首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At fast-transmitting presynaptic terminals Ca2+ enter through voltage gated calcium channels (CaVs) and bind to a synaptic vesicle (SV) -associated calcium sensor (SV-sensor) to gate fusion and discharge. An open CaV generates a high-concentration plume, or nanodomain of Ca2+ that dissipates precipitously with distance from the pore. At most fast synapses, such as the frog neuromuscular junction (NMJ), the SV sensors are located sufficiently close to individual CaVs to be gated by single nanodomains. However, at others, such as the mature rodent calyx of Held (calyx of Held), the physiology is more complex with evidence that CaVs that are both close and distant from the SV sensor and it is argued that release is gated primarily by the overlapping Ca2+ nanodomains from many CaVs. We devised a 'graphic modeling' method to sum Ca2+ from individual CaVs located at varying distances from the SV-sensor to determine the SV release probability and also the fraction of that probability that can be attributed to single domain gating. This method was applied first to simplified, low and high CaV density model release sites and then to published data on the contrasting frog NMJ and the rodent calyx of Held native synapses. We report 3 main predictions: the SV-sensor is positioned very close to the point at which the SV fuses with the membrane; single domain-release gating predominates even at synapses where the SV abuts a large cluster of CaVs, and even relatively remote CaVs can contribute significantly to single domain-based gating.  相似文献   

2.
The spatial arrangement of Ca2+ channels and vesicles remains unknown for most CNS synapses, despite of the crucial importance of this geometrical parameter for the Ca2+ control of transmitter release. At a large model synapse, the calyx of Held, transmitter release is controlled by several Ca2+ channels in a "domain overlap" mode, at least in young animals. To study the geometrical constraints of Ca2+ channel placement in domain overlap control of release, we used stochastic MCell modelling, at active zones for which the position of docked vesicles was derived from electron microscopy (EM). We found that random placement of Ca2+ channels was unable to produce high slope values between release and presynaptic Ca2+ entry, a hallmark of domain overlap, and yielded excessively large release probabilities. The simple assumption that Ca2+ channels can be located anywhere at active zones, except below a critical distance of ~ 30 nm away from docked vesicles ("exclusion zone"), rescued high slope values and low release probabilities. Alternatively, high slope values can also be obtained by placing all Ca2+ channels into a single supercluster, which however results in significantly higher heterogeneity of release probabilities. We also show experimentally that high slope values, and the sensitivity to the slow Ca2+ chelator EGTA-AM, are maintained with developmental maturation of the calyx synapse. Taken together, domain overlap control of release represents a highly organized active zone architecture in which Ca2+ channels must obey a certain distance to docked vesicles. Furthermore, domain overlap can be employed by near-mature, fast-releasing synapses.  相似文献   

3.
The active zone of presynaptic nerve terminals organizes the neurotransmitter release machinery, thereby enabling fast Ca2+‐triggered synaptic vesicle exocytosis. BK‐channels are Ca2+‐activated large‐conductance K+‐channels that require close proximity to Ca2+‐channels for activation and control Ca2+‐triggered neurotransmitter release by accelerating membrane repolarization during action potential firing. How BK‐channels are recruited to presynaptic Ca2+‐channels, however, is unknown. Here, we show that RBPs (for RIM‐binding proteins), which are evolutionarily conserved active zone proteins containing SH3‐ and FN3‐domains, directly bind to BK‐channels. We find that RBPs interact with RIMs and Ca2+‐channels via their SH3‐domains, but to BK‐channels via their FN3‐domains. Deletion of RBPs in calyx of Held synapses decreased and decelerated presynaptic BK‐currents and depleted BK‐channels from active zones. Our data suggest that RBPs recruit BK‐channels into a RIM‐based macromolecular active zone complex that includes Ca2+‐channels, synaptic vesicles, and the membrane fusion machinery, thereby enabling tight spatio‐temporal coupling of Ca2+‐influx to Ca2+‐triggered neurotransmitter release in a presynaptic terminal.  相似文献   

