首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chen L  Li G  Tang L  Wang J  Ge XR 《Cell research》2002,12(1):47-54
INTRODUCTIONLung cancer remains the leading cause of can-cer mortaIity in the world, accounting for more thanone sixth of cancer deaths in the world[1]. Antibod-ies have been proved to be a powerful tool fOr thestudy of 1ung cancer. A monoclonal IgM antibody,LC-1, was obtained in our laboratory. It can reactat a high rate with all four pathological types of lungcancers, including lung adenocarcinoma, 1ung squamous carcinoma, large cell lung cancer and smaIlcell lung cancert but not wit…  相似文献   

2.
Conjugates of a carbacephalosporin with hydroxamate, spermexatol, N,N-bis(2,3-dihydroxybenzoyl)-L-lysine, mixed catecholate/hydroxamate and cyanuric acid-based siderophores were investigated for their potential to promote growth of siderophore indicator strains of Gram-negative and Gram-positive bacteria under iron depleted conditions, for their antibacterial activity and for their ability to use iron transport path-ways to penetrate the Gram-negative bacterial outer membrane. The selective growth promotion of enter-obacterial and pseudomonas strains by hydroxamate, spermexatol and mixed catecholate-hydroxamate siderophore-based conjugates bearing a L- or D-amino acid spacer was correlated with TonB dependent uptake routes. The preferred outer membrane siderophore receptor used in Escherichia coli was found to be Fiu, followed by Cir. Antagonistic effects of siderophores administered with the conjugates to determine antibacterial activity confirmed the active transport of conjugates via siderophore receptors. All of the conjugates were still able to diffuse through the porin proteins OmpC and OmpF. Nevertheless, strong inhibition of E. coli and Pseudomones aeruginosa outer membrane mutants DC2 and K799/61 compared to the parent strains indicated inefficient penetrability of all types of conjugates tested. Mycobacterium smegmatis SG 987 was able to use all of the siderophore-cephalosporin conjugates as growth promotors. Consequently there was no growth inhibition of this strain. © Rapid Science 1998.  相似文献   

3.
4.
The GG2EE macrophage tumor cell line was previously established by immortalization of C3H/HeJ mouse bone marrow cells with the J2 retrovirus which contains the v-myc and v-raf oncogenes. Studies on the control of GGZEE cell proliferationin vitro have recently been performed. We observed that the combination of 5–25 U/ml recombinant mouse interferon- (rmIFN-) plus 0.03 – 0.3 µg/ml lipopolysaccharide (LPS) markedly inhibited the proliferation of GG2EE cells (by >95%)in vitro, while either agent alone inhibited only by <40% and 0–10%, respectively. Subsequent studies established that biologically active ILI-like (2–4 U/ml) and TNF-like (50–100 U/ml) activities were released into the supernatants of LPS-treated GG2EE cells. The combination of IFN- + LPS induced more (6–8 U/ml) ILI release. These results suggested that the inhibition of proliferation of GG2EE cells by IFN- + LPS could have been mediated in part by cytokines produced by the cells themselves. rhIL1 at a concentration of 10 U/ml inhibited GG2EE proliferation by 25–30%, while rmIFN- (25 U/ml) + rhIL1 (10 U/ml) inhibited proliferation by 98%. Thus, 10 U/ml rhIL1 could completely replace LPS in the LPS + rmIFN- combination. Further, the combination of low doses of rhIL1 (0.1 to 1 U/ml) plus rmTNF (250 U/ml), which together inhibited proliferation by <20% synergized with doses of 5 to 25 U/ml rmIFN- to inhibit proliferation of GG2EE cells by 98–99%. These results suggest that cytokines produced by the cells themselves can synergize with rmIFN- to inhibit the oncogene-driven proliferation of GG2EE cells.  相似文献   

