 heterodimers are the general mRNA export receptors. The RNA binding activity of Tap-p15, which is essential for mRNA nuclear export, has been attributed to the amino-terminal RNA binding module of Tap consists of RNA recognition motif (RRM) and leucine-rich repeat. In this study, we identified a novel RNA interaction surface in the NTF2-like (NTF2L) domain of Tap, which is analogous to the rRNA binding platform of Mex67-Mtr2. Tap-p15 uses the three domains to tightly bind the retroviral constitutive transport element. The RNA binding through the NTF2L domain is functionally relevant as introduction of mutations in this region reduced CTE-containing mRNA export activity. In contrast, only when the RRM and NTF2L domains were mutated simultaneously, bulk poly (A)+ RNA export and in vivo poly (A)+ RNA binding activities of Tap-p15 were significantly attenuated. Moreover, an engineered human cell line harboring the NTF2L domain mutation in the NXF1 gene showed a synthetic growth phenotype and severe mRNA export defect under Aly/REF and Thoc5 depleted condition. These data suggest that Tap-p15 recognizes bulk mRNAs through combinatorial use of the distinct RNA binding domains.  相似文献   

8.
Lamin A is a nuclear lamina constituent expressed in differentiated cells. Mutations in the LMNA gene cause several diseases, including muscular dystrophy and cardiomyopathy. Among the nuclear envelope partners of lamin A are Sad1 and UNC84 domain-containing protein 1 (SUN1) and Sad1 and UNC84 domain-containing protein 2 (SUN2), which mediate nucleo-cytoskeleton interactions critical to the anchorage of nuclei. In this study, we show that differentiating human myoblasts accumulate farnesylated prelamin A, which elicits upregulation and recruitment of SUN1 to the nuclear envelope and favors SUN2 enrichment at the nuclear poles. Indeed, impairment of prelamin A farnesylation alters SUN1 recruitment and SUN2 localization. Moreover, nuclear positioning in myotubes is severely affected in the absence of farnesylated prelamin A. Importantly, reduced prelamin A and SUN1 levels are observed in Emery-Dreifuss muscular dystrophy (EDMD) myoblasts, concomitant with altered myonuclear positioning. These results demonstrate that the interplay between SUN1 and farnesylated prelamin A contributes to nuclear positioning in human myofibers and may be implicated in pathogenetic mechanisms.  相似文献   

9.
Oncogenic ras activates multiple signaling pathways to enforce cell proliferation in tumor cells. The ERK1/2 mitogen-activated protein kinase pathway is required for the transforming effects of ras, and its activation is often sufficient to convey mitogenic stimulation. However, in some settings oncogenic ras triggers a permanent cell cycle arrest with features of cellular senescence. How the Ras/ERK1/2 pathway activates different cellular programs is not well understood. Here we show that ERK1/2 localize predominantly in the cytoplasm during ras-induced senescence. This cytoplasmic localization seems to be dependent on an active nuclear export mechanism and can be rescued by the viral oncoprotein E1A. Consistent with this hypothesis, we showed that E1A dramatically down-regulated the expression of the ERK1/2 nuclear export factor PEA-15. Also, RNA interference against PEA-15 restored the nuclear localization of phospho-ERK1/2 in Ras-expressing primary murine embryo fibroblasts and stimulated their escape from senescence. Because senescence prevents the transforming effect of oncogenic ras, our results suggest a tumor suppressor function for PEA-15 that operates by means of controlling the localization of phospho-ERK1/2.  相似文献   

10.
Kracklauer MP  Banks SM  Xie X  Wu Y  Fischer JA 《Fly》2007,1(2):75-85
KASH (Klarsicht/Anc-1/Syne homology) domain proteins are cytoskeleton-associated proteins localized uniquely to the outer nuclear membrane. Klarsicht is a KASH protein required for nuclear migration in differentiating cells of the Drosophila eye. The C-terminal KASH domain of Klarsicht resides in the perinuclear space, and the cytoplasmic moiety connects to the microtubule organizing center. In C. elegans and vertebrate cells, SUN (Sad1/UNC-84) domain proteins reside in the inner nuclear membrane and tether KASH proteins to the outer nuclear membrane. Is there a Drosophila SUN protein that performs a similar function, and if so, is it like Klarsicht, obviously essential for nuclear positioning only in the eye? Here, we identify Drosophila Klaroid, a SUN protein that tethers Klarsicht. klaroid loss-of-function mutants are indistinguishable phenotypically from klarsicht mutants. Remarkably, neither gene is essential for Drosophila viability or fertility, and even in klaroid klorsicht double mutants, the only obvious external morphological defect is rough eyes. In addition, we find that klaroid and klarsicht are required for nuclear migration in differentiating neurons and in non-neural cells. Finally, while perinuclear Klaroid is ubiquitous in the eye, Klarsicht expression is limited to differentiating cells and may be part of the trigger for apical nuclear migration.  相似文献   