4.
Collapsin response mediator proteins (CRMPs) specify axon/dendrite fate and axonal growth of neurons through protein-protein interactions. Their functions in presynaptic biology remain unknown. Here, we identify the presynaptic N-type Ca2+ channel (CaV2.2) as a CRMP-2-interacting protein. CRMP-2 binds directly to CaV2.2 in two regions: the channel domain I-II intracellular loop and the distal C terminus. Both proteins co-localize within presynaptic sites in hippocampal neurons. Overexpression in hippocampal neurons of a CRMP-2 protein fused to enhanced green fluorescent protein caused a significant increase in Ca2+ channel current density, whereas lentivirus-mediated CRMP-2 knockdown abolished this effect. Interestingly, the increase in Ca2+ current density was not due to a change in channel gating. Rather, cell surface biotinylation studies showed an increased number of CaV2.2 at the cell surface in CRMP-2-overexpressing neurons. These neurons also exhibited a significant increase in vesicular release in response to a depolarizing stimulus. Depolarization of CRMP-2-enhanced green fluorescent protein-overexpressing neurons elicited a significant increase in release of glutamate compared with control neurons. Toxin block of Ca2+ entry via CaV2.2 abolished this stimulated release. Thus, the CRMP-2-Ca2+ channel interaction represents a novel mechanism for modulation of Ca2+ influx into nerve terminals and, hence, of synaptic strength.  相似文献   

5.
The Ca2+-dependent gating mechanism of large-conductance calcium-activated K+ (BK) channels from cultured rat skeletal muscle was examined from low (4 μM) to high (1,024 μM) intracellular concentrations of calcium (Ca2+ i) using single-channel recording. Open probability (P o) increased with increasing Ca2+ i (K 0.5 11.2 ± 0.3 μM at +30 mV, Hill coefficient of 3.5 ± 0.3), reaching a maximum of ∼0.97 for Ca2+ i ∼ 100 μM. Increasing Ca2+ i further to 1,024 μM had little additional effect on either P o or the single-channel kinetics. The channels gated among at least three to four open and four to five closed states at high levels of Ca2+ i (>100 μM), compared with three to four open and five to seven closed states at lower Ca2+ i. The ability of kinetic schemes to account for the single-channel kinetics was examined with simultaneous maximum likelihood fitting of two-dimensional (2-D) dwell-time distributions obtained from low to high Ca2+ i. Kinetic schemes drawn from the 10-state Monod-Wyman-Changeux model could not describe the dwell-time distributions from low to high Ca2+ i. Kinetic schemes drawn from Eigen''s general model for a ligand-activated tetrameric protein could approximate the dwell-time distributions but not the dependency (correlations) between adjacent intervals at high Ca2+ i. However, models drawn from a general 50 state two-tiered scheme, in which there were 25 closed states on the upper tier and 25 open states on the lower tier, could approximate both the dwell-time distributions and the dependency from low to high Ca2+ i. In the two-tiered model, the BK channel can open directly from each closed state, and a minimum of five open and five closed states are available for gating at any given Ca2+ i. A model that assumed that the apparent Ca2+-binding steps can reach a maximum rate at high Ca2+ i could also approximate the gating from low to high Ca2+ i. The considered models can serve as working hypotheses for the gating of BK channels.  相似文献   

6.
The ryanodine receptor (RyR) is a Ca2+ release channel in the sarcoplasmic reticulum in vertebrate skeletal muscle and plays an important role in excitation–contraction (E–C) coupling. Whereas mammalian skeletal muscle predominantly expresses a single RyR isoform, RyR1, skeletal muscle of many nonmammalian vertebrates expresses equal amounts of two distinct isoforms, α-RyR and β-RyR, which are homologues of mammalian RyR1 and RyR3, respectively. In this review we describe our current understanding of the functions of these two RyR isoforms in nonmammalian vertebrate skeletal muscle. The Ca2+ release via the RyR channel can be gated by two distinct modes: depolarization-induced Ca2+ release (DICR) and Ca2+-induced Ca2+ release (CICR). In frog muscle, α-RyR acts as the DICR channel, whereas β-RyR as the CICR channel. However, several lines of evidence suggest that CICR by β-RyR may make only a minor contribution to Ca2+ release during E–C coupling. Comparison of frog and mammalian RyR isoforms highlights the marked differences in the patterns of Ca2+ release mediated by RyR1 and RyR3 homologues. Interestingly, common features in the Ca2+ release patterns are noticed between β-RyR and RyR1. We will discuss possible roles and significance of the two RyR isoforms in E–C coupling and other processes in nonmammalian vertebrate skeletal muscle.  相似文献   

