首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
限氧自养硝化-反硝化生物脱氮新技术   总被引:10,自引:0,他引:10  
张丹  徐慧  李相力  张颖  陈冠雄 《应用生态学报》2003,14(12):2333-2336
限氧自养硝化—反硝化是部分硝化与厌氧氨氧化相耦联的生物脱氮反应过程,通过严格控制溶解氧在0.1~0.3mg·L^-1,实现硝化反应控制在亚硝酸阶段,然后以硝化阶段剩余的NH4^+作为电子供体,在厌氧条件下实现反硝化,该反应过程是完全的自养硝化—反硝化过程,具有能耗低、脱氮效率高、反应系统占地面积小等优点,适用于处理COD/NH4^+—N低的废水,是一种非常有应用前景的生物脱氮技术,文中详细介绍了限氧自养硝化—反硝化生物脱氮反应过程的研究进展,讨论了其微生物学机理及应用前景。  相似文献   

2.
湖泊氮素氧化及脱氮过程研究进展   总被引:7,自引:0,他引:7  
范俊楠  赵建伟  朱端卫 《生态学报》2012,32(15):4924-4931
自然界中氮的生物地球化学循环主要由微生物驱动,由固氮作用、硝化作用、反硝化作用和氨化作用来完成。过去数十年间,随着异养硝化、厌氧氨氧化和古菌氨氧化作用的发现,人们对环境中氮素循环认识逐步深入,提出了多种脱氮途径新假说。对湖泊生态系统中氮素的输入、输出及其在水体、沉积物和水土界面的迁移转化过程进行了概括,对湖泊生态系统中反硝化和厌氧氨氧化脱氮机理及脱氮效率的最新研究进展进行了探讨,并对以后的氮素循环研究进行了展望。  相似文献   

3.
废水自养生物脱氮技术研究进展   总被引:5,自引:0,他引:5  
基于短程硝化和厌氧氨氧化的自养脱氮工艺是生物脱氮领域研究的热点,它的发现为低碳氮比废水的处理提供了新的思路。近些年来,人们陆续开发了SHARON、ANAMMOX、CANON、OLAND等自养生物脱氮工艺,进一步推动了高效、低耗脱氮技术的开发和研究。本文从工艺原理、特点等方面,对自养生物脱氮工艺的国内外研究状况进行了总结和对比,并提出了存在的问题及发展方向。  相似文献   

4.
5.
Thiosphaera pantotropha is capable of simultaneous heterotrophic nitrification and aerobic denitrification. Consequently, its nitrification potential could not be judged from nitrite accumulation, but was estimated from complete nitrogen balances. The maximum rate of nitrification obtained during these experiments was 93.9 nmol min−1 mg of protein−1. The nitrification rate could be reduced by the provision of nitrate, nitrite, or thiosulfate to the culture medium. Both nitrification and denitrification increased as the dissolved oxygen concentration fell, until a critical level was reached at approximately 25% of air saturation. At this point, the rate of (aerobic) denitrification was equivalent to the anaerobic rate. At this dissolved oxygen concentration, the combined nitrification and denitrification was such that cultures receiving ammonium as their sole source of nitrogen appeared to become oxygen limited and the nitrification rate fell. It appeared that, under carbon-and energy-limited conditions, a high nitrification rate was correlated with a reduced biomass yield. To facilitate experimental design, a working hypothesis for the mechanism behind nitrification and denitrification by T. pantotropha was formulated. This involved the basic assumption that this species has a “bottleneck” in its cytochrome chain to oxygen and that denitrification and nitrification are used to overcome this. The nitrification potential of other heterotrophic nitrifiers has been reconsidered. Several species considered to be “poor” nitrifiers also simultaneously nitrify and denitrify, thus giving a falsely low nitrification potential.  相似文献   

