首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitogen-activated protein kinase kinase 4 (Map2k4) is a dual specificity serin/threonine protein kinase that is unique among all MAP2Ks in activating two different subfamilies of mitogen-activated protein kinases, the c-Jun N-terminal kinases (JNKs) and p38 kinases. Map2k4 is essential during embryogenesis and involved in a variety of physiological and pathological processes. However, studies on its role in cancer development revealed partially conflicting data. In the present study, we report the identification of a novel splice variant of Map2k4, Map2k4δ, with an additional exon in front of the substrate binding D-domain. Map2k4δ is expressed together with Map2k4 in various tissues from rat, mouse and human. In PC12 cells, both splice variants control cell cycle progression and basal apoptosis by using different signaling pathways. If expression and activation of Map2k4 and Map2k4δ are at a certain, cell type-specific equilibrium, an appropriate cell growth is ensured. Overexpression of one kinase disrupts the intricate balance and either results in a highly proliferative or pro-apoptotic phenotype, partially reflecting the discrepancies in the literature on Map2k4 and its role in tumor development. Our findings contribute to the understanding of previous studies and point out that Map2k4 has not always a definite function, but rather triggers a cellular reaction in concert with other modulators.  相似文献   

2.
The mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK) is a critical regulator of collagenase-1 production in rheumatoid arthritis (RA). The MAPKs are regulated by upstream kinases, including MAPK kinases (MAPKKs) and MAPK kinase kinases (MAP3Ks). The present study was designed to evaluate the expression and regulation of the JNK pathway by MAP3K in arthritis. RT-PCR studies of MAP3K gene expression in RA and osteoarthritis synovial tissue demonstrated mitogen-activated protein kinase/ERK kinase kinase (MEKK) 1, MEKK2, apoptosis-signal regulating kinase-1, TGF-beta activated kinase 1 (TAK1) gene expression while only trace amounts of MEKK3, MEKK4, and MLK3 mRNA were detected. Western blot analysis demonstrated immunoreactive MEKK2, TAK1, and trace amounts of MEKK3 but not MEKK1 or apoptosis-signal regulating kinase-1. Analysis of MAP3K mRNA in cultured fibroblast-like synoviocytes (FLS) showed that all of the MAP3Ks examined were expressed. Western blot analysis of FLS demonstrated that MEKK1, MEKK2, and TAK1 were readily detectable and were subsequently the focus of functional studies. In vitro kinase assays using MEKK2 immunoprecipitates demonstrated that IL-1 increased MEKK2-mediated phosphorylation of the key MAPKKs that activate JNK (MAPK kinase (MKK)4 and MKK7). Furthermore, MEKK2 immunoprecipitates activated c-Jun in an IL-1 dependent manner and this activity was inhibited by the selective JNK inhibitor SP600125. Of interest, MEKK1 immunoprecipitates from IL-1-stimulated FLS appeared to activate c-Jun through the JNK pathway and TAK1 activation of c-Jun was dependent on JNK, ERK, and p38. These data indicate that MEKK2 is a potent activator of the JNK pathway in FLS and that signal complexes including MEKK2, MKK4, MKK7, and/or JNK are potential therapeutic targets in RA.  相似文献   

3.
Adipose tissue lipogenesis is paradoxically impaired in human obesity, promoting ectopic triglyceride (TG) deposition, lipotoxicity, and insulin resistance. We previously identified mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4), a sterile 20 protein kinase reported to be upstream of c-Jun NH2-terminal kinase (JNK) signaling, as a novel negative regulator of insulin-stimulated glucose transport in adipocytes. Using full-genome microarray analysis we uncovered a novel role for Map4k4 as a suppressor of lipid synthesis. We further report here the surprising finding that Map4k4 suppresses adipocyte lipogenesis independently of JNK. Thus, while Map4k4 silencing in adipocytes enhances the expression of lipogenic enzymes, concomitant with increased conversion of 14C-glucose and 14C-acetate into TGs and fatty acids, JNK1 and JNK2 depletion causes the opposite effects. Furthermore, high expression of Map4k4 fails to activate endogenous JNK, while Map4k4 depletion does not attenuate JNK activation by tumor necrosis factor α. Map4k4 silencing in cultured adipocytes elevates both the total protein expression and cleavage of sterol-regulated element binding protein-1 (Srebp-1) in a rapamycin-sensitive manner, consistent with Map4k4 signaling via mechanistic target of rapamycin complex 1 (mTORC1). We show Map4k4 depletion requires Srebp-1 upregulation to increase lipogenesis and further show that Map4k4 promotes AMP-protein kinase (AMPK) signaling and the phosphorylation of mTORC1 binding partner raptor (Ser792) to inhibit mTORC1. Our results indicate that Map4k4 inhibits adipose lipogenesis by suppression of Srebp-1 in an AMPK- and mTOR-dependent but JNK-independent mechanism.  相似文献   