7.
大电导钙离子激活钾通道(BK)是细胞膜上唯一接受细胞内Ca2+和膜电位双重调控的离子通道.最新发表的关于BK通道电镜结构及其胞质功能域的晶体结构的文章,第一次展示了BK通道各亚基的组装,并证实通道各功能域在通道门控机制中存在紧密的相互作用.近年来,针对BK通道的功能调节及其门控动力学模拟的研究取得较多进展,有助于更好地理解BK通道发挥生理功能的门控机制,并揭示BK通道相关疾病的病理生理学基础.  相似文献   

8.
The cochlea encodes sound pressures varying over six orders of magnitude by collective operation of functionally diverse spiral ganglion neurons (SGNs). The mechanisms enabling this functional diversity remain elusive. Here, we asked whether the sound intensity information, contained in the receptor potential of the presynaptic inner hair cell (IHC), is fractionated via heterogeneous synapses. We studied the transfer function of individual IHC synapses by combining patch‐clamp recordings with dual‐color Rhod‐FF and iGluSnFR imaging of presynaptic Ca2+ signals and glutamate release. Synapses differed in the voltage dependence of release: Those residing at the IHC'' pillar side activated at more hyperpolarized potentials and typically showed tight control of release by few Ca2+ channels. We conclude that heterogeneity of voltage dependence and release site coupling of Ca2+ channels among the synapses varies synaptic transfer within individual IHCs and, thereby, likely contributes to the functional diversity of SGNs. The mechanism reported here might serve sensory cells and neurons more generally to diversify signaling even in close‐by synapses.  相似文献   

9.
Prevailing models postulate that high Ca2+ selectivity of Ca2+ release-activated Ca2+ (CRAC) channels arises from tight Ca2+ binding to a high affinity site within the pore, thereby blocking monovalent ion flux. Here, we examined the contribution of high affinity Ca2+ binding for Ca2+ selectivity in recombinant Orai3 channels, which function as highly Ca2+-selective channels when gated by the endoplasmic reticulum Ca2+ sensor STIM1 or as poorly Ca2+-selective channels when activated by the small molecule 2-aminoethoxydiphenyl borate (2-APB). Extracellular Ca2+ blocked Na+ currents in both gating modes with a similar inhibition constant (Ki; ∼25 µM). Thus, equilibrium binding as set by the Ki of Ca2+ blockade cannot explain the differing Ca2+ selectivity of the two gating modes. Unlike STIM1-gated channels, Ca2+ blockade in 2-APB–gated channels depended on the extracellular Na+ concentration and exhibited an anomalously steep voltage dependence, consistent with enhanced Na+ pore occupancy. Moreover, the second-order rate constants of Ca2+ blockade were eightfold faster in 2-APB–gated channels than in STIM1-gated channels. A four-barrier, three–binding site Eyring model indicated that lowering the entry and exit energy barriers for Ca2+ and Na+ to simulate the faster rate constants of 2-APB–gated channels qualitatively reproduces their low Ca2+ selectivity, suggesting that ion entry and exit rates strongly affect Ca2+ selectivity. Noise analysis indicated that the unitary Na+ conductance of 2-APB–gated channels is fourfold larger than that of STIM1-gated channels, but both modes of gating show a high open probability (Po; ∼0.7). The increase in current noise during channel activation was consistent with stepwise recruitment of closed channels to a high Po state in both cases, suggesting that the underlying gating mechanisms are operationally similar in the two gating modes. These results suggest that both high affinity Ca2+ binding and kinetic factors contribute to high Ca2+ selectivity in CRAC channels.  相似文献   

10.
The regulated release of neurotransmitter occurs via the fusion of synaptic vesicles (SVs) at specialized regions of the presynaptic membrane called active zones (AZs). These regions are defined by a cytoskeletal matrix assembled at AZs (CAZ), which functions to direct SVs toward docking and fusion sites and supports their maturation into the readily releasable pool. In addition, CAZ proteins localize voltage‐gated Ca2+ channels at SV release sites, bringing the fusion machinery in close proximity to the calcium source. Proteins of the CAZ therefore ensure that vesicle fusion is temporally and spatially organized, allowing for the precise and reliable release of neurotransmitter. Importantly, AZs are highly dynamic structures, supporting presynaptic remodeling, changes in neurotransmitter release efficacy, and thus presynaptic forms of plasticity. In this review, we discuss recent advances in the study of active zones, highlighting how the CAZ molecularly defines sites of neurotransmitter release, endocytic zones, and the integrity of synapses.  相似文献   