5.
BackgroundProgrammed cell death-ligand 1 (PD-L1) is overexpressed in tumor cells, which causes tumor cells to escape T cell killing, and promotes tumor cell survival, cell proliferation, migration, invasion, and angiogenesis. Britannin is a natural product with anticancer pharmacological effects.PurposeIn this work, we studied the anticancer potential of britannin and explored whether britannin mediated its effect by inhibiting the expression of PD-L1 in tumor cells.MethodsIn vitro, the mechanisms underlying the inhibition of PD-L1 expression by britannin were investigated by MTT assay, homology modeling and molecular docking, RT-PCR, western blotting, co-immunoprecipitation, and immunofluorescence. The changes in tumor killing activity, cell proliferation, cell cycle, migration, invasion, and angiogenesis were analyzed by T cell killing assays, EdU labeling, colony formation, flow cytometry, wound healing, matrigel transwell invasion, and tube formation, respectively. In vivo, the antitumor activity of britannin was evaluated in the HCT116 cell xenograft model.ResultsBritannin reduced the expression of PD-L1 in tumor cells by inhibiting the synthesis of the PD-L1 protein but did not affect the degradation of the PD-L1 protein. Britannin also inhibited HIF-1α expression through the mTOR/P70S6K/4EBP1 pathway and Myc activation through the Ras/RAF/MEK/ERK pathway. Mechanistically, britannin inhibited the expression of PD-L1 by blocking the interaction between HIF-1α and Myc. In addition, britannin could enhance the activity of cytotoxic T lymphocytes and inhibit tumor cell proliferation and angiogenesis by inhibiting PD-L1. Finally, in vivo observations were confirmed by demonstrating the antitumor activity of britannin in a murine xenograft model.ConclusionBritannin inhibits the expression of PD-L1 by blocking the interaction between HIF-1α and Myc. Moreover, britannin stabilizes T cell activity and inhibits proliferation and angiogenesis by inhibiting PD-L1 in cancer. The current work highlights the anti-tumor effect of britannin, providing insights into the development of cancer therapeutics via PD-L1 inhibition.  相似文献   

6.
7.
Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.  相似文献   

8.
《Cytotherapy》2022,24(7):699-710
Pancreatic cancer is a highly lethal cancer characterized by local invasiveness, early metastasis, recurrence and high resistance to current therapies. Extensive stroma or desmoplasia is a key histological feature of the disease, and interactions between cancer and stromal cells are critical for pancreatic cancer development and progression. Mesenchymal stromal cells [MSCs] exhibit preferential tropism to primary and metastatic tumor sites and may either suppress or support tumor growth. Although MSCs represent a potential source of pancreatic cancer stroma, their contribution to pancreatic tumor growth remains poorly known. Here, we show that bone marrow MSCs significantly contribute to pancreatic cancer growth in vitro and in vivo. Furthermore, MSCs create a pro-carcinogenic microenvironment through the release of key factors mediating growth and angiogenesis, including interleukin (IL)-6, IL-8, vascular endothelial growth factor and activation of STAT3 signaling in tumor cells. IL-6 released by MSCs was largely responsible for the pro-tumorigenic effects of MSCs. Knockdown of IL-6 expression in MSCs by small interfering RNA (siRNA) abolished the MSC growth-promoting effect in vitro, reducing tumor cell proliferation and clonogenic potential. In addition, in a heterotopic nude mouse model of human pancreatic tumor xenografts, blockade of IL-6 with the anti-IL-6 receptor antibody, tocilizumab, or of its downstream effector STAT3 with the small molecule STAT3 inhibitor S3I-201, abrogated MSC-mediated tumor promotion and delayed tumor formation significantly. Our data demonstrate that MSCs promote pancreatic cancer growth, with IL-6 produced by MSCs playing a pivotal role.  相似文献   

9.
10.
In the present study, we report the effect and molecular mechanism of Ligularia fischeri (LF) on proliferation and migration in human lung cancer cells. LF-mediated inhibition of cell proliferation in p53 wild-type A549 and p53-deficient H1299 cells is accompanied by reduced expression of cell cycle-related proteins such as cyclin-dependent kinases and cyclins, resulting in pRb hypophosphorylation and G1 phase cell cycle arrest. In contrast, LF inhibits cell migration in A549 cells, but not in H1299 cells. These regulatory effects of LF on cell proliferation and migration are associated with inactivation of mitogenic signaling pathways such as ERK, Akt and p70S6K, and down-regulation of epidermal growth factor receptor and integrin β1 expression. Collectively, these findings suggest further development and evaluation of LF for the prevention and treatment of lung cancer with mutated p53 as well as wild-type p53.  相似文献   

11.

