首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arid ecosystems are expected to be among the ecosystems most sensitive to climate change. Here, we explore via model calculations how regular vegetation patterns, widely observed in arid ecosystems, respond to projected climatic shifts as provided by general circulation model output. In our model, the photosynthesis and respiration terms are explicitly linked to physiological attributes of the plants and are forced with the primary climatic drivers: atmospheric CO2, air temperature, and precipitation. Under future climate scenarios, our simulations show that the system’s fate depends on whether the enhancements to photosynthesis due to elevated atmospheric CO2 outweigh the increases in respiration due to higher air temperatures and the increases in water stress due to lower rainfall. A scalar measure is proposed to quantify this balance between the changes in the three climate drivers. Our model results suggest that knowing how the three primary climate drivers are evolving may provide hints as to whether the ecosystem is approaching desertification.  相似文献   

2.
Arid ecosystems are expected to be among the ecosystems most sensitive to climate change. Here, we explore via model calculations how regular vegetation patterns, widely observed in arid ecosystems, respond to projected climatic shifts as provided by general circulation model output. In our model, the photosynthesis and respiration terms are explicitly linked to physiological attributes of the plants and are forced with the primary climatic drivers: atmospheric CO2, air temperature, and precipitation. Under future climate scenarios, our simulations show that the system’s fate depends on whether the enhancements to photosynthesis due to elevated atmospheric CO2 outweigh the increases in respiration due to higher air temperatures and the increases in water stress due to lower rainfall. A scalar measure is proposed to quantify this balance between the changes in the three climate drivers. Our model results suggest that knowing how the three primary climate drivers are evolving may provide hints as to whether the ecosystem is approaching desertification.  相似文献   

3.
Leaf phenology represents a major temporal component of ecosystem functioning, and understanding the drivers of seasonal variation in phenology is essential to understand plant responses to climate change. We assessed the patterns and drivers of land surface phenology, a proxy for leafing phenology, for the meridional Espinhaço Range, a South American tropical mountain comprising a mosaic of savannas, dry woodlands, montane vegetation and moist forests. We used a 14-year time series of MODIS/NDVI satellite images, acquired between 2001 and 2015, and extracted phenological indicators using the TIMESAT algorithm. We obtained precipitation data from the Tropical Rainfall Measuring Mission, land surface temperature from the MODIS MOD11A2 product, and cloud cover frequency from the MODIS MOD09GA product. We also calculated the topographic wetness index and simulated clear-sky radiation budgets based on the SRTM elevation model. The relationship between phenology and environmental drivers was assessed using general linear models. Temporal displacement in the start date of the annual growth season was more evident than variations in season length among vegetation types, indicating a possible temporal separation in the use of resources. Season length was inversely proportional to elevation, decreasing 1.58 days per 100 m. Green-up and senescence rates were faster where annual temperature amplitude was higher. We found that water and light availability, modulated by topography, are the most likely drivers of land surface phenology in the region, determining the start, end and length of the growing season. Temperature had an important role in determining the rates of leaf development and the strength of vegetation seasonality, suggesting that tropical vegetation is also sensitive to latitudinal temperature changes, regardless of the elevational gradient. Our work improves the current understanding of phenological strategies in the seasonal tropics and emphasizes the importance of topography in shaping light and water availability for leaf development in snow-free mountains.  相似文献   

4.
Aim The controls of gross radiation use efficiency (RUE), the ratio between gross primary productivity (GPP) and the radiation intercepted by terrestrial vegetation, and its spatial and temporal variation are not yet fully understood. Our objectives were to analyse and synthesize the spatial variability of GPP and the spatial and temporal variability of RUE and its climatic controls for a wide range of vegetation types. Location A global range of sites from tundra to rain forest. Methods We analysed a global dataset on photosynthetic uptake and climatic variables from 35 eddy covariance (EC) flux sites spanning between 100 and 2200 mm mean annual rainfall and between ?13 and 26°C mean annual temperature. RUE was calculated from the data provided by EC flux sites and remote sensing (MODIS). Results Rainfall and actual evapotranspiration (AET) positively influenced the spatial variation of annual GPP, whereas temperature only influenced the GPP of forests. Annual and maximum RUE were also positively controlled primarily by annual rainfall. The main control parameters of the growth season variation of gross RUE varied for each ecosystem type. Overall, the ratio between actual and potential evapotranspiration and a surrogate for the energy balance explained a greater proportion of the seasonal variation of RUE than the vapour pressure deficit (VPD), AET and precipitation. Temperature was important for determining the intra‐annual variability of the RUE at the coldest energy‐limited sites. Main conclusions Our analysis supports the idea that the annual functioning of vegetation that is adapted to its local environment is more constrained by water availability than by temperature. The spatial variability of annual and maximum RUE can be largely explained by annual precipitation, more than by vegetation type. The intra‐annual variation of RUE was mainly linked to the energy balance and water availability along the climatic gradient. Furthermore, we showed that intra‐annual variation of gross RUE is only weakly influenced by VPD and temperature, contrary to what is frequently assumed. Our results provide a better understanding of the spatial and temporal controls of the RUE and thus could lead to a better estimation of ecosystem carbon fixation and better modelling.  相似文献   

