首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside monophosphate (AICAR) is a natural metabolite with potent anti-proliferative and low energy mimetic properties. At high concentration, AICAR is toxic for yeast and mammalian cells, but the molecular basis of this toxicity is poorly understood. Here, we report the identification of yeast purine salvage pathway mutants that are synthetically lethal with AICAR accumulation. Genetic suppression revealed that this synthetic lethality is in part due to low expression of adenine phosphoribosyl transferase under high AICAR conditions. In addition, metabolite profiling points to the AICAR/NTP balance as crucial for optimal utilization of glucose as a carbon source. Indeed, we found that AICAR toxicity in yeast and human cells is alleviated when glucose is replaced by an alternative carbon source. Together, our metabolic analyses unveil the AICAR/NTP balance as a major factor of AICAR antiproliferative effects.  相似文献   

2.
5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAr) is the precursor of the active monophosphate form (AICAR), a small molecule with potent anti-proliferative and low energy mimetic properties. The molecular bases for AICAR toxicity at the cellular level are poorly understood. Here, we report the isolation and characterization of several yeast AICAr-hypersensitive mutants. Identification of the cognate genes allowed us to establish that thiamine transporters Thi7 and Thi72 can efficiently take up AICAr under conditions where they are overexpressed. We establish that, under standard growth conditions, Nrt1, the nicotinamide riboside carrier, is the major AICAr transporter in yeast. A study of AICAR accumulation in human cells revealed substantial disparities among cell lines and confirmed that AICAr enters cells via purine nucleoside transporters. Together, our results point to significant differences between yeast and human cells for both AICAr uptake and AICAR accumulation.  相似文献   

3.
Metabolic stress, as well as several antidiabetic agents, increases hepatic nucleotide monophosphate (NMP) levels, activates AMP-activated protein kinase (AMPK), and suppresses glucose production. We tested the necessity of hepatic AMPK for the in vivo effects of an acute elevation in NMP on metabolism. 5-Aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR; 8 mg·kg−1·min−1)-euglycemic clamps were performed to elicit an increase in NMP in wild type (α1α2lox/lox) and liver-specific AMPK knock-out mice (α1α2lox/lox + Albcre) in the presence of fixed glucose. Glucose kinetics were equivalent in 5-h fasted α1α2lox/lox and α1α2lox/lox + Albcre mice. AMPK was not required for AICAR-mediated suppression of glucose production and increased glucose disappearance. These results demonstrate that AMPK is unnecessary for normal 5-h fasting glucose kinetics and AICAR-mediated inhibition of glucose production. Moreover, plasma fatty acids and triglycerides also decreased independently of hepatic AMPK during AICAR administration. Although the glucoregulatory effects of AICAR were shown to be independent of AMPK, these studies provide in vivo support for the AMPK energy sensor paradigm. AICAR reduced hepatic energy charge by ∼20% in α1α2lox/lox, which was exacerbated by ∼2-fold in α1α2lox/lox + Albcre. This corresponded to a ∼6-fold rise in AMP/ATP in α1α2lox/lox + Albcre. Consistent with the effects on adenine nucleotides, maximal mitochondrial respiration was ∼30% lower in α1α2lox/lox + Albcre than α1α2lox/lox livers. Mitochondrial oxidative phosphorylation efficiency was reduced by 25%. In summary, these results demonstrate that the NMP capacity to inhibit glucose production in vivo is independent of liver AMPK. In contrast, AMPK promotes mitochondrial function and protects against a more precipitous fall in ATP during AICAR administration.  相似文献   

