共查询到20条相似文献,搜索用时 0 毫秒
1.
Life history and development--a framework for understanding developmental plasticity in lower termites 总被引:2,自引:0,他引:2
Termites (Isoptera) are the phylogenetically oldest social insects, but in scientific research they have always stood in the shadow of the social Hymenoptera. Both groups of social insects evolved complex societies independently and hence, their different ancestry provided them with different life-history preadaptations for social evolution. Termites, the 'social cockroaches', have a hemimetabolous mode of development and both sexes are diploid, while the social Hymenoptera belong to the holometabolous insects and have a haplodiploid mode of sex determination. Despite this apparent disparity it is interesting to ask whether termites and social Hymenoptera share common principles in their individual and social ontogenies and how these are related to the evolution of their respective social life histories. Such a comparison has, however, been much hampered by the developmental complexity of the termite caste system, as well as by an idiosyncratic terminology, which makes it difficult for non-termitologists to access the literature.
Here, we provide a conceptual guide to termite terminology based on the highly flexible caste system of the "lower termites". We summarise what is known about ultimate causes and underlying proximate mechanisms in the evolution and maintenance of termite sociality, and we try to embed the results and their discussion into general evolutionary theory and developmental biology. Finally, we speculate about fundamental factors that might have facilitated the unique evolution of complex societies in a diploid hemimetabolous insect taxon. This review also aims at a better integration of termites into general discussions on evolutionary and developmental biology, and it shows that the ecology of termites and their astounding phenotypic plasticity have a large yet still little explored potential to provide insights into elementary evo-devo questions. 相似文献
Here, we provide a conceptual guide to termite terminology based on the highly flexible caste system of the "lower termites". We summarise what is known about ultimate causes and underlying proximate mechanisms in the evolution and maintenance of termite sociality, and we try to embed the results and their discussion into general evolutionary theory and developmental biology. Finally, we speculate about fundamental factors that might have facilitated the unique evolution of complex societies in a diploid hemimetabolous insect taxon. This review also aims at a better integration of termites into general discussions on evolutionary and developmental biology, and it shows that the ecology of termites and their astounding phenotypic plasticity have a large yet still little explored potential to provide insights into elementary evo-devo questions. 相似文献
2.
Understanding how the environment impacts development is of central interest in developmental and evolutionary biology. On the one hand, we would like to understand how the environment induces phenotypic changes (the study of phenotypic plasticity). On the other hand, we may ask how a development system maintains a stable and precise phenotypic output despite the presence of environmental variation. We study such developmental robustness to environmental variation using vulval cell fate patterning in the nematode Caenorhabditis elegans as a study system. Here we review both mechanistic and evolutionary aspects of these studies, focusing on recently obtained experimental results. First, we present evidence indicating that vulval formation is under stabilizing selection. Second, we discusss quantitative data on the precision and variability in the output of the vulval developmental system in different environments and different genetic backgrounds. Third, we illustrate how environmental and genetic variation modulate the cellular and molecular processes underlying the formation of the vulva. Fourth, we discuss the evolutionary significance of environmental sensitivity of this developmental system. 相似文献
3.
Abundance-range size relationships in British birds: is unexplained variation a product of life history? 总被引:3,自引:0,他引:3
Positive interspecific relationships between local abundance and geographic range size are a common feature of animal assemblages However, range size typically explains only a moderate proportion of the variation m abundance, begging the question of whether species of differing life history deviate from the underlying relationship in any systematic fashion Using data for the avifauna of Britain, and applying a comparative method to control for the effects of phylogenetic association, we demonstrate that this does not appear to be the case Only adult survivorship, age at independence and incubation period explain significant variation in abundance once range size is controlled for statistically, and then only a few percent There are two probable reasons why this result is contrary to general expectation First, although many life history variables are expected to show simple correlations with abundance or range size It is not obvious how these might relate to variation about the abundance–range size relationship Second, intuitive ideas about the form such variation might take may be seriously confounded by phylogenetic non–independence 相似文献
4.