5.
Summary PnET is a simple, lumped-parameter, monthlytime-step model of carbon and water balances of forests built on two principal relationships: 1) maximum photosynthetic rate is a function of foliar nitrogen concentration, and 2) stomatal conductance is a function of realized photosynthetic rate. Monthyly leaf area display and carbon and water balances are predicted by combining these with standard equations describing light attenuation in canopies and photosynthetic response to diminishing radiation intensity, along with effects of soil water stress and vapor pressure deficit (VPD). PnET has been validated against field data from 10 well-studied temperate and boreal forest ecosystems, supporting our central hypothesis that aggregation of climatic data to the monthly scale and biological data such as foliar characteristics to the ecosystem level does not cause a significant loss of information relative to long-term, mean ecosystem responses. Sensitivity analyses reveal a diversity of responses among systems to identical alterations in climatic drivers. This suggests that great care should be used in developing generalizations as to how forests will respond to a changing climate. Also critical is the degree to which the temperature responses of photosynthesis and respiration might acclimate to changes in mean temperatures at decadal time scales. An extreme climate change simulation (+3° C maximum temperature, –25% precipitation with no change in minimum temperature or radiation, direct effects of increased atmospheric CO2 ignored) suggests that major increases in water stress, and reductions in biomass production (net carbon gain) and water yield would follow such a change.  相似文献   

6.

Questions

Knowledge of how extreme drought events induce plant dieback and, eventually, plant mortality, may improve our forecasting of ecosystem change according to future climate projections, especially in Mediterranean drylands. In them, shrublands are the main vegetation communities in transition areas from a subhumid to semi-arid climate. This study analyzed differences in plant dieback after an unusual drought in 2014 and identified their main underlying factors in relation to three groups of explanatory variables: water availability, soil properties and vegetation structure attributes.

Location

Four Mediterranean shrublands along a climatic gradient in SE Spain.

Methods

At each experimental field site, we sampled a pool of vegetation structure characteristics, soil depth and soil surface properties, and we also determined water availability by continuously monitoring soil moisture and the microclimate conditions.

Results

The climatic analysis showed that there was an extreme drought event in 2014, which was below the first percentile of the driest years. Under such conditions, vegetation dieback occurred at all the study sites. However, plant dieback differed between sites and plant biotypes. Subshrubs were the main affected biotype, with diebacks close to 60% at the driest sites, and up to 40% dieback for shrubs depending on their vertical development. Relative extractable water and bare soil surface cover were the best explanatory variables of plant community dieback but changed between plant biotypes. Vegetation structure variables related to plant vertical development (leaf area index [LAI], plant height, phytovolume) were significant explanatory variables of plant dieback in shrubs, subshrubs and grasses. Consecutive dry days fitted the best model to explain subshrub dieback.