4.
5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a phylogenetically conserved serine/threonine protein kinase. AMPK may inhibit cell growth and proliferation and also regulates apoptosis. 5′-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) is a cell-permeable AMPK activator. Activation of AMPK with AICAR has been shown to induce apoptosis of the rat hepatoma cell line FTO2B cells and almost completely inhibited HepG2 cells growth. In this study, a HepG2 cell line, which was transfected with a vector containing human CYP2E1 cDNA (E47 cells), was treated with AICAR. Cell proliferation was blocked, and apoptosis and necrosis were elevated as assessed by cellular morphology, DNA content assay, and lactate dehydrogenase leakage. AICAR treatment significantly increases CYP2E1 activity (20-fold) and expression (5.5-fold) in E47 cells. Iodotubericidin, which inhibits the conversion of AICAR to its activated form AICAR monophosphate, the antioxidants trolox and MnTMPyP, and 4-methylpyrazole, an inhibitor of CYP2E1, all can protect the E47 cells from AICAR-induced necrosis. Production of intracellular reactive oxygen species was increased by AICAR treatment in E47 cells. The cytotoxicity mechanism of AICAR in E47 cells is suggested to include AMPK activation, p53 phosphorylation, p21 expression, overexpression of CYP2E1, and intracellular ROS accumulation.  相似文献   

5.
Adenosine monophosphate-activated protein (AMP)-activated kinase (AMPK) is a highly conserved kinase that plays a key role in energy homeostasis. Activation of AMPK was shown to reduce inflammation in response to lipolysaccharide in vitro and in vivo. 5-Aminoimidazole-4-carbox-amide-1-β-d-ribofuranoside (AICAR) is intracellularly converted to the AMP analog ZMP, which activates AMPK. Lipoteichoic acid (LTA) is a major component of the cell wall of Gram-positive bacteria that can trigger inflammatory responses. In contrast to lipopolysaccharide, little is known on the effects of AMPK activation in LTA-triggered innate immune responses. Here, we studied the potency of AMPK activation to reduce LTA-induced inflammation in vitro and in lungs in vivo. Activation of AMPK in vitro reduced cytokine production in the alveolar macrophage cell line MH-S. In vivo, AMPK activation reduced LTA-induced neutrophil influx, as well as protein leak and cytokine/chemokine levels in the bronchoalveolar space. In conclusion, AMPK activation inhibits LTA-induced lung inflammation in mice.  相似文献   

6.
ABSTRACT

Previous studies demonstrated that human endothelial cells were capable to phosphorylate 4-pyridone-3-carboxamide-1β-D-ribonucleoside (4PYR) to monophosphate (4PYMP) and formed another metabolite—an analog of NAD (4PYRAD). Elevated levels of 4PYMP and 4PYRAD had an adverse effect on energy balance—depressed adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NAD) concentration in human endothelial cells. Ecto-enzymes such as ecto-nucleoside triphosphate diphosphohydrolase (eNTPD); ecto-5′-nucleotidase (e5’NT); and ecto-adenosine deaminase (eADA) are involved in controlling of inflammation and platelet aggregation. This study aimed to evaluate influence of 4PYR and its metabolites on activities of extracellular enzymes in human endothelial cells. Endothelial cells (endothelial cell line HMEC-1) were treated with 100 uM 4PYR for 0, 24, 48, or 72 hours. After incubation, intact HMEC-1 cells were incubated with suitable substrate. Simultaneously, in another path of experiments intracellular concentration of 4PYMP and 4PYRAD had been analyzed. Conversion of extracellular nucleotides into their products and intracellular concentration of 4PYMP and 4PYRAD were measured by high performance liquid chromatography (HPLC). We demonstrated that eNTPD and e5’NT activities increase after 72 hours of cell treatment with 4PYR as compared to control (0.40 ± 0.02 versus 0.29 ± 0.02 nmol/min/mg protein; 13.3 ± 0.6 versus 8.30 ± 0.34 nmol/min/mg protein, respectively, mean ± SEM). eADA activity decreases after 24 hours of cells treatment with 4PYR as compared to control (1.55 ± 0.06 versus 1.92 ± 0.13 nmol/min/mg protein, respectively, mean ± SEM). 4PYR and its derivatives have positive effect on ecto-enzymes related with ATP degradation pathway. We conclude that these increases in extracellular enzyme activities are an adaptive response to decreased intracellular ATP and NAD arising from 4PYR uptake. These changes may protect the cells from the inflammatory result of external ATP degradation.  相似文献   