6.
In this study, a vertical submerged biofilm reactor was applied to investigate autotrophic partial nitrification/denitrification and simultaneous sulfide removal by using synthetic wastewater. The appropriate influent ratios of ammonia and sulfide needed to achieve partial autotrophic nitrification and denitrification were evaluated with influent ammonium nitrogen ranging from 54.6 to 129.8 mg L?1 and sulfide concentrations ranging from 52.7 to 412.4 mg S L?1. The results demonstrated that the working parameter was more stable when the sulfur/nitrogen ratio was set at 3:2, which yielded the maximum sulfur conversion. Batch experiments with different phosphate concentrations proved that a suitable phosphate buffer solution to control pH values could improve synchronous desulfurization denitrification process performance.  相似文献   

7.
In this research study a nitrifying/autotrophic denitrifying system was used for the post-treatment of an effluent coming from an anaerobic digester treating the wastewater produced in a fish canning industry. The nitrifying reactor achieved 100% of ammonia oxidation into nitrate. The effluent from this unit was fed to the autotrophic denitrifying reactor which treated a maximum sulphide loading rate (SLR) of 200 mg S2?/L d with removal percentages of 100% and 30% for sulphide and nitrate, respectively. The low nitrate removal efficiency is attributed to sulphide limitations.The operational costs of this system were estimated as 0.92 €/kg Nremoved, lower than those for conventional nitrification/denitrification processes. For nitrogen removal the SHARON/anammox processes is the cheapest option. However the combination of nitrification and autotrophic denitrification (using elemental sulphur) processes would present a better operational stability compared to the SHARON/anammox system.  相似文献   

8.
9.
Modifications are made to an earlier thermodynamic model (TEEM1) for prediction of maximum microbial yields from aerobic and anaerobic as well as heterotrophic and autotrophic growth. The revised model (TEEM2) corrects for lower yields found with aerobic oxidations of organic compounds where an oxygenase is involved and with growth on single-carbon (C1) compounds. TEEM1 and TEEM2 are based on energy release and consumption as determined from the reduction potential or Gibbs free energy of (1/2)-reaction reduction equations together with losses of energy during energy transfer. Energy transfer efficiency is a key parameter needed to make predictions with TEEM2, and was determined through evaluations with extensive data sets on aerobic heterotrophic yield available in the literature. For compounds following normal catabolic pathways, the best-fit value for energy transfer efficiency was 0.37, which permitted accurate predictions of growth with a precision of 15%-20% as determined by standard deviation. Using the same energy transfer efficiency, a similar precision, but somewhat less accuracy was found for organic compounds where oxidation involves an oxygenase (estimates 8% too high) and for C1 compounds (estimates 17% too high). In spite of the somewhat lower accuracy, the TEEM2 modifications resulted in improved predictions over TEEM1 and the comparison models.  相似文献   

10.
Due to serious eutrophication in water bodies, nitrogen removal has become a critical stage for wastewater treatment plants (WWTPs) over past decades. Conventional biological nitrogen removal processes are based on nitrification and denitrification (N/DN), and are suffering from several major drawbacks, including substantial aeration consumption, high fugitive greenhouse gas emissions, a requirement for external carbon sources, excessive sludge production and low energy recovery efficiency, and thus unable to satisfy the escalating public needs. Recently, the discovery of anaerobic ammonium oxidation (anammox) bacteria has promoted an update of conventional N/DN-based processes to autotrophic nitrogen removal. However, the application of anammox to treat domestic wastewater has been hindered mainly by unsatisfactory effluent quality with nitrogen removal efficiency below 80%. The discovery of nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) during the last decade has provided new opportunities to remove this barrier and to achieve a robust system with high-level nitrogen removal from municipal wastewater, by utilizing methane as an alternative carbon source. In the present review, opportunities and challenges for nitrate/nitrite-dependent anaerobic methane oxidation are discussed. Particularly, the prospective technologies driven by the cooperation of anammox and n-DAMO microorganisms are put forward based on previous experimental and modeling studies. Finally, a novel WWTP system acting as an energy exporter is delineated.  相似文献   