11.
Ding X  Xu R  Yu J  Xu T  Zhuang Y  Han M 《Developmental cell》2007,12(6):863-872
Prior to the pairing and recombination between homologous chromosomes during meiosis, telomeres attach to the nuclear envelope and form a transient cluster. However, the protein factors mediating meiotic telomere attachment to the nuclear envelope and the requirement of this attachment for homolog pairing and synapsis have not been determined in animals. Here we show that the inner nuclear membrane protein SUN1 specifically associates with telomeres between the leptotene and diplotene stages during meiotic prophase I. Disruption of Sun1 in mice prevents telomere attachment to the nuclear envelope, efficient homolog pairing, and synapsis formation in meiosis. Massive apoptotic events are induced in the mutant gonads, leading to the abolishment of both spermatogenesis and oogenesis. This study provides genetic evidence that SUN1-telomere interaction is essential for telomere dynamic movement and is required for efficient homologous chromosome pairing/synapsis during mammalian gametogenesis.  相似文献   

12.
Mammalian UAP56 or its homolog Sub2p in Saccharomyces cerevisiae are members of the ATP-dependent RNA helicase family and are required for splicing and nuclear export of mRNA. Previously we showed that in Schizosaccharomyces pombe Uap56p is critical for mRNA export. It links the mRNA adapter Mlo3p, a homolog of Yra1p in S. cerevisiae or Aly in mammals, to nuclear pore-associated mRNA export factor Rae1p. In this study we show that, in contrast to S. cerevisiae, Uap56p in S. pombe is not required for pre-mRNA splicing. The putative RNA helicase function of Uap56p is not required for mRNA export. However, the RNA-binding motif of Uap56p is critical for nuclear export of mRNA. Within Uap56p we identified nuclear import and export signals that may allow it to shuttle between the nucleus and the cytoplasm. We found that Uap56p interacts with Rae1p directly via its nuclear export signal, and this interaction is critical for the nuclear export activity of Uap56p as well as for exporting mRNA. RNA binding and the ability to shuttle between the nucleus and cytoplasm are important features of mRNA export carriers such as HIV-Rev. Our results suggest that Uap56p could function similarly as an export carrier of mRNA in S. pombe.  相似文献   

13.
Regulation of nuclear mRNA export is critical for proper eukaryotic gene expression. A key step in this process is the directional translocation of mRNA-ribonucleoprotein particles (mRNPs) through nuclear pore complexes (NPCs) that are embedded in the nuclear envelope. Our previous studies in Saccharomyces cerevisiae defined an in vivo role for inositol hexakisphosphate (InsP6) and NPC-associated Gle1 in mRNA export. Here, we show that Gle1 and InsP6 act together to stimulate the RNA-dependent ATPase activity of the essential DEAD-box protein Dbp5. Overexpression of DBP5 specifically suppressed mRNA export and growth defects of an ipk1 nup42 mutant defective in InsP6 production and Gle1 localization. In vitro kinetic analysis showed that InsP6 significantly increased Dbp5 ATPase activity in a Gle1-dependent manner and lowered the effective RNA concentration for half-maximal ATPase activity. Gle1 alone had minimal effects. Maximal InsP6 binding required both Dbp5 and Gle1. It has been suggested that Dbp5 requires unidentified cofactors. We now propose that Dbp5 activation at NPCs requires Gle1 and InsP6. This would facilitate spatial control of the remodelling of mRNP protein composition during directional transport and provide energy to power transport cycles.  相似文献   

14.
We present here a detailed analysis of a rat polypeptide termed Nup50 (formerly NPAP60) that was previously found to be associated with the nuclear pore complex (F. Fan et al., Genomics 40:444-453, 1997). We have found that Nup50 (and/or a related 70-kDa polypeptide) is present in numerous rat cells and tissues. By immunofluorescence microscopy, Nup50 was found to be highly concentrated at the nuclear envelope of rat liver nuclei, whereas in cultured NRK cells it also is abundant in intranuclear regions. On the basis of immunogold electron microscopy of both rat liver nuclear envelopes and NRK cells, we determined that Nup50 is specifically localized in the nucleoplasmic fibrils of the pore complex. Microinjection of anti-Nup50 antibodies into the nucleus of NRK cells resulted in strong inhibition of nuclear export of a protein containing a leucine-rich nuclear export sequence, whereas nuclear import of a protein containing a classical nuclear localization sequence was unaffected. Correspondingly, CRM1, the export receptor for leucine-rich export sequences, directly bound to a fragment of Nup50 in vitro, whereas several other import and export receptors did not significantly interact with this fragment. Taken together, our data indicate that Nup50 has a direct role in nuclear protein export and probably serves as a binding site on the nuclear side of the pore complex for export receptor-cargo complexes.  相似文献   

15.
Rodent cells are notable for their inability to support normal assembly of HIV particles. In this report, we address possible causes for this defect by considering the hypothesis that mRNA-associated events occurring in the nucleus can regulate the activity of their encoded proteins in the cytoplasm. We show that altering the RNA nuclear export element used by HIV gag-pol mRNA from the Rev response element to the constitutive transport element restores both the trafficking of Gag to cellular membranes and efficient HIV assembly in murine cells. These results suggest that two phases of the HIV life cycle, RNA export and capsid assembly, that have hitherto been regarded as distinct are, in fact, linked. Thus, protein function and fate may depend upon the full and precise history of its encoding mRNA.  相似文献   