Maria Romeralo Anna Skiba Alejandro Gonzalez-Voyer Christina Schilde Hajara Lawal Sylwia Kedziora Jim C. Cavender Gernot Gl?ckner Hideko Urushihara Pauline Schaap 《Proceedings. Biological sciences / The Royal Society》2013,280(1764)
Colony formation was the first step towards evolution of multicellularity in many macroscopic organisms. Dictyostelid social amoebas have used this strategy for over 600 Myr to form fruiting structures of increasing complexity. To understand in which order multicellular complexity evolved, we measured 24 phenotypic characters over 99 dictyostelid species. Using phylogenetic comparative methods, we show that the last common ancestor (LCA) of Dictyostelia probably erected small fruiting structures directly from aggregates. It secreted cAMP to coordinate fruiting body morphogenesis, and another compound to mediate aggregation. This phenotype persisted up to the LCAs of three of the four major groups of Dictyostelia. The group 4 LCA co-opted cAMP for aggregation and evolved much larger fruiting structures. However, it lost encystation, the survival strategy of solitary amoebas that is retained by many species in groups 1–3. Large structures, phototropism and a migrating intermediate ‘slug’ stage coevolved as evolutionary novelties within most groups. Overall, dictyostelids show considerable plasticity in the size and shape of multicellular structures, both within and between species. This probably reflects constraints placed by colonial life on developmental control mechanisms, which, depending on local cell density, need to direct from 10 to a million cells into forming a functional fructification. 相似文献
5.
We study genetic variation in phenotypic plasticity maintained by a balance between mutation and weak stabilizing selection. We consider linear reaction norms allowing for spatial and/or temporal variation in the environments of development and selection. We show that the overall genetic variation maintained does not depend on whether the trait is plastic or not. The genetic variances in height and slope of a linear reaction norm, and their covariance, are predicted to decrease with the variation in the environment. Non-pleiotropic loci influencing either height or slope are expected to decrease the genetic variance in slope relative to that in height. Decrease in the ratio of genetic variance in slope to genetic variance in height with increasing variation in the environment presents a test for the presence of loci that only influence the slope, and not the height. We use data on Drosophila to test the theory. In seven of eight pair-wise comparisons genetic variation in reaction norm is higher in a less variable environment than in a more variable environment, which is in accord with the model's predictions. 相似文献
6.
Individual quality, survival variation and patterns of phenotypic selection on body condition and timing of nesting in birds 总被引:3,自引:0,他引:3
Questions about individual variation in quality and fitness are of great interest to evolutionary and population ecologists. Such variation can be investigated using either a random effects approach or an approach that relies on identifying observable traits that are themselves correlated with fitness components. We used the latter approach with data from 1,925 individual females of three species of ducks (tufted duck, Aythya fuligula; common pochard, Aythya ferina; northern shoveler, Anas clypeata) sampled on their breeding grounds at Engure Marsh, Latvia, for over 15 years. Based on associations with reproductive output, we selected two traits, one morphological (relative body condition) and one behavioral (relative time of nesting), that can be used to characterize individual females over their lifetimes. We then asked whether these traits were related to annual survival probabilities of nesting females. We hypothesized quadratic, rather than monotonic, relationships based loosely on ideas about the likely action of stabilizing selection on these two traits. Parameters of these relationships were estimated directly using ultrastructural models embedded within capture-recapture-band-recovery models. Results provided evidence that both traits were related to survival in the hypothesized manner. For all three species, females that tended to nest earlier than the norm exhibited the highest survival rates, but very early nesters experienced reduced survival and late nesters showed even lower survival. For shovelers, females in average body condition showed the highest survival, with lower survival rates exhibited by both heavy and light birds. For common pochard and tufted duck, the highest survival rates were associated with birds of slightly above-average condition, with somewhat lower survival for very heavy birds and much lower survival for birds in relatively poor condition. Based on results from this study and previous work on reproduction, we conclude that nest initiation date and body condition covary with both reproductive and survival components of fitness. These associations lead to a positive covariance of these two fitness components within individuals and to the conclusion that these two traits are indeed correlates of individual quality. 相似文献
7.