11.
AIMS: To develop a laboratory-scale autotrophic membrane-immobilized biofilm reactor to remove nitrogen from drinking water. METHODS AND RESULTS: A polyvinyl alcohol (PVA) immobilized biofilm, attached to the surface of a silicone tube, was used as the basis of a bioreactor for simultaneous nitrification and denitrification of water. The bioreactor was aerated with air to supply oxygen for nitrification. Pure hydrogen was supplied to the silicone tube and diffused through the membrane wall to feed the biofilm for autotrophic denitrification. The bioreactor was effective for the simultaneous nitrification and denitrification of water after a short period of acclimation, while the biofilm exhibited good resistance to the inhibition of denitrification by dissolved oxygen; the denitrification rate decreased by only 8% as the dissolved oxygen increased from 2 mg l(-1) to saturation. CONCLUSIONS: By using PVA crosslinked with sodium nitrate to entrap nitrifying and denitrifying sludge on the surface of a silicone tube, a novel bioreactor for simultaneous nitrification and denitrification was developed. In addition to performing as an immobilizing agent to strengthen the biofilm, PVA protected the denitrifying microorganisms to reduce the inhibition by dissolved oxygen under aerobic condition. Therefore, nitrification and denitrification occurred simultaneously within the biofilm. Furthermore, the immobilization technique shortened the acclimation period of the bioreactor. SIGNIFICANCE AND IMPACT OF THE STUDY: The described space saving and simple to operate bioreactor for nitrogen removal performed autotrophic denitrification to solve the problem of residual carbon in heterotrophic denitrification, and thus is suitable for removing nitrogen from drinking water.  相似文献   

12.
Novel principles in the microbial conversion of nitrogen compounds   总被引:24,自引:0,他引:24  
Some aspects of inorganic nitrogen conversion by microorganisms like N2O emission and hydroxylamine metabolism studied by Beijerinck and Kluyver, founders of the Delft School of Microbiology, are still actual today. In the Kluyver Laboratory for Biotechnology, microbial conversion of nitrogen compounds is still a central research theme. In recent years a range of new microbial processes and process technological applications have been studied. This paper gives a review of these developments including, aerobic denitrification, anaerobic ammonium oxidation, heterotrophic nitrification, and formation of intermediates (NO2-, NO, N2O), as well as the way these processes are controlled at the genetic and enzyme level.  相似文献   

13.
The fermentation of glucose using microbial mixed cultures is of great interest given its potential to convert wastes into valuable products at low cost, however, the difficulties associated with the control of the process still pose important challenges for its industrial implementation. A deeper understanding of the fermentation process involving metabolic and biochemical principles is very necessary to overcome these difficulties. In this work a novel metabolic energy based model is presented that accurately predicts for the first time the experimentally observed changes in product spectrum with pH. The model predicts the observed shift towards formate production at high pH, accompanied with ethanol and acetate production. Acetate (accompanied with a more reduced product) and butyrate are predicted main products at low pH. The production of propionate between pH 6 and 8 is also predicted. These results are mechanistically explained for the first time considering the impact that variable proton motive potential and active transport energy costs have in terms of energy harvest over different products yielding. The model results, in line with numerous reported experiments, validate the mechanistic and bioenergetics hypotheses that fermentative mixed cultures products yielding appears to be controlled by the principle of maximum energy harvest and the necessity of balancing the redox equivalents in absence of external electron acceptors.  相似文献   