16.
Eukaryotic gene expression requires the export of mRNA from the nucleus to the cytoplasm. The DEAD box protein Dbp5p is an essential export factor conserved from yeast to man. A fraction of Dbp5p forms a complex with nucleoporins of the cytoplasmic filaments of the nuclear pore complex. Gfd1p was identified originally as a multicopy suppressor of the rat8-2 ts allele of DBP5. Here we reported that Dbp5p and Gfd1p interact with Zds1p, a protein previously identified as a multicopy suppressor in several yeast genetic screens. By using the two-hybrid system, we showed that Zds1p interacts in vivo with both Gfd1p and Dbp5p. In vitro binding experiments revealed that Gfd1p and Dbp5p bind directly to the C-terminal part of Zds1p. In addition, ZDS1 interacted genetically with mutant alleles of genes encoding key factors in mRNA export, including DBP5 and MEX67. Furthermore, deletion of ZDS1 or of both ZDS1 and the closely related ZDS2 exacerbated the poly(A)+ export defects shown by dbp5-2 and mex67-5 mutants. We proposed that Zds1p associates with the complex formed by Dbp5p, Gfd1p, and nucleoporins at the cytosolic fibrils of the nuclear pore complex and is required for optimal mRNA export.  相似文献   

17.
18.
In this article, we identify a cold-sensitive mutant of Xpo1p designated as xop1-2 (but will be referred to from here on as xpo1-ok) that is synthetically lethal with srm1-1, a Saccharomyces cerevisiae RCC1 homolog. xpo1-ok was a novel mutated allele with a single point mutation, T283P. Suppressors of xpo1-ok were isolated, and one of them was found to encode a novel nuclear envelope integral membrane protein designated as Brl1p (Brr6 like protein no. 1). Brl1p is homologous with Brr6p at the C-terminal domain, which is well conserved in the Brr6/Brl1 family. To characterize the function of Brl1p, a series of temperature-sensitive mutants of Brl1p were isolated. All of brl1 mutations were localized to the conserved C-terminal domain that is essential for a function of Brl1p. Some brl1 alleles showed defects in nuclear export of either mRNA or protein, and nuclear pore clustering, similar to brr6-1. The cellular localization of Brl1p is also similar to that of Brr6p. The genetic analysis suggested that Brl1p functionally interacts with Brr6p. An interaction of Brl1p with Brr6p was shown by the two-hybrid method. We hypothesize that Brl1p functions for nuclear export as a complex with Brr6p.  相似文献   

19.
Rev has been shown to promote the export of HIV-1 RNAs fromXenopus oocyte nuclei, but a system to examine the direct effect of Rev on HIV-1 RNA export in mammalian somatic cells does not exist. In this report, the development of a cell-free RNA export system using COS cells is described. This system is capable of examining the movement of RNA from nuclei of COS cells transfected with an HIV-1 proviral construct into reconstituted cytosol from nontransfected cells. A reproducible preparation of nuclei free of residual cytoplasmic RNA is demonstrated. Export of RNA from these nuclei into reconstituted cell-free extracts was saturable and dependent on temperature and energy. Further validation of the system was obtained by confirming that the nuclear export of HIV-1-unspliced and partially spliced RNAs was dependent upon the expression of HIV-1 Rev and that the presence of Rev appeared to decrease the export of an HIV-1-spliced RNA. The system was also able to demonstrate that Rev did not appear to significantly enhance the export of an HIV-1 protease-containing RNA that has been shown to be dependent upon Rev for maximal expression. Consequently, the system appears useful for the examination of parameters of nuclear export of HIV-1 and cellular RNAs.  相似文献   

20.
《The Journal of cell biology》1996,134(5):1141-1156
Nup153 is a large (153 kD) O-linked glyco-protein which is a component of the basket structure located on the nucleoplasmic face of nuclear pore complexes. This protein exhibits a tripartite structure consisting of a zinc finger domain flanked by large (60-70 kD) NH2- and COOH- terminal domains. When full-length human Nup153 is expressed in BHK cells, it accumulates appropriately at the nucleoplasmic face of the nuclear envelope. Targeting information for Nup153 resides in the NH2- terminal domain since this region of the molecule can direct an ordinarily cytoplasmic protein, pyruvate kinase, to the nuclear face of the nuclear pore complex. Overexpression of Nup153 results in the dramatic accumulation of nuclear poly (A)+ RNA, suggesting an inhibition of RNA export from the nucleus. This is not due to a general decline in nucleocytoplasmic transport or to occlusion or loss of nuclear pore complexes since nuclear protein import is unaffected. While overexpression of certain Nup153 constructs was found to result in the formation of unusual intranuclear membrane arrays, this structural phenotype could not be correlated with the effects on poly (A)+ RNA distribution. The RNA trafficking defect was, however, dependent upon the Nup153 COOH-terminal domain which contains most of the XFXFG repeats. It is proposed that this region of Nup153, lying within the distal ring of the nuclear basket, represents a docking site for mRNA molecules exiting the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号