Background  

Cancer and Alzheimer's disease (AD) are two seemingly distinct diseases and rarely occur simultaneously in patients. To explore molecular determinants differentiating pathogenic routes towards AD or cancer, we investigate the role of amyloid β protein (Aβ) on multiple tumor cell lines that are stably expressing luciferase (human glioblastoma U87; human breast adenocarcinoma MDA-MB231; and mouse melanoma B16F).  相似文献   

12.
Effective drug discovery and optimization can be accelerated by techniques capable of deconvoluting the complexities often present in targeted biological systems. We report a single-molecule approach to study the binding of an alternative splicing regulator, muscleblind-like 1 protein (MBNL1), to (CUG)n = 4,6 and the effect of small molecules on this interaction. Expanded CUG repeats (CUGexp) are the causative agent of myotonic dystrophy type 1 by sequestering MBNL1. MBNL1 is able to bind to the (CUG)n–inhibitor complex, indicating that the inhibition is not a straightforward competitive process. A simple ligand, highly selective for CUGexp, was used to design a new dimeric ligand that binds to (CUG)n almost 50-fold more tightly and is more effective in destabilizing MBNL1–(CUG)4. The single-molecule method and the analysis framework might be extended to the study of other biomolecular interactions.  相似文献   

13.
6-(p-n-Butylanilino)uracil and N2-(p-butylphenyl)guanine inhibited the activity of DNA polymerase α from calf thymus but had no effect on other eukaryotic polymerases (DNA polymerases β and γ) or Escherichia coli DNA polymerase I. Inhibition was competitive with deoxyguanosine 5′-triphosphate and did not occur in the reaction of DNA polymerase α with a template that did not contain cytosine residues. The results support a mechanism which involves hydrogen bonding of inhibitors with cytosines in the DNA template and binding with an inhibitor specific site on the enzyme. A screen of inhibitor effects on normal and cancer cell growth in culture showed that cells were not uniformly sensitive to these compounds, a mouse lymphoma line being least sensitive and a human lung cancer line being most sensitive. It is suggested that these inhibitors may be useful to probe possible structural differences among DNA polymerases α.  相似文献   

14.
15.
To establish a system to study differentiation therapy drugs, we used the androgen-independent human prostate PC-3 tumor cell line as a target and α- and γ-tocopherol as inducers. Effects of α- and γ-tocopherol on the cell cycle, proliferation and differentiation, were examined. A more significant growth inhibition activity for γ- than for α-tocopherol was observed. Flow cytometry analysis of α- and γ-tocopherol-treated prostate carcinoma PC3 cells showed decreased progression into the S-phase. This effect, particularly evident for γ-tocopherol, was associated with an up-regulation and increased activity of transglutaminase 2 (TG2), a reduced DNA synthesis and a remarkable decreased levels of cyclin D1 and cyclin E. Activation of TG2 suggests that γ-tocopherol has an evident differentiative capacity on PC3 cells, leading to an increased expression of TG2, and reduced cyclin D1 and cyclin E levels, affecting cell cycle progression. It is feasible that up-regulation and activation of TG2, associated with a reduced proliferation, are parts of a large-scale reprogramming that can attenuate the malignant phenotype of PC3 cells in vitro. These data suggest further investigation on the potential use of this γ-form of vitamin E as a differentiative agent, in combination with the common cytotoxic treatments for prostate cancer therapy.  相似文献   

16.
Increased levels of endogenous and/or exogenous estrogens are one of the well known risk factors of endometrial cancer. Diacylglycerol kinases (DGKs) are a family of enzymes which phosphorylate diacylglycerol (DAG) to produce phosphatidic acid (PA), thus turning off and on DAG-mediated and PA-mediated signaling pathways, respectively. DGK α activity is stimulated by growth factors and oncogenes and is required for chemotactic, proliferative, and angiogenic signaling in vitro. Herein, using either specific siRNAs or the pharmacological inhibitor R59949, we demonstrate that DGK α activity is required for 17-β-estradiol (E2)-induced proliferation, motility, and anchorage-independent growth of Hec-1A endometrial cancer cell line. Impairment of DGK α activity also influences basal cell proliferation and growth in soft agar of Hec-1A, while it has no effects on basal cell motility. Moreover, we show that DGK α activity induced by E2, as well as its observed effects, are mediated by the G protein-coupled estrogen receptor GPR30 (GPER). These findings suggest that DGK α may be a potential target in endometrial cancer therapy.  相似文献   