Conclusions

We found that rainfall pattern rather than total annual rainfall was the climatic factor that best determined water availability for plants in Mediterranean drylands. These results also pointed out the relevance of plant structure and soil properties for explaining ecosystem responses to extreme drought.  相似文献   

7.
Global climate change has emerged as a major driver of ecosystem change. Here, we present evidence for globally consistent responses in vegetation dynamics to recent climate change in the world's mountain ecosystems located in the pan‐tropical belt (30°N–30°S). We analyzed decadal‐scale trends and seasonal cycles of vegetation greenness using monthly time series of satellite greenness (Normalized Difference Vegetation Index) and climate data for the period 1982–2006 for 47 mountain protected areas in five biodiversity hotspots. The time series of annual maximum NDVI for each of five continental regions shows mild greening trends followed by reversal to stronger browning trends around the mid‐1990s. During the same period we found increasing trends in temperature but only marginal change in precipitation. The amplitude of the annual greenness cycle increased with time, and was strongly associated with the observed increase in temperature amplitude. We applied dynamic models with time‐dependent regression parameters to study the time evolution of NDVI–climate relationships. We found that the relationship between vegetation greenness and temperature weakened over time or was negative. Such loss of positive temperature sensitivity has been documented in other regions as a response to temperature‐induced moisture stress. We also used dynamic models to extract the trends in vegetation greenness that remain after accounting for the effects of temperature and precipitation. We found residual browning and greening trends in all regions, which indicate that factors other than temperature and precipitation also influence vegetation dynamics. Browning rates became progressively weaker with increase in elevation as indicated by quantile regression models. Tropical mountain vegetation is considered sensitive to climatic changes, so these consistent vegetation responses across widespread regions indicate persistent global‐scale effects of climate warming and associated moisture stresses.  相似文献   

8.
雷茜  胡忠文  王敬哲  张英慧  邬国锋 《生态学报》2023,43(15):6378-6391
植被是陆地生态系统不可或缺的部分,气候是影响其动态变化的重要驱动因素。因此,探究植被的时空变化及其与气候因子的响应关系,有助于理解陆地生态系统的内在演化机制。目前,不同生态系统尺度下的植被动态变化与气候因子的时间响应关系仍未被完整剖析。因此,为了厘清过去30年不同生态系统植被生长对气候因子的响应关系,利用GIMMS NDVI3g数据和气候资料数据,通过Theil-Sen Median趋势分析和Mann-Kendall检验分析了1985—2015年中国陆地NDVI的时空变化特征,结合时间序列相关分析探究了NDVI变化与降水、温度和饱和水汽压差的内部关联,探讨了中国不同生态系统植被与气候因子间的时间响应机制。结果表明:(1) 1985—2015年中国陆地植被呈现改善趋势,年均NDVI先减小后增加,拐点时间在1995年左右,整体变化率为0.5×10-3/a。农田、森林和草地生态系统的植被显著改善的程度最高,湿地生态系统的植被退化趋势最显著。(2)中国陆地植被NDVI与气候因子的相关性存在明显的空间异质性,且受不同生态系统分区影响。内蒙古高原中部草地生态系统NDVI与降水...  相似文献   

9.
树木年轮宽度与气候变化关系研究进展   总被引:32,自引:0,他引:32       下载免费PDF全文
 树木的生长和立地环境密切相关并受多种气候因子的影响。树木年轮宽度的增加与温度、降水、太阳辐射、CO2浓度等气候因子有着复杂的相关关系。在干旱或半干旱地区,温度是限制树木生长的重要气候因子。生长季开始时最低温度的升高有利于延长生长季,与年轮宽度正相关;但是当生长季温度过高时,即使降水非常充裕,当年也只能形成窄年轮。生长季的温度过高则会加快土壤蒸发失水量并提高蒸汽压差,使土壤水分不足而不利于树木生长,因而生长季的高温多表现为与年轮宽度的负相关。生长期内降水量与树木的径向生长也成正相关,但当生长季的降水量充足或过多时,降水对树木径向生长不相关或负相关。受温度和降水共同调控的土壤湿度是树木径向生长的主要限制因子,良好的水分状况对树木生长起决定性作用。某一地区的太阳辐射能量高常会导致高温少雨,故高强度的太阳辐射使表土的湿度降低而不利于树木的径向生长。而在受季风影响的地区,树木年轮宽度的增加与当年雨季的气候变化关系不大。当年季风到来之前的气候(温度和降水)是树木生长的主要限制因子。有关CO2浓度的升高对树木生长的影响,研究的结果很不一致。一些温室实验及田间控制实验证明,CO2浓度的升高能对短命的一年生草本植物和植物幼苗产生“施肥效应”,并有利于其生长;还有些研究证明CO2浓度的升高能使高海拔地带的树木年轮宽度增加;但也有些研究认为CO2浓度的升高对生长在自然条件下的自然植被影响不大。近年来,有关树木径向生长和气候变化的研究越来越引起人们的关注,相关研究也取得了较大的进展。这些研究在帮助人们了解和研究古气候变化对森林植被的影响,以及预测未来全球变化对陆地生态系统的影响等方面有重要的理论和现实意义。综述了气候变化对树木年轮宽度影响的研究进展和应用,并概述了研究方法和发展前景,希望能加快和拓宽这一领域的发展。  相似文献   