7.
Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Integrins are the major adhesive molecules in mammalian cells and have been associated with metastasis of cancer cells. Insulin-like growth factor-I (IGF)-I plays an important role in regulating cell growth, proliferation, survival, and metabolism. However, the effects of IGF-I in migration and integrin expression in chondrosarcoma cells are largely unknown. In this study, we found that IGF-I increased the migration and the expression of α5β1 integrin in human chondrosarcoma cells. Pretreatment of cells with IGF-I receptor antibody reduced IGF-I-induced cell migration and integrin expression. Activations of phosphatidylinositol 3-kinase (PI3K), Akt, and nuclear factor-κB (NF-κB) pathways after IGF-I treatment were demonstrated, and IGF-I-induced expression of integrin and migration activity was inhibited by the specific inhibitor and mutant of PI3K, Akt, and NF-κB cascades. Taken together, our results indicated that IGF-I enhances the migration of chondrosarcoma cells by increasing α5β1 integrin expression through the IGF-I receptor/PI3K/Akt/NF-κB signal transduction pathway.  相似文献   

8.
Abstract

4-pyridone-3-carboxamide-1β-D-ribonucleoside (4PYR) is a derivative of nicotinamide found physiologically in human body fluids that can be metabolized to mono-, di- or triphosphate derivatives (4PYMP, 4PYDP and 4PYTP respectively) and an analogue of NAD - the 1-β-D-ribonucleoside-4-pyridone-3-carboxamide adenine dinucleotide (4PYRAD) in human cells. The European Uremic Toxin Work Group (EUTox) has classified 4PYR as a uremic toxin that adversely affects endothelium.

This study aimed to investigate the metabolism of 4PYR in murine brain microvascular endothelial cells (mBMECs). Incubation of mBMECs with 4PYR was carried out for 0, 24, 48 or 72?h. After incubation, a medium was removed and cellular concentrations of ATP, ADP, NAD, 4PYMP and 4PYRAD were analyzed using reversed-phase HPLC.

4PYR was metabolized by mBMECs to 4PYMP and 4PYRAD that reached concentrations of 2?±?0.7 and 0.6?±?0.2?nmol/mg protein (mean?±?SEM), respectively, after 72?h incubation. However, unlike with endothelial cells studied so far this process has no effect on energy balance in the cell as indicated by maintained ATP/ADP ratio and adenine and nicotinamide intracellular pools. Further studies are required to explain whether the difference in 4PYR metabolism is related to differences between species or organs.  相似文献   

9.
Abstract

4-pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR) is a new nicotinamide derivative, which is potentially toxic to the endothelium. Dysfunction of the endothelium promotes cancer cell proliferation, invasiveness, and inflammatory signaling. The aim of this study was to analyze 4PYR concentration in the plasma of lung cancer patients and its relationship to other known biochemical parameters associated with the endothelium function.

The concentration of 4PYR, nicotinamide, 1-methylnicotinamide (MNA), amino acids, and their derivatives were measured in samples obtained from patients with primary squamous cell carcinoma (n?=?48) and control group (n?=?100).

The concentration of 4PYR and 4PYR/MNA ratio were significantly higher in lung cancer patients as compared to controls (0.099?±?0.009 vs. 0.066?±?0.006?µmol/L and 1.10?±?0.08 vs. 1.97?±?0.15, respectively). The plasma arginine/asymmetric dimethylarginine (Arg/ADMA) ratio was considerably lower in lung cancer patients (253?±?17 vs. 369?±?19) as well as plasma MNA (0.057?±?0.004 vs. 0.069?±?0.003?µmol/L). There was no difference in the plasma concentrations of nicotinamide and nicotinamide riboside in both groups (0.116?±?0.019 vs. 0.131?±?0.014 and 0.102?±?0.006 vs. 0.113?±?0.011, respectively).