17.
Angioplasty causes local vascular injury, leading to the release of thrombospondin-1 (TSP-1), which stimulates vascular smooth muscle cell (VSMC) migration and proliferation, important steps in the development of intimal hyperplasia. Transforming growth factor beta 2 (TGF-β2) and hyaluronic acid synthase (HAS) are two pro-stenotic genes upregulated in VSMCs by TSP-1. We hypothesized that inhibition of TGF-β2 or HAS would inhibit TSP-1-induced VSMC migration, proliferation, and TSP-1 signaling. Our data demonstrate that Inhibition of either TGF-β2 or HAS inhibited TSP-1-induced VSMC migration and proliferation. Activation of ERK 1 was decreased by TGF-β2 inhibition and unaffected by HAS inhibition. TGF-β2 and HAS are not implicated in TSP-1-induced thbs1 expression, while they are each implicated in TSP-1-induced expression of their own gene. In summary, TSP-1-induced VSMC migration and proliferation rely on intact TGF-β2 signaling and HAS function. TSP-1 activation of ERK 1 is dependent on TGF-β2. These data further expand our understanding of the complexity of TSP-1 cellular signaling and the involvement of TGF-β2 and HAS.  相似文献   

18.
The aims of the current study were to examine the signaling mechanisms for transforming growth factor-β1 (TGF-β1)-induced rat airway smooth muscle cell (ASMC) proliferation and to determine the effect of activation of peroxisome proliferation–activated receptor-γ (PPAR-γ) on TGF-β1-induced rat ASMC proliferation and its underlying mechanisms. TGF-β1 upregulated microRNA 21 (miR-21) expression by activating Smad2/3, and this in turn downregulated forkhead box O1 (FOXO1) mRNA expression. In addition, TGF-β1–Smad–miR-21 signaling also downregulated phosphatase and tensin homolog deleted on chromosome ten (PTEN) expression and thus de-repressed the PI3K–Akt pathway. Depletion of PTEN reduced the nuclear FOXO1 protein level without affecting its mRNA level. Inhibition of the PI3K–Akt pathway or proteasome function reversed PTEN knockdown-induced nuclear FOXO1 protein reduction. Our study further showed that loss of FOXO1 increased cyclin D1 expression, leading to rat ASMC proliferation. Preincubation of rat ASMCs with pioglitazone, a PPAR-γ activator, blocked TGF-β1-induced activation of Smad2/3 and its downstream targets changes of miR-21, PTEN, Akt, FOXO1, and cyclin D1, resulting in the inhibition of rat ASMC proliferation. Our study suggests that the activation of PPAR-γ inhibits rat ASMC proliferation by suppressing Smad–miR-21 signaling and therefore has a potential value in the prevention and treatment of asthma by negatively modulating airway remodeling.  相似文献   

19.
20.
Docetaxel is one of the most commonly used drugs in prostate cancer (PCa) chemotherapy, but its therapeutic effect in PCa is usually limited due to its drug resistance. APOBEC3B is a DNA cytosine deaminase that can alter biological processes, including chemoresistance. APOBEC3B is upregulated in various cancers. However, the biological function and underlying regulation of APOBEC3B in PCa remain unclear. In this study, we explored the role of APOBEC3B in PCa chemoresistance and the molecular mechanism of its dysregulated expression. Our results revealed that APOBEC3B was upregulated in PCa docetaxel-resistant cells, while its knockdown significantly repressed cell proliferation and docetaxel resistance of PCa cells. Bioinformatics and luciferase report analysis showed that miR-138–5p targeted APOBEC3B. In addition, miR-138–5p overexpression impeded cell proliferation and docetaxel resistance in PCa, while miR-138–5p inhibitors reversed this process. Further studies showed that upregulation of APOBEC3B expression in docetaxel-resistant cells overexpressing miR-138–5p could desensitize PCa cells to docetaxel treatment. Taken together, miR-138–5p regulates PCa cell proliferation and chemoresistance by targeting the 3′-UTR of APOBEC3B, which may provide novel insights and therapeutic targets for the treatment of PCa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号