10.
The study on climate-vegetation relationship is the basis for determining the re sponse of terrestrial ecosystem to global change. By means of quantitative analysis on climate-vegetation interaction, vegetation types and their distribution pattern could be corresponded with certain climatic types in a series of mathematical forms. Thus, the climate could be used to predict vegetation types and their distribution, the same is in reverse. Potential evapotranspiration rate is a comprehensive climatological index which combines temperature with precipitation, and could be used to evaluate the effect of climate on vegetation. In this respect, Holdridge life zone system has been drawing much attention and widely applied internationally owing to its simplicity. It is especially used in the assessment of sensibility of terrestrial ecosystems and their distribution in accordance with climate change and in prediction of the changing pattern of vegetation under doubled CO2 condition. However, Prentice (1990) pointed out that the accurancy of Holdridge life zone system is less than 40 % when it is used at global scale. The reason may be that the potential evapotranspiration calculated by Thornthwaite method, which is used in Holdridge life zone system, reflects the potential evapotranspiration from small evaporated area, while climate-vegetation classification is based on the regional scale. The authors try to establish a new climate-vegetation classification system based on the regional potential evapotranspiration. According to the following formula: where E designates regional actual evapotranspiration: Ep local potential evapotran-spiration: Epo, regional potential evapotranspiration. Ed can be calculated from Penman model or other models. E can be calculated from the following model: E=r · Rn (r2+Rn2+r · Rn) / (2) (r+Rn) · (r2+Rn2)where r designates precipitation (mm); Rn, net radiation (mm). Thus, Ep0 can be easily obtained. It is used as the regional thermal index (RTI) of climate-vegetation classification,and can be expressed as: RTl = Epo (3) Moisture index is another index of climate-veggetation classification. Usually, it can be expressed as the ratio between potential evapotranspiration and precipitation. However, this ratio can not reflect soil moisture, which is important for plant. The ratio between regional actual evapotranspiration and regional potential evapotranspiration is associated not only with climatic condition but also with soil moisture. So it can be used as the moisture index of climate-vegetation classification, and is defined as regional moisture index (RMI): RMI = E/Epo (5) Based on the average climatological data of 30 years from 647 meteorological observation stations in China. It was found that RTl could well reflect a regional thermal level. The values of RTI were less than 360 mm in cold temperate zone, 360~650 mm in temperate zone, 650~380 mm in warm temperate zone, 780~1100 mm in subtropical zone. And more than 1100 mm in tropical zone. RMI also reflects a regional moisture level very well. The values of RMI was less than 0.4 in desert area, 0.4~0.7 in grassland area and more than 0.7 in forest area. Thus, the climate-vegetation classification in China is established on the basis of the two indices: RTI and RMI. According to this model, the changing patterns of vegetation zones in China are given under the conditions of mean annual temperature in creasing by 2℃ and 4℃ and mean annual precipitation increasing by 20%. The results showed that the areas of forest and grassland would decrease, the vegetation zones would move northward and upward, and the area of desert would increase. The results also indicate that the Tibetan Plateau is an area highly sensitive to global change. It could be considered as an indicative or forewarning area for global change , and therefore, an area of great siginificance for monitoring and research. The possible beneficial effect of global change on China terrestrial ecosystems is that the plantation boundary will move northwards and upwards; and the disadvantageous effect is the expansion of desertification and the increase of instability in climatic conditions.  相似文献   