4.
We have previously shown that the Drosophila Ste20 kinase encoded by misshapen (msn) is an essential gene in Drosophila development. msn function is required to activate the Drosophila c-Jun N-terminal kinase (JNK), basket (Bsk), to promote dorsal closure of the Drosophila embryo. Later in development, msn expression is required in photoreceptors in order for their axons to project normally. A mammalian homolog of msn, the NCK-interacting kinase (NIK) (recently renamed to mitogen-activated protein kinase kinase kinase kinase 4; Map4k4), has been shown to activate JNK and to bind the SH3 domains of the SH2/SH3 adapter NCK. To determine whether NIK also plays an essential role in mammalian development, we created mice deficient in NIK by homologous recombination at the Nik gene. Nik(-/-) mice die postgastrulation between embryonic day (E) 9.5 and E10.5. The most striking phenotype in Nik(-/-) embryos is the failure of mesodermal and endodermal cells that arise from the anterior end of the primitive streak (PS) to migrate to their correct location. As a result Nik(-/- )embryos fail to develop somites or a hindgut and are truncated posteriorly. Interestingly, chimeric analysis demonstrated that NIK has a cell nonautonomous function in stimulating migration of presomitic mesodermal cells away from the PS and a second cell autonomous function in stimulating the differentiation of presomitic mesoderm into dermomyotome. These findings indicate that despite the large number of Ste20 kinases in mammalian cells, members of this family play essential nonredundant function in regulating specific signaling pathways. In addition, these studies provide evidence that the signaling pathways regulated by these kinases are diverse and not limited to the activation of JNK because mesodermal and somite development are not perturbed in JNK1-, and JNK2-deficient mice.  相似文献   

5.
Neuronal signal transduction by the JNK MAP kinase pathway is altered by a broad array of stimuli including exposure to the widely abused drug ethanol, but the behavioral relevance and the regulation of JNK signaling is unclear. Here we demonstrate that JNK signaling functions downstream of the Sterile20 kinase family gene tao/Taok3 to regulate the behavioral effects of acute ethanol exposure in both the fruit fly Drosophila and mice. In flies tao is required in neurons to promote sensitivity to the locomotor stimulant effects of acute ethanol exposure and to establish specific brain structures. Reduced expression of key JNK pathway genes substantially rescued the structural and behavioral phenotypes of tao mutants. Decreasing and increasing JNK pathway activity resulted in increased and decreased sensitivity to the locomotor stimulant properties of acute ethanol exposure, respectively. Further, JNK expression in a limited pattern of neurons that included brain regions implicated in ethanol responses was sufficient to restore normal behavior. Mice heterozygous for a disrupted allele of the homologous Taok3 gene (Taok3Gt) were resistant to the acute sedative effects of ethanol. JNK activity was constitutively increased in brains of Taok3Gt/+ mice, and acute induction of phospho-JNK in brain tissue by ethanol was occluded in Taok3Gt/+ mice. Finally, acute administration of a JNK inhibitor conferred resistance to the sedative effects of ethanol in wild-type but not Taok3Gt/+ mice. Taken together, these data support a role of a TAO/TAOK3-JNK neuronal signaling pathway in regulating sensitivity to acute ethanol exposure in flies and in mice.  相似文献   