In this study, a higher 4PYR concentration was observed for the first time in patients with squamous cell carcinoma. This change may be related to the endothelial dysfunction that promote cancer progression since 4PYR and its derivatives are known to disrupt glycolytic pathway.  相似文献   

10.
11.
In recent years many risk factors for the development of breast cancer that are linked to estrogens have been identified, and roscovitine (ROSC), a selective cyclin-dependent kinase (CDK) inhibitor, has been shown to be an efficient inhibitor of the proliferation of human breast cancer cells. Therefore, we have examined the possibility that interference with estrogen signaling pathways, using tamoxifen (TAM), a selective estrogen receptor modulator (SERM), could modulate the efficacy of treatment with ROSC. In conjunction with TAM, ROSC exhibited enhanced anti-proliferative activity and CDK inhibition, particularly in estrogen-dependent MCF-7 cells. The interaction between both drugs was synergistic. However, in ER-α-negative cells the interaction was antagonistic. Exposure of MCF-7 cells to ROSC abolished the activating phosphorylation of CDK2 and CDK7 at Ser(164/170). This in turn prevented the phosphorylation of the carboxyl-terminal repeat domain of RNA Polymerase II and ER-α at Ser(118), resulting in the down-regulation of the latter. Concomitantly, wt p53 was strongly activated by phosphorylation at Ser(46). Our results demonstrate that ROSC negatively affects the functional status of ER-α, making it potentially useful in the treatment of estrogen-dependent breast cancer cells.  相似文献   

12.
Ovarian carcinoma is a common gynecological malignancy and a great threat to health as a result of metastasis. The chemokine stromal-derived factor (SDF-1) plays multiple roles in tumor pathogenesis. However, the precise molecular mechanism underlying SDF-1-induced ovarian cancer cell invasion is still undefined. αvβ6 integrin is an important factor in tumor progression. Therefore, we speculate that SDF-1-enhanced ovarian cancer cell invasion is related to αvβ6 integrin-mediated signaling. After culturing with SDF-1, an obvious time- and dose-dependent increase in αvβ6 integrin was demonstrated. Furthermore, CXC receptor 4 (CXCR4) was responsible for SDF-1-induced αvβ6 integrin expression. Simultaneously, SDF-1 was found to dramatically enhance extracellular matrix degradation via urokinase-type plasminogen activator (uPA) expression and cell invasion by αvβ6 integrin expression; these reinforce failed to be increased when pretreatment was performed with the CXCR4 inhibitor AMD3100 or anti-αvβ6 integrin antibody, respectively. In addition, αvβ6 integrin induced the phosphorylation of p38 MAPK and PI3 K/Akt, contributing to the up-regulation of uPA, as treatment with the specific inhibitor for p38 mitogen-activated protein kinases (MAPK) (SB203580) or phosphatidylinositol 3-kinase (PI3 K)/Akt (LY294002) strikingly abrogated uPA expression. Taken together, these results demonstrated that SDF-1 enhanced ovarian cancer cell invasion through αvβ6 integrin-mediated uPA expression via the p38 MAPK and PI3 K/Akt pathway. Consequently, our findings will provide a new explanation about how SDF-1 aggravates the pathogenesis of ovarian cancer.  相似文献   

13.
14.
Our previous studies identified 4-pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR) phosphates in human erythrocytes. We demonstrated formation of these nucleotides by phosphorylation of 4PYR and potential toxicity due to disruption of erythrocyte energy balance. This study aimed to evaluate the ability of the other cell types to phosphorylate 4PYR to characterize function and toxicity of these compounds. Homogenates of rat heart, kidneys, and liver were used to study the rate of 4PYR phosphorylation in the presence of ATP. In another experiment, 4PYR was administered into mouse as repeated subcutaneous injections and into rats as intraperitoneal infusion. After 7 days, heart, liver, kidney, lungs, and skeletal muscle were collected, and the concentration of 4PYR nucleotides was evaluated. HPLC was used to measure 4PYR and 4PYR nucleotides in homogenate and specimens from in vivo experiments. 4PYR was rapidly phosphorylated by the liver homogenate (390 ± 27 nmol/min/g wet wt). Significant rates were reported in the heart and kidneys' homogenates: 34.3 ± 4.3 nmol/min/g and 33.2 ± 9.2 nmol/min/g, respectively. Phosphorylation of 4PYR was almost completely inhibited by adenosine kinase inhibitor 5'-iodotubercidin. Administration of 4PYR in vivo resulted in accumulation of 4PYR monophosphate in the liver, heart, skeletal muscle, and lung (20-220 nmol/g dry wt) except kidney (<1 nmol/g). In contrast to erythrocytes, no 4PYR triphosphate formation (<1 nmol/g) was observed in any of the organs studied. We conclude that not only the erythrocytes but also other cell types are capable of phosphorylating 4PYR to form 4PYR monophosphate. Potential toxicity or physiological role of 4PYR in peripheral organs could be considered, but mechanisms will be different from that in erythrocytes.  相似文献   