14.
An investigation was performed on the biological removal of ammonium nitrogen from synthetic wastewater by the simultaneous nitrification/denitrification (SND) process, using a sequencing batch biofilm reactor (SBBR). System behavior was analyzed as to the effects of sludge type used as inoculum (autotrophic/heterotrophic), wastewater feed strategy (batch/fed-batch) and aeration strategy (continuous/intermittent). The presence of an autotrophic aerobic sludge showed to be essential for nitrification startup, despite publications stating the existence of heterotrophic organisms capable of nitrifying organic and inorganic nitrogen compounds at low dissolved oxygen concentrations. As to feed strategy, batch operation (synthetic wastewater containing 100 mg COD/L and 50 mg N-NH(4)(+)/L) followed by fed-batch (synthetic wastewater with 100 mg COD/L) during a whole cycle seemed to be the most adequate, mainly during the denitrification phase. Regarding aeration strategy, an intermittent mode, with dissolved oxygen concentration of 2.0mg/L in the aeration phase, showed the best results. Under these optimal conditions, 97% of influent ammonium nitrogen (80% of total nitrogen) was removed at a rate of 86.5 mg N-NH(4)(+)/Ld. In the treated effluent only 0.2 mg N-NO(2)(-)/L,4.6 mg N-NO(3)(-)/L and 1.0 mg N-NH(4)(+)/L remained, demonstrating the potential viability of this process in post-treatment of wastewaters containing ammonium nitrogen.  相似文献   

15.
The need for preserving the environment is tightening regulations limiting the discharge of contaminants into water bodies. Nowadays most of the effort is done on the removal of more specific contaminants such as nutrients (N and P) and sulfurous compounds since they are becoming of great concern due to its impact on the quality of water bodies. There have been two recent discoveries of microbial conversions of nitrogenous compounds. One consisting on the capability of ammonia oxidizers of denitrify under certain conditions resulting in a new one-step method for the removal of N-compounds. The second has been named the ANAMMOX process, wherein ammonium is oxidized to dinitrogen gas with nitrite as the electron acceptor. Other developments consist of operational strategies aiming at obtaining the highest efficiency at removing nitrogen at lowest cost. One strategy consists of the partial nitrification to nitrite (only successful in the SHARON process) and subsequently either the heterotrophic denitrification of nitrites or its autotrophic reduction by ANAMMOX microorganisms. Another strategy consists of the coexistence of nitrifiers and denitrifiers in the same reactor by implementing high frequency oscillations on the oxygen level.The recent developments on biological phosphorous removal are based on the capacity of some denitrifying microorganisms to store ortho-phosphate intracellular as poly-phosphate in the presence of nitrate. These microorganisms store substrate (PHB) anaerobically which is further oxidized when nitrate is present. By extracting excess sludge from the anoxic phase, phosphate is removed from the system. Removing phosphate using nitrate instead of oxygen has the advantage of saving energy (oxygen input) and using less organic carbon.The microbial conversions of sulfurous compounds involve the metabolism of several different specific groups of bacteria such as sulfate reducing bacteria, sulfur and sulfide oxidizing bacteria, and phototrophic sulfur bacteria. Some of these microorganisms can simultaneously use nitrate, what has been reported as autotrophic denitrification by sulfur and sulfide oxidizing microorganisms. More recently, the anaerobic treatment of an industrial wastewater rich in organic matter, nitrogen and sulfate, reported a singular evolution of N and S compounds that initially was hypothesized as SURAMOX (SUlfate Reduction and AMmonia OXidation). The process could not have been verified nor reproduced and further investigations on the proposed SURAMOX mechanism have given no additional insights to those initial observations.  相似文献   

16.
A significant amount of nitrous oxide (N(2)O), which is one of the serious greenhouse gases, is emitted from nitrification and denitrification of wastewater. Batch wastewater nitrifications with enriched nitrifiers were carried out under oxygen-limited condition with synthetic (without organic carbon) and real wastewater (with organic carbon) in order to find out the effect of ammonium concentration on N(2)O emission. Cumulated N(2)O-N emission reached 3.0, 5.7, 6.2, and 13.5 mg from 0.4 l of the synthetic wastewater with 50, 100, 200, and 500 mg/l NH(4)(+)-N, respectively, and 1.0 mg from the real wastewater with 125 mg/l NH(4)(+)-N. The results indicate that N(2)O emission increased with ammonium concentration and the load. The ammonium removal rate and nitrite concentration also increased N(2)O emission. Comparative analysis of N(2)O emission from synthetic and real wastewaters revealed that wastewater nitrification under oxygen-limited condition emitted more N(2)O than that of heterotrophic denitrification. Summarizing the results, it can be concluded that denitrification by autotrophic nitrifiers contributes significantly to the N(2)O emission from wastewater nitrification.  相似文献   