Alan C. Love 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1540):679-690
Idealization is a reasoning strategy that biologists use to describe, model and explain that purposefully departs from features known to be present in nature. Similar to other strategies of scientific reasoning, idealization combines distinctive strengths alongside of latent weaknesses. The study of ontogeny in model organisms is usually executed by establishing a set of normal stages for embryonic development, which enables researchers in different laboratory contexts to have standardized comparisons of experimental results. Normal stages are a form of idealization because they intentionally ignore known variation in development, including variation associated with phenotypic plasticity (e.g. via strict control of environmental variables). This is a tension between the phenomenon of plasticity and the practice of staging that has consequences for evolutionary developmental investigation because variation is conceptually removed as a part of rendering model organisms experimentally tractable. Two compensatory tactics for mitigating these consequences are discussed: employing a diversity of model organisms and adopting alternative periodizations. 相似文献
8.
Understanding the role of history in the formation of communities has been a major challenge in community ecology. Here, we explore the role of phenotypic plasticity and its associated trait‐mediated indirect interactions as a mechanism behind priority effects. Using organisms with inducible defenses as a model system, we examine how aquatic communities initially containing different predator environments are affected at the individual and community level by the colonization of a second predator. Snails and tadpoles were established in four different caged‐predator environments (no predator, fish, crayfish or water bugs). These four communities were then crossed with three predator colonization treatments (no colonization, early colonization, or late colonization) using lethal water bugs as the predator. The snails responded to the caged predator environments with predator‐specific behavioral and morphological defenses. In the colonization treatments, snails possessing the wrong phenotype attempted to induce phenotypic changes to defend themselves against the new risk. However, snails initially induced by a different predator environment often suffered high predation rates. Hence, temporal variation in predation risk not only challenged the snail prey to try to track this environmental variation through time by adjusting their defensive phenotypes, but also caused trait‐mediated interactions between snails and the colonizing predator. For tadpoles within these communities, there was little evidence that the morphological responses of snails indirectly effected tadpole predation rates by colonizing water bugs. Unexpectedly, predation rates on tadpoles by colonizing water bugs were generally higher in the three caged‐predator treatments, suggesting that water bugs elevated their foraging activity in response to potentially competing predators. In summary, we demonstrate an important priority effect in which the initial occurrence of one species of predator can facilitate predation by a second predator that colonizes at a later date (i.e. a TMII) suggesting that phenotypic plasticity can be an important driver behind priority effects (i.e. historical exposure to predators). 相似文献
9.
1. Cannibalism has often been suggested as an important mechanism to reach the necessary developmental stage and size before a critical time horizon is reached, but this role has been largely unexplored. We studied effects of cannibalism on the life history of the damselfly Lestes viridis under combinations of a time constraint (by manipulating the perceived time available in the growth season) and a biotic constraint (density). 2. Larvae had a faster development and growth rate when reared at high time stress (late photoperiod). They also had a higher growth rate and mass at emergence when cannibalism occurred (density 2 and 4). Cannibalism occurred earlier at higher density. Accelerated life history responses (faster development and growth rate) and a higher mass at emergence were dependent upon the timing of cannibalism. Responses were more pronounced or only present if cannibalism occurred early in the larval period. 3. Our data suggest that cannibalism may not only act as a lifeboat mechanism by enabling cannibals to survive detrimental ecological conditions, but may also act as a compensatory mechanism to keep life history variables near‐optimal at life history transitions, even under sub‐optimal conditions. 相似文献
10.
11.
Josh Van Buskirk 《Oikos》2011,120(6):906-914
The distributions of many freshwater organisms correlate with a gradient in canopy cover, ranging from sunny wetlands to closed woodland ponds. Little is known about mechanisms that exclude species from some sections of the gradient while allowing persistence in others. I addressed this question by manipulating shading in 740‐l outdoor mesocosms and measuring several ecologically‐relevant traits in three species of amphibian larva (Rana temporaria and Triturus alpestris, generalists occupying the entire gradient; and Hyla arborea, a specialist in open habitats). Shading caused delayed development, but had no effect on survival and increased the growth rate of R. temporaria. Body and tail color were darker in the shade. Plasticity in morphological shape, consisting of reduced gut width and increased tail size under shaded conditions, may reflect poor food availability and low dissolved oxygen. The canopy generalist R. temporaria increased activity in the shade, spent more time basking in shallow water, and maintained high larval performance. Unexpectedly, the specialist H. arborea was also highly plastic. These results describe extensive phenotypic plasticity induced by shade, and highlight traits that may influence performance along the canopy gradient. 相似文献
12.