15.
16.
17.
Abstract

The preparation of several acylated derivatives of AICA riboside (1) and their deprotection with hydroxylaminium acetate were investigated. A facile route for the preparation of isomerically pure 2′, 5′- and 3′, 5′-dibenzoates of 1 is described.  相似文献   

18.
ABSTRACT

Methyl-β-cyclodextrin (MβCD) is an effective agent for the removal of plasma membrane cholesterol. In this study, we investigated the modulating effects of MβCD on the antiproliferation induced by benzyl isothiocyanate (BITC), an ITC compound mainly derived from papaya seeds. We confirmed that MβCD dose-dependently increased the cholesterol level in the medium, possibly through its removal from the plasma membrane of human colorectal cancer cells. The pretreatment with a non-toxic concentration (2.5 mM) of MβCD significantly enhanced the BITC-induced cytotoxicity and apoptosis induction, which was counteracted by the cholesterol supplementation. Although BITC activated the phosphoinositide 3-kinase (PI3K)/Akt pathway, MβCD dose-dependently inhibited the phosphorylation level of Akt. On the contrary, the treatment of MβCD enhanced the phosphorylation of mitogen activated protein kinases, but did not potentiate their BITC-induced phosphorylation. These results suggested that MβCD might potentiate the BITC-induced anti-cancer by cholesterol depletion and thus inhibition of the PI3K/Akt-dependent survival pathway.

Abbreviations: CDs: cyclodextrins; MβCD: methyl-β-cyclodextrin; ITCs: isothiocyanates; BITC: benzyl isothiocyanate; PI3K: phosphoinositide 3-kinase; PDK1: phosphoinositide-dependent kinase-1; MAPK: mitogen activated protein kinase; ERK1/2: extracellular signal-regulated kinase1/2; JNK: c-Jun N-terminal kinase; PI: propidium iodide; FBS: fatal bovine serum; TLC: thin-layer chromatography; PBS(-): phosphate-buffered saline without calcium and magnesium; MEK: MAPK/ERK kinase; PIP2: phosphatidylinositol-4,5-bisphosphate; PIP3: phosphatidylinositol-3,4,5-trisphosphate  相似文献   

19.
Human liver glycogen phosphorylase (hlGP), a key enzyme in glycogen metabolism, is a valid pharmaceutical target for the development of new anti-hyperglycaemic agents for type 2 diabetes. Inhibitor discovery studies have focused on the active site and in particular on glucopyranose based compounds with a β-1 substituent long enough to exploit interactions with a cavity adjacent to the active site, termed the β-pocket. Recently, C-β-d-glucopyranosyl imidazoles and 1, 2, 4-triazoles proved to be the best known glucose derived inhibitors of hlGP. Here we probe the β-pocket by studying the inhibitory effect of six different groups at the para position of 3-(β-d-glucopyranosyl phenyl)-5-phenyl-, 1, 2, 4-triazoles in hlGP by kinetics and X-ray crystallography. The most bioactive compound was the one with an amine substituent to show a Ki value of 0.43 μM. Structural studies have revealed the physicochemical diversity of the β-pocket providing information for future rational inhibitor design studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号