6.
Mitogen-activated protein kinases (MAPKs) are activated by numerous ligands typically through a protein kinase cascade minimally composed of the MAPK in series with a MAP2 kinase (MAP2K) and a MAP3K. This arrangement is thought to confer specificity and appropriate kinetic properties on the activation of MAPKs in response to physiological stimuli. Surprisingly, more than a dozen MAP3Ks have been identified that activate the c-Jun N-terminal kinases (JNKs) when overexpressed, but there is no clear understanding of which kinases actually mediate JNK activation by ligands. Here, we use double-stranded RNA-mediated interference of gene expression to reveal the explicit participation of discrete MAP3Ks in controlling JNK activity by multiple stimuli. Maximal activation of JNK by lipopolysaccharide requires the MAP3K TAK1. On the other hand, sorbitol requires expression of four MAP3Ks to cause maximal JNK activation. Thus, we demonstrate that specific stimuli use different mechanisms to recruit distinct MAP3Ks to regulate the JNK pathway.  相似文献   

7.
8.
MAPK/ERK kinase kinase 2 (MEKK2) is a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family of protein kinases. MAP3Ks are components of a three-tiered protein kinase pathway in which a MAP3K phosphorylates and activates a mitogen-activated protein kinase kinase (MAP2K), which in turn activates a mitogen-activated protein kinase (MAPK). We have previously identified residues within protein kinase subdomain X in the MAP3K, MEKK1, that are critical for its interaction with the MAP2K, MKK4, and MEKK1-induced MKK4 activation. We report here that kinase subdomain X also plays a critical role in MEKK2 activity. Select point mutations in subdomain X impair MEKK2 phosphorylation of the MAP2Ks, MKK7 and MEK5, abolish MEKK2-induced activation of the MAPKs, JNK1 and ERK5, and diminish MEKK2-dependent activation of an AP-1 reporter gene. Interestingly, the spectrum of mutations in subdomain X of MEKK2 that affects its activity is overlapping with but not identical to those that have effects on MEKK1. Thus, mutations in subdomain X differentially affect MEKK2 and MEKK1.  相似文献   

9.
10.
The trichothecene family of mycotoxins inhibit protein synthesis by binding to the ribosomal peptidyltransferase site. Inhibitors of the peptidyltransferase reaction (e.g. anisomycin) can trigger a ribotoxic stress response that activates c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinases, components of a signaling cascade that regulates cell survival in response to stress. We have found that selected trichothecenes strongly activate JNK/p38 kinases and induce rapid apoptosis in Jurkat T cells. Although the ability of individual trichothecenes to inhibit protein synthesis and activate JNK/p38 kinases are dissociable, both effects contribute to the induction of apoptosis. Among trichothecenes that strongly activate JNK/p38 kinases, induction of apoptosis increases linearly with inhibition of protein synthesis. Among trichothecenes that strongly inhibit protein synthesis, induction of apoptosis increases linearly with activation of JNK/p38 kinases. Trichothecenes that inhibit protein synthesis without activating JNK/p38 kinases inhibit the function (i.e. activation of JNK/p38 kinases and induction of apoptosis) of apoptotic trichothecenes and anisomycin. Harringtonine, a structurally unrelated protein synthesis inhibitor that competes with trichothecenes (and anisomycin) for ribosome binding, also inhibits the activation of JNK/p38 kinases and induction of apoptosis by trichothecenes and anisomycin. Taken together, these results implicate the peptidyltransferase site as a regulator of both JNK/p38 kinase activation and apoptosis.  相似文献   