11.
The calyx of Held is a large glutamatergic synapse in the mammalian auditory brainstem. By using brain slice preparations, direct patch-clamp recordings can be made from the nerve terminal and its postsynaptic target (principal neurons of the medial nucleus of the trapezoid body). Over the last decade, this preparation has been increasingly employed to investigate basic presynaptic mechanisms of transmission in the central nervous system. We review here the background to this preparation and summarise key findings concerning voltage-gated ion channels of the nerve terminal and the ionic mechanisms involved in exocytosis and modulation of transmitter release. The accessibility of this giant terminal has also permitted Ca2+-imaging and -uncaging studies combined with electrophysiological recording and capacitance measurements of exocytosis. Together, these studies convey the panopoly of presynaptic regulatory processes underlying the regulation of transmitter release, its modulatory control and short-term plasticity within one identified synaptic terminal.  相似文献   

12.
Although there is consensus that the slow vacuolar or SV channel is a Ca2+ release channel, the underlying mechanism of operation is still controversial. The main reason is that the voltage sensitivity of SV gating seems to exclude activation at hyperpolarized (physiological) membrane potentials. Inspired by a study of Gambale et al. (1993) and supported by simulation studies presented here, we interpreted SV activation and deactivation kinetics in terms of a cyclic state diagram originally applied to animal cation-selective channels. A cyclic state diagram allows two pathways of activation operating in opposite directions. One pathway represents the frequently observed slow activation at moderate depolarization (<130 mV). With the open state (O) next to the closed state initially occupied (C 1), direct transitions from C 1 to O can account for the fast activation observed at higher depolarized potentials (>130 mV). We hypothesize that similar state transitions directly to O may also occur during hyperpolarization. The implication of this proposed mechanism is that SV accomplishes its physiological role during hyperpolarization-evoked deactivation. Despite their rare occurrence and possibly short duration, these opening events may last long enough to substantially raise the local cytosolic free Ca2+ level at the channel mouth by as much as 600 nM/ms. Because under in vivo conditions the Ca2+ flux is inwardly directed, the mechanism presented here revives the notion that the SV channel can be subject to calcium-induced calcium release. Present address for H. M.: BioMade Technology Foundation, Nijenborgh 4, 9747 AG Groningen, The Netherlands  相似文献   

13.
Voltage-gated Ca2+ channels select Ca2+ over competing, more abundant ions by means of a high affinity binding site in the pore. The maximum off rate from this site is ∼1,000× slower than observed Ca2+ current. Various theories that explain how high Ca2+ current can pass through such a sticky pore all assume that flux occurs from a condition in which the pore''s affinity for Ca2+ transiently decreases because of ion interactions. Here, we use rate theory calculations to demonstrate a different mechanism that requires no transient changes in affinity to quantitatively reproduce observed Ca2+ channel behavior. The model pore has a single high affinity Ca2+ binding site flanked by a low affinity site on either side; ions permeate in single file without repulsive interactions. The low affinity sites provide steps of potential energy that speed the exit of a Ca2+ ion off the selectivity site, just as potential energy steps accelerate other chemical reactions. The steps could be provided by weak binding in the nonselective vestibules that appear to be a general feature of ion channels, by specific protein structures in a long pore, or by stepwise rehydration of a permeating ion. The previous ion-interaction models and this stepwise permeation model demonstrate two general mechanisms, which might well work together, to simultaneously generate high flux and high selectivity in single file pores.  相似文献   