A. A. Winn 《Journal of evolutionary biology》1996,9(6):737-752
Variation among modules of a single genet could provide a means of adaptation to environmental heterogeneity. Two mechanisms that can give rise to such variation are programmed developmental change and phenotypic plasticity. I quantified the relative roles of these two mechanisms in causing within-individual variation in six leaf traits of an annual plant. Under controlled temperatures, morphological, anatomical, and physiological traits of leaves produced by the same individual differed as a function of both the node at which they were produced and the temperature they experienced during development. Temperature, node, and interactions between them all contributed significantly to the pattern of within-individual variation in leaf traits, although the relative contributions of programmed developmental change and phenotypic plasticity differed for different traits. I hypothesize that these two mechanisms for generating within-individual variation in module phenotype are favored by different patterns of environmental heterogeneity; when the sequence of environments encountered by modules of a single individual is predictable, programmed developmental change may be favored, and phenotypic plasticity may be favored when the sequence of environments is irregular with respect to individual ontogeny and therefore not predictable. 相似文献
13.
Costs and limits of phenotypic plasticity: Tests with predator-induced morphology and life history in a freshwater snail 总被引:1,自引:0,他引:1
T. J. DeWitt 《Journal of evolutionary biology》1998,11(4):465-480
Potential constraints on the evolution of phenotypic plasticity were tested using data from a previous study on predator-induced morphology and life history in the freshwater snail Physa heterostropha. The benefit of plasticity can be reduced if facultative development is associated with energetic costs, developmental instability, or an impaired developmental range. I examined plasticity in two traits for 29 families of P. heterostropha to see if it was associated with growth rate or fecundity, within-family phenotypic variance, or the potential to produce extreme phenotypes. Support was found for only one of the potential constraints. There was a strong negative selection gradient for growth rate associated with plasticity in shell shape (β = ?0.3, P < 0.0001). This result was attributed to a genetic correlation between morphological plasticity and an antipredator behavior that restricts feeding. Thus, reduced growth associated with morphological plasticity may have had unmeasured fitness benefits. The growth reduction, therefore, is equivocal as a cost of plasticity. Using different fitness components (e.g., survival, fecundity, growth) to seek constraints on plasticity will yield different results in selection gradient analyses. Procedural and conceptual issues related to tests for costs and limits of plasticity are discussed, such as whether constraints on plasticity will be evolutionarily ephemeral and difficult to detect in nature. 相似文献
14.
Genetic differences and phenotypic plasticity as causes of variation in oviposition preference in Battus philenor 总被引:2,自引:0,他引:2
Summary Bradshaw (1965) proposed that phenotypic plasticity would be more common than adaptive genetic variability in species for which environmental fluctuations occur over periods roughly equal to that species' generation time. In an effort to examine this notion, sources of seasonal variation in two components of oviposition behavior in an east Texas population of pipevine swallowtail butterflies (Battus philenor) were investigated under natural and seminatural conditions. Variability in a visually-based prealighting component involving orientation to leaf shape was primarily due to phenotypic plasticity in the form of adult learning; no seasonally-based genotypic differences in leaf-shape discrimination behavior were observed. By contrast, a chemotactile post-alighting component involving elicitation of oviposition after landing on the host plant was not phenotypically plastic, i.e., not susceptible to learning. In addition, only slight and nonsignificant seasonally-based differences in post-alighting responses to different host species were observed. 相似文献
15.
Journal of Ethology - Previous research on Cyrba algerina (Araneae, Salticidae) has shown this jumping spider expresses predatory specialisation with respect to spiders as prey as well as... 相似文献
16.