11.
Climate conditions significantly affect vegetation growth in terrestrial ecosystems. Due to the spatial heterogeneity of ecosystems, the vegetation responses to climate vary considerably with the diverse spatial patterns and the time‐lag effects, which are the most important mechanism of climate–vegetation interactive effects. Extensive studies focused on large‐scale vegetation–climate interactions use the simultaneous meteorological and vegetation indicators to develop models; however, the time‐lag effects are less considered, which tends to increase uncertainty. In this study, we aim to quantitatively determine the time‐lag effects of global vegetation responses to different climatic factors using the GIMMS3g NDVI time series and the CRU temperature, precipitation, and solar radiation datasets. First, this study analyzed the time‐lag effects of global vegetation responses to different climatic factors. Then, a multiple linear regression model and partial correlation model were established to statistically analyze the roles of different climatic factors on vegetation responses, from which the primary climate‐driving factors for different vegetation types were determined. The results showed that (i) both the time‐lag effects of the vegetation responses and the major climate‐driving factors that significantly affect vegetation growth varied significantly at the global scale, which was related to the diverse vegetation and climate characteristics; (ii) regarding the time‐lag effects, the climatic factors explained 64% variation of the global vegetation growth, which was 11% relatively higher than the model ignoring the time‐lag effects; (iii) for the area with a significant change trend (for the period 1982–2008) in the global GIMMS3g NDVI (P < 0.05), the primary driving factor was temperature; and (iv) at the regional scale, the variation in vegetation growth was also related to human activities and natural disturbances. Considering the time‐lag effects is quite important for better predicting and evaluating the vegetation dynamics under the background of global climate change.  相似文献   

12.
Rainfall variability is a key driver of ecosystem structure and function in grasslands worldwide. Changes in rainfall patterns predicted by global climate models for the central United States are expected to cause lower and increasingly variable soil water availability, which may impact net primary production and plant species composition in native Great Plains grasslands. We experimentally altered the timing and quantity of growing season rainfall inputs by lengthening inter-rainfall dry intervals by 50%, reducing rainfall quantities by 30%, or both, compared to the ambient rainfall regime in a native tallgrass prairie ecosystem in northeastern Kansas. Over three growing seasons, increased rainfall variability caused by altered rainfall timing with no change in total rainfall quantity led to lower and more variable soil water content (0–30 cm depth), a ~10% reduction in aboveground net primary productivity (ANPP), increased root to shoot ratios, and greater canopy photon flux density at 30 cm above the soil surface. Lower total ANPP primarily resulted from reduced growth, biomass and flowering of subdominant warm-season C4 grasses while productivity of the dominant C4 grass Andropogon gerardii was relatively unresponsive. In general, vegetation responses to increased soil water content variability were at least equal to those caused by imposing a 30% reduction in rainfall quantity without altering the timing of rainfall inputs. Reduced ANPP most likely resulted from direct effects of soil moisture deficits on root activity, plant water status, and photosynthesis. Altered rainfall regimes are likely to be an important element of climate change scenarios in this grassland, and the nature of interactions with other climate change elements remains a significant challenge for predicting ecosystem responses to climate change.  相似文献   

13.
东北地区植被物候时序变化   总被引:8,自引:6,他引:8  
俎佳星  杨健 《生态学报》2016,36(7):2015-2023
植被与气候的关系非常密切,植被物候可作为气候变化的指示器。东北地区位于我国最北部,是气候变化的敏感区域,研究该区植被物候对气候变化的响应对阐明陆地生态体统碳循环具有重要意义。利用GIMMS AVHRR遥感数据集得到了东北地区阔叶林、针叶林、草原和草甸4种植被25a(1982—2006年)的物候时序变化,得出4种植被春季物候都表现出先提前后推迟的现象,秋季物候的变化则比较复杂,阔叶林和针叶林整体上呈现出秋季物候推迟的趋势,草原和草甸则表现为提前-推迟-提前的趋势。应用偏最小二乘(Partial Least Squares)回归分析了该区域植被物候与气候因子之间的关系,结果表明:春季温度与阔叶林、针叶林和草甸春季物候负相关,前一年冬季温度与草原春季物候正相关,降水与植被春季物候的关系有点复杂;4种植被秋季物候与夏季温度均呈正相关,除草原外,其余3种植被秋季物候均与夏季降水负相关。植被春季物候可能主要受温度影响,而秋季物候很可能主要受降水控制。  相似文献   