14.
In this and the following paper we have examined the kinetic and steady-state properties of macroscopic mslo Ca-activated K+ currents in order to interpret these currents in terms of the gating behavior of the mslo channel. To do so, however, it was necessary to first find conditions by which we could separate the effects that changes in Ca2+ concentration or membrane voltage have on channel permeation from the effects these stimuli have on channel gating. In this study we investigate three phenomena which are unrelated to gating but are manifest in macroscopic current records: a saturation of single channel current at high voltage, a rapid voltage-dependent Ca2+ block, and a slow voltage-dependent Ba2+ block. Where possible methods are described by which these phenomena can be separated from the effects that changes in Ca2+ concentration and membrane voltage have on channel gating. Where this is not possible, some assessment of the impact these effects have on gating parameters determined from macroscopic current measurements is provided. We have also found that without considering the effects of Ca2+ and voltage on channel permeation and block, macroscopic current measurements suggest that mslo channels do not reach the same maximum open probability at all Ca2+ concentrations. Taking into account permeation and blocking effects, however, we find that this is not the case. The maximum open probability of the mslo channel is the same or very similar over a Ca2+ concentration range spanning three orders of magnitude indicating that over this range the internal Ca2+ concentration does not limit the ability of the channel to be activated by voltage.  相似文献   

15.
突触囊泡在钙离子(Ca2+)触发下释放神经递质普遍存在着同步和异步两种形式.突触囊泡膜蛋白(synaptotagmin 2,Syt-2)已被证实是Calyx of Held突触囊泡同步释放的Ca2+传感蛋白,而相关的异步释放Ca2+传感蛋白还有待于探索.虽然锶离子(Sr2+)因其物理和化学性质都接近Ca2+,且能触发更多的囊泡异步释放成分而成为研究异步释放机制的常用工具,但有关Sr2+触发异步释放的机制存在着争议.本文在胞外以Sr2+替换Ca2+的条件下,通过对野生型(WT)和Syt-2敲除型(Z2B-/-)小鼠Calyx突触囊泡自发和诱发释放的电生理特性分析,发现Syt-2是介导Sr2+诱发的突触囊泡快速释放的传感蛋白,但不是介导Sr2+相关神经递质异步释放和自发释放的传感蛋白;而未知的触发囊泡异步释放的传感蛋白相比Syt-2对Sr2+具有更高的亲和力,同时也介导突触囊泡的自发释放.这一研究为探索并最终发现触发囊泡异步释放的未知传感蛋白提供了新的线索.  相似文献   

16.
In order to test the hypothesis that slowly activating vacuolar (SV) channels mediate Ca2+-induced Ca2+ release the voltage- and Ca2+-dependence of these K+ and Ca2+- permeable channels were studied in a quantitative manner. The patch-clamp technique was applied to barley (Hordeum vulgare L.) mesophyll vacuoles in the whole vacuole and vacuolar-free patch configuration. Under symmetrical ionic conditions the current-voltage relationship of the open SV channel was characterized by a pronounced inward rectification. The single channel current amplitude was not affected by changes in cytosolic Ca2+ whereas an increase in vacuolar Ca2+ decreased the unitary current in a voltage-dependent manner. The SV channel open-probability increased with positive potentials and elevated cytosolic Ca2+, but not with elevated cytosolic Mg2+. An increase of cytosolic Ca2+ shifted the half-activation potential to more negative voltages, whereas an increase of vacuolar Ca2+ shifted the half-activation potential to more positive voltages. At physiological vacuolar Ca2+ activities (50 μM to 2 mM) changes in cytosolic Ca2+ (5 μM to 2 mM) revealed an exponential dependence of the SV channel open-probability on the electrochemical potential gradient for Ca2+ (ΔμCa). At the Ca2+ equilibrium potential (ΔμCa = 0) the open-probability was as low as 0.4%. Higher open-probabilities required net Ca2+ motive forces which would drive Ca2+ influx into the vacuole. Under conditions favouring Ca2+ release from the vacuole, however, the open-probability further decreased. Based on quantitative analysis, it was concluded that the SV channel is not suited for Ca2+-induced Ca2+ release from the vacuole.  相似文献   

17.
A stochastic computational approach to the study of secretory processes at the calyx of Held synapse is presented in this paper. The calyx of Held is a giant synapse located in the brainstem which is widely used for experimental recording of neurotransmitter release. We focus on the study of the exocytotic dynamics for a pool of readily releasable vesicles using a Monte Carlo simulation scheme that includes models for the P-type calcium channels, the kinetic reactions of endogenous and exogenous (mobile) buffers, the kinetic reactions for the secretory vesicles, as well as the microscopic diffusion of mobile buffers and calcium ions. The simulations are performed in a 3-D orthogonal grid which approximates a cylindrical domain representing an active zone of the presynaptic terminal of the calyx. For this domain, we quantify the release rates related to calcium currents in response to depolarizing voltage pulses. The influence on simulated pulse/action potential depolarization protocols of the kinetic scheme for the calcium sensor of vesicles and the geometry of calcium channels for the kinetic cooperativity for release, is analyzed at a microdomain level. Among other aspects, our results suggest that the spatial organization of Ca 2 +  channels could have measurable effects in the kinetic cooperativity which could reflect developing changes in the calyx of Held synapse.  相似文献   