The consequences of warming for Antarctic long‐lived organisms depend on their ability to survive changing patterns of climate and environmental variation. Among birds and mammals of different Antarctic regions, including emperor penguins, snow petrels, southern fulmars, Antarctic fur seals and Weddell seals, we found strong support for selection of life history traits that reduce interannual variation in fitness. These species maximize fitness by keeping a low interannual variance in the survival of adults and in their propensity to breed annually, which are the vital rates that influence most the variability in population growth rate (λ). All these species have been able to buffer these rates against the effects of recent climate‐driven habitat changes except for Antarctic fur seals, in the Southwest Atlantic. In this region of the Southern Ocean, the rapid increase in ecosystem fluctuation, associated with increasing climate variability observed since 1990, has limited and rendered less predictable the main fur seal food supply, Antarctic krill. This has increased the fitness costs of breeding for females, causing significant short‐term changes in population structure through mortality and low breeding output. Changes occur now with a frequency higher than the mean female fur seal generation time, and therefore are likely to limit their adaptive response. Fur seals are more likely to rely on phenotypic plasticity to cope with short‐term changes in order to maximize individual fitness. With more frequent extreme climatic events driving more frequent ecosystem fluctuation, the repercussions for life histories in many Antarctic birds and mammals are likely to increase, particularly at regional scales. In species with less flexible life histories that are more constrained by fluctuation in their critical habitats, like sea‐ice, this may cause demographic changes, population compensation and changes in distribution, as already observed in penguin species living in the Antarctic Peninsula and adjacent islands. 相似文献
17.
Although theoretical models have identified environmental heterogeneity as a prerequisite for the evolution of adaptive plasticity, this relationship has not yet been demonstrated experimentally. Because of pool desiccation risk, adaptation of development rate is important for many amphibians. In a simulated pool-drying experiment, we compared the development time and phenotypic plasticity in development time of populations of the common frog Rana temporaria, originating from 14 neighbouring islands off the coast of northern Sweden. Drying regime of pools used by frogs for breeding differed within and among the islands. We found that the degree of phenotypic plasticity in development time was positively correlated with the spatial variation in the pool-drying regimes present on each island. In addition, local adaptation in development time to the mean drying rate of the pools on each island was found. Hence, our study demonstrates the connection between environmental heterogeneity and developmental plasticity at the island population level, and also highlights the importance of the interplay between local specialization and phenotypic plasticity depending on the local selection pressures. 相似文献
18.
Zhang Y 《Oecologia》2006,147(1):39-46
Organisms through phenotypic plasticity can cope with multiple changed environmental conditions. Theory predicts that animals
in streams and rivers should be able to balance demands of the needs to obtain food efficiently and to adjust response to
hydrodynamic variability. This study examined effects of variations in food availability and current velocity on the feeding
structure and growth rate of Simulium noelleri blackfly larvae. The larvae developed larger labral fans and more rays under slow current and low food regimes than in fast
current and high food conditions. In both fast and slow current regimes, growth rates were higher and development periods
to the final-instar stage were shorter in high food treatments. The estimated flux rates of food particles through labral
fans under high food treatments for both fast and slow current regimes were higher than those under low food treatments. Although
both food and current velocity appeared to have selected for flexibility of feeding structure and growth rate, food availability
was a more important factor for phenotypic and developmental plasticity than current velocity. The results indicate a strong
link between environmental changes in food availability and current velocity, phenotypic plasticity, and growth rate of S. noelleri. This study suggests that plasticity of ecomorphs with macroevolutionary significance may play a role in the early evolutionary
stages of blackfly larvae. 相似文献
19.
20.
Jiménez-Ambriz G Petit C Bourrié I Dubois S Olivieri I Ronce O 《The New phytologist》2007,173(1):199-215
* Here we explore life history differences in a set of neighbouring metallicolous and nonmetallicolous populations of the heavy metal tolerant plant Thlaspi caerulescens. * We contrasted data from field observations and from a common garden experiment, in which soil zinc (Zn) concentration and light availability were manipulated, and data on microsatellite molecular variation. * The two ecotypes showed few differences in life history in the field, but large differences in their response to Zn concentration in the common garden. Soil toxicity affected most characters in nonmetallicolous plants, while it had no effect on metallicolous plants. The two ecotypes responded similarly to light. Genetic differentiation for quantitative characters between ecotypes contrasted with the absence of differentiation for microsatellites. Conversely, populations of the same ecotype showed similar responses to Zn, despite their high differentiation for molecular markers. * We conclude that divergent selection related to soil toxicity has had a predominant role in shaping life history differences between ecotypes, gene flow weakly opposing local adaptation despite geographical proximity. 相似文献