14.
Evidence for the multifaceted responses of terrestrial ecosystems has been shown by the weakening of CO2 fertilization-induced and warming-controlled productivity gains. The intricate relationship between vegetation productivity and various environmental controls still remains elusive spatially. Here several inherent preponderances make China a natural experimental setting to investigate the interaction and relative contributions of five drivers to gross primary productivity for the period from 1982 to 2018 (i.e., elevated atmospheric CO2 concentrations, climate change, nutrient availability, anthropogenic land use change, and soil moisture) by coupling multiple long-term datasets. Despite a strikingly prominent enhancement of vegetation productivity in China, it exhibits similar saturation responses to the aforementioned environmental drivers (elevated CO2, climatic factors, and soil moisture). The CO2 fertilization-dominated network explains the long-term variations in vegetation productivity in humid regions, but its effect is clearly attenuated or even absent in arid and alpine environments controlled by climate and soil moisture. Divergence in interactions also provides distinct evidence that water availability plays an essential role in limiting the potential effects of climate change and elevated CO2 concentrations on vegetation productivity. Unprecedented industrialization and dramatic surface changes may have breached critical thresholds of terrestrial ecosystems under the diverse natural environment and thus forced a shift from a period dominated by CO2 fertilization to a period with nonlinear interactions. These findings suggest that future benefits in terrestrial ecosystems are likely to be counteracted by uncertainties in the complicated network, implying an increasing reliance on human societies to combat potential risks. Our results therefore highlight the need to account for the intricate interactions globally and thus incorporate them into mitigation and adaptation policies.  相似文献   

15.
Silver birch (Betula pendula Roth.) is a widespread species with a high potential for aiding sustainability and multifunctionality of European forests, as evidenced in Finland and the Baltics. However, under increasing relevance of climate change for tree growth, the meteorological sensitivity of the species is largely unknown, presuming it to be weather tolerant (low sensitivity). Considering local adaptations of populations of widespread species, climatic changes are subjecting trees to extreme conditions, thus testing their adaptability. Accordingly, information on the plasticity (variability) of responses across a gradient of meteorological conditions is crucial for reliable predictions of tree growth. Tree-ring width network was established to assess the plasticity of growth responses of silver birch to meteorological conditions across the eastern Baltic climatic gradient. Time series analysis in combination with generalized additive modelling were applied to assess responses of birch from 21 naturally regenerated conventionally managed stands scattered from southern Finland to northern Germany. Despite the presumed tolerance, explicit meteorological sensitivity of silver birch was estimated. A gradient of local linear weather-growth relationships was estimated, as growth limitation shifted from temperature during the dormancy to water availability during vegetation period in southern Finland and northern Germany, respectively. However, these relationships were nonstationary, as the effect of summer water shortage was intensifying and sensitivity to it has likely been subjected to local adaptation. The regional generalization revealed presence of stationary, yet nonlinear and plastic growth responses, implying disproportional effects of climatic changes. Such responses also explained the nonstationarities, as the local climates shifted along the regional gradient. At the regional scale, summer water shortage was the main driver of increment, while winter conditions had a secondary role; temperature of the preceding vegetation season also had an effect on increment. Accordingly, increased variability of increment of silver birch is expected under changing climate; still, sensitivity and plasticity of increment can be considered as an adaptation to shifting environments.  相似文献   

16.
In central-western Argentina, there is a pronounced water deficit gradient, from semiarid climate conditions with 500-mm rainfall/year to arid climate conditions with 80-mm rainfall/year. This climatic transition, governed by the rainfall gradient, occurs between the Arid Chaco and Monte phytogeographic regions and is evidenced by differences in vegetation type, structure, dynamics and tree growth. In turn, the availability of soil moisture, particularly access to the water table, modifies water use strategies by trees along this gradient. We analyzed how water availability, expressed as differences in accessibility to the water table, influences Prosopis flexuosa tree rings along a precipitation gradient. In this manner, we try to interpret the growth of species according to the use of differential water sources. P. flexuosa showed highly varying growth reactions (tree-ring width and hydraulic anatomic parameters) with climate, depending on the ecology of the site. Along the Arid Chaco-Monte gradient, the growth of P. flexuosa is more dependent on variations in rainfall in those areas where water depth is greater than root spread. The climate signal was hidden in those regions where the water table is accessible to the root system.  相似文献   