17.
杜睿 《生态科学》2006,25(3):202-206
以大量的室内模拟培养实验,以内蒙古温带草甸草原土壤为研究对象,利用AIM乙炔抑制法,模拟野外条件对原样土壤样品进行N2O产生过程进行研究。实验结果表明:内蒙古温带草甸草原土壤N2O产生过程以硝化作用为主。其中异养硝化作用起主导作用,自养硝化潜势和反硝化潜势在草原植物不同生长季节变化不同,总体上异养硝化潜势>自养硝化潜势>反硝化潜势。由于自养硝化作用在不同季节的发生,使得草甸草原土壤N2O的产生潜势也高、低起伏变化。从而揭示了内蒙古温带草原土壤以异养硝化作用过程为主产生N2O和N2O排放通量较低的微生物学机理。  相似文献   

18.
厌氧氨氧化工艺的应用现状和问题   总被引:4,自引:0,他引:4  
厌氧氨氧化(Anaerobic ammonium oxidation,ANAMMOX)工艺因其高效低耗的优势,在废水生物脱氮领域具有广阔的应用前景。在过去的20年中,许多基于ANAMMOX反应的工艺得以不断研究和应用。预计到2014年末,全球范围内的ANAMMOX工程将会超过100座。综述了各种形式的ANAMMOX工艺,包括短程硝化-厌氧氨氧化、全程自养脱氮、限氧自养硝化反硝化、反硝化氨氧化、好氧反氨化、同步短程硝化-厌氧氨氧化-反硝化耦合、单级厌氧氨氧化短程硝化脱氮工艺。对一体式和分体式工艺运行条件进行了比较,结合ANAMMOX工艺工程(主要包括移动床生物膜,颗粒污泥和序批式反应器系统)应用现状,总结了工程化应用过程中遇到的问题及其解决对策,在此基础上对今后的研究和应用方向进行了展望。今后的研究重点应集中于运行条件的优化和水质障碍因子的解决,尤其是工艺自动化控制系统的开发和特殊废水对工艺性能影响的研究。  相似文献   

19.
滨海湿地生态系统微生物驱动的氮循环研究进展   总被引:5,自引:0,他引:5  
滨海湿地生态系统介于陆地生态系统和海洋生态系统之间,其类型多种多样,环境差异极大,微生物种类丰富。近年来,随着人为氮源的大量输入,造成滨海湿地生态系统富营养化污染问题日趋严重。本文主要总结了滨海湿地生态系统微生物驱动的固氮、硝化、反硝化、厌氧氨氧化、NO_3~-还原成铵等主要氮循环过程,并综述了通过功能基因(如nifH、amoA、hzo、nirS、nirK、nrfA)检测微生物群落多样性及其环境影响因素的相关研究,旨在更好理解微生物驱动氮循环过程以去除氮,以期为减轻富营养化和危害性藻类爆发提供科学依据。  相似文献   

20.
Intensification of animal production led to high amounts of manure to be managed. Biological processes can contribute to a sustainable manure management. This paper presents the biological treatments available for the treatment of animal manure, mainly focusing on swine manure, including aerobic processes (nitrification, denitrification, enhanced biological phosphorus removal) and anaerobic digestion. These processes are discussed in terms of pollution removal, ammonia and greenhouse gas emissions (methane and nitrous oxide) and pathogen removal. Application of emerging processes such as partial nitrification and anaerobic ammonium oxidation (anammox) applied to animal manure is also considered. Finally, perspectives and future challenges for the research concerning biological treatments are highlighted in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号