18.
Two‐pore channels (TPC) have been established as components of calcium signalling networks in plants and animals. In plants, TPC1 in the vacuolar membrane is gated open upon binding of calcium in a voltage‐dependent manner. Here, we analyzed the molecular mechanism of the Ca2+‐dependent activity of TPC1 from Arabidopsis thaliana, using site‐directed mutagenesis of its two canonical EF‐hands. Wild‐type TPC1 and TPC1‐D335A with a mutated first Ca2+ ligand in EF‐hand 1 produced channels that retained their voltage‐ and Ca2+‐dependent gating characteristics, but were less sensitive at Ca2+ concentrations <200 μm . Additional mutation of the first Ca2+ ligand in EF‐hand 2 resulted in silent TPC1‐D335A/D376A channels. Similarly, the single mutant TPC1‐D376A could not be activated up to 1 mm Ca2+, indicating that the second EF‐hand is essential for the Ca2+‐dependent channel gating. Molecular modeling suggests that EF‐hand 1 displays a low‐affinity Ca2+/Mg2+‐binding site, while EF‐hand 2 represents a high‐affinity Ca2+‐binding site. Together, our data prove that EF‐hand 2 is responsible for the Ca2+‐receptor characteristics of TPC1, while EF‐hand 1 is a structural site required to enable channel responses at physiological changes in Ca2+ concentration.  相似文献   

19.
《Biophysical journal》2022,121(23):4569-4584
Ca2+-dependent cell processes, such as neurotransmitter or endocrine vesicle fusion, are inherently stochastic due to large fluctuations in Ca2+ channel gating, Ca2+ diffusion, and Ca2+ binding to buffers and target sensors. However, previous studies revealed closer-than-expected agreement between deterministic and stochastic simulations of Ca2+ diffusion, buffering, and sensing if Ca2+ channel gating is not Ca2+ dependent. To understand this result more fully, we present a comparative study complementing previous work, focusing on Ca2+ dynamics downstream of Ca2+ channel gating. Specifically, we compare deterministic (mean-field/mass-action) and stochastic simulations of vesicle exocytosis latency, quantified by the probability density of the first-passage time (FPT) to the Ca2+-bound state of a vesicle fusion sensor, following a brief Ca2+ current pulse. We show that under physiological constraints, the discrepancy between FPT densities obtained using the two approaches remains small even if as few as ~50 Ca2+ ions enter per single channel-vesicle release unit. Using a reduced two-compartment model for ease of analysis, we illustrate how this close agreement arises from the smallness of correlations between fluctuations of the reactant molecule numbers, despite the large magnitude of fluctuation amplitudes. This holds if all relevant reactions are heteroreaction between molecules of different species, as is the case for bimolecular Ca2+ binding to buffers and downstream sensor targets. In this case, diffusion and buffering effectively decorrelate the state of the Ca2+ sensor from local Ca2+ fluctuations. Thus, fluctuations in the Ca2+ sensor’s state underlying the FPT distribution are only weakly affected by the fluctuations in the local Ca2+ concentration around its average, deterministically computable value.  相似文献   

20.
The ubiquitous secondary messengers, Ca2+ and cAMP, play a vital role in shaping a diverse array of physiological processes. More significantly, accumulating evidence over the past several decades underpin extensive crosstalk between these two canonical messengers in discrete sub-cellular nanodomains across various cell types. Within such specialized nanodomains, each messenger fine-tunes signaling to maintain homeostasis by manipulating the activities of cellular machinery accountable for the metabolism or activity of the complementary pathway. Interaction between these messengers is ensured by scaffolding proteins which tether components of the signaling machinery in close proximity. Disruption of dynamic communications between Ca2+ and cAMP at these loci consequently is linked to several pathological conditions. This review summarizes recent novel mechanisms underlying effective crosstalk between Ca2+ and cAMP in such nanodomains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号