17.
中国亚热带山地植被垂直带分布对气候季节性的响应   总被引:2,自引:0,他引:2  
刘亚兰  郭汝清  孙书存 《生态学报》2010,30(14):3912-3922
根据植被研究的文献,收集了中国亚热带地区(23°-34°N)具有亚热带常绿阔叶林基带的49个山地的地理位置、气候因子、植被垂直带分布等数据;计算了不同山地基带的温度和降水季节性(分别以月平均温度和降水量的变异系数表示),以及气候季节性强度指数(以月平均温度和降水量的变异系数的乘积表示);最后分析了季节性强度与植被垂直带分布的关系。结果显示,中国亚热带地区北纬25°以南的所有山体缺少落叶阔叶林带,而北纬32°以北的则一定具有落叶林带;在中间地带,具有落叶阔叶林带的山体比例随纬度上升而上升。温度的季节性强度和气候季节性强度随纬度上升而增加,但降水的季节性强度与纬度没有显著关系。非参数相关分析表明,中国亚热带山地植被垂直带落叶阔叶林缺失与否与气候要素的季节性强度显著相关,即随山体的温度季节性强度和气候季节性强度的增加,山体拥有落叶阔叶林带的可能性增加。这种纬度梯度上的山体植被垂直分布格局(落叶阔叶林带存在与否)的变化与叶片水平上碳平衡模型的预测一致。  相似文献   

18.
中国气候-植被关系初探   总被引:18,自引:1,他引:17       下载免费PDF全文
气候—植被分类必须强调气候因子的综合影响及其指标的区域性。一般的气候观测缺乏在生物学上具有重要与综合的作用或代表性,而区域潜在蒸散包括从所有表面的蒸发与植物蒸腾,并涉及到决定植被分布的两大要素:温度和降水。因此,区域潜在蒸散具有作为植被—气候相关分析与分类的综合气候指标的功能。本文首次根据区域潜在蒸散对气候—植被关系的热量与水分指标进行了初步探讨,提出了进行气候—植被关系的热量指标(TI)和区域湿润指标(RMI),并据此对中国气候—植被关系进行了初步的定量研究。该研究对于了解气候—植被之间的相互关系,正确地评估和预测全球变化对人类及生物所赖以生存的生态环境的影响具有重要的理论和现实意义。  相似文献   

19.
Abstract In arid and semiarid environments surface‐water strongly constrains the distribution and abundance of large herbivores during the dry season. Surprisingly, we know very little about its variability in natural ecosystems. Here we used long‐term data on the dry‐season occurrence of water at individual waterholes to model the surface‐water availability across Hwange National Park, Zimbabwe, under contrasted climatic and management scenarios. Without artificial pumping only 19.6% of the park occurred within 5 km of water under average climatic conditions. However surface‐water availability was strongly influenced by annual rainfall, and over 20 years the variability of the surface area of the park occurring within 5 km of water was slightly larger than the variability of rainfall. This contrasts with the usual buffered response of vegetation production to rainfall fluctuations, and suggests that the variability in dry‐season foraging range determined by surface‐water availability could be the main mechanism regulating the population dynamics of large herbivores in this environment. Artificial pumping increased surface‐water availability and reduced its variability over time. Because changes in surface‐water availability could cause the greatest changes in forage availability for large herbivores, we urge ecologists to investigate and report on the variability of surface‐water in natural ecosystems, particularly where rapid climate changes are expected.  相似文献   

20.
Net pdmary productivity (NPP) is a key component of energy and matter transformation in the terrestrial ecosystem, and the responses of NPP to global change locally and regionally have been one of the most important aspects in climate-vegetation relationship studies. In order to isolate causal climatic factors, it is very important to assess the response of seasonal variation of NPP to climate. In this paper, NPP in Xinjiang was estimated by NOAA/AVHRR Normalized Difference Vegetation Index (NDVI) data and geographic information system (GIS) techniques. The impact of climatic factors (air temperature, precipitation and sunshine percentage) on seasonal variations of NPP was studied by time lag and serial correlation ageing analysis. The results showed that the NPP for different land cover types have a similar correlation with any one of the three climatic factors, and precipitation is the major climatic factor influencing the seasonal variation of NPP in Xinjiang. It was found that the positive correlation at 0 lag appeared between NPP and precipitation and the serial correlation ageing was 0 d in most areas of Xinjiang, which indicated that the response of NPP to precipitation was immediate. However, NPP of different land cover types showed significant positive correlation at 2 month lag with air temperature, and the impact of which could persist 1 month as a whole. No correlation was found between NPP and sunshine percentage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号