11.
12.
Phosphoinositide 3-kinases (PI3Ks) are lipid kinases that can phosphorylate phosphaditylinositides leading to the cell type-specific regulation of intracellular protein kinases. PI3Ks are involved in a wide variety of cellular events including mitogenic signalling, regulation of growth and survival, vesicular trafficking, and control of the cytoskeleton. Some of these enzymes also act downstream of receptor tyrosine kinases or G-protein-coupled receptors. Using two strategies to inhibit PI3K signalling in embryos, we have analysed the role of PI3Ks during early Xenopus development. We find that a class 1A PI3K catalytic activity is required for the definition of trunk mesoderm during the blastula stages, but is less important for endoderm and prechordal plate mesoderm induction or for organiser formation. It is required in the FGF signalling pathway downstream of Ras and in parallel to the extracellular signal-regulated kinase (ERK) MAP kinases. In addition, our results show that ERKs and PI3Ks can synergise to convert ectoderm into mesoderm. These data provide the first evidence that class 1 PI3Ks are required for a specific set of patterning events in vertebrate embryos. Furthermore, they bring new insight into the FGF signalling cascade in Xenopus.  相似文献   

13.
The c-Jun NH2-terminal kinase (JNK)-interacting protein (JIP) group of scaffold proteins (JIP1, JIP2, and JIP3) can interact with components of the JNK signaling pathway and potently activate JNK. Here we describe the identification of a fourth member of the JIP family. The primary sequence of JIP4 is most closely related to that of JIP3. Like other members of the JIP family of scaffold proteins, JIP4 binds JNK and also the light chain of the microtubule motor protein kinesin-1. However, the function of JIP4 appears to be markedly different from other JIP proteins. Specifically, JIP4 does not activate JNK signaling. In contrast, JIP4 serves as an activator of the p38 mitogen-activated protein (MAP) kinase pathway by a mechanism that requires the MAP kinase kinases MKK3 and MKK6. The JIP4 scaffold protein therefore appears to be a new component of the p38 MAP kinase signaling pathway.  相似文献   

14.
The acute inflammatory response involves neutrophils wherein recognition of bacterial products, such as lipopolysaccharide (LPS), activates intracellular signaling pathways. We have shown that the mitogen-activated protein kinase (MAPK) c-Jun NH2 terminal kinase (JNK) is activated by LPS in neutrophils and plays a critical role in monocyte chemoattractant protein (MCP)-1 expression and actin assembly. As the Tec family kinases are expressed in neutrophils and regulate activation of the MAPKs in other cell systems, we hypothesized that the Tec kinases are an upstream component of the signaling pathway leading to LPS-induced MAPKs activation in neutrophils. Herein, we show that the Tec kinases are activated in LPS-stimulated human neutrophils and that inhibition of the Tec kinases, with leflunomide metabolite analog (LFM-A13), decreased LPS-induced JNK, but not p38, activity. Furthermore, LPS-induced actin polymerization as well as MCP-1, tumor necrosis factor-α, interleukin-6, and interleukin-1β expression are dependent on Tec kinase activity.  相似文献   

15.

Introduction

The c-Jun N-terminal kinase (JNK) is a key regulator of matrix metalloproteinase (MMP) and cytokine production in rheumatoid arthritis (RA) and JNK deficiency markedly protects mice in animal models of arthritis. Cytokine-induced JNK activation is strictly dependent on the mitogen-activated protein kinase kinase 7 (MKK7) in fibroblast-like synoviocytes (FLS). Therefore, we evaluated whether targeting MKK7 using anti-sense oligonucleotides (ASO) would decrease JNK activation and severity in K/BxN serum transfer arthritis.

Methods

Three 2''-O-methoxyethyl chimeric ASOs for MKK7 and control ASO were injected intravenously in normal C57BL/6 mice. PBS, control ASO or MKK7 ASO was injected from Day -8 to Day 10 in the passive K/BxN model. Ankle histology was evaluated using a semi-quantitative scoring system. Expression of MKK7 and JNK pathways was evaluated by quantitative PCR and Western blot analysis.

Results

MKK7 ASO decreased MKK7 mRNA and protein levels in ankles by about 40% in normal mice within three days. There was no effect of control ASO on MKK7 expression and MKK7 ASO did not affect MKK3, MKK4 or MKK6. Mice injected with MKK7 ASO had significantly less severe arthritis compared with control ASO (P < 0.01). Histologic evidence of synovial inflammation, bone erosion and cartilage damage was reduced in MKK7 ASO-treated mice (P < 0.01). MKK7 deficiency decreased phospho-JNK and phospho-c-Jun in ankle extracts (P < 0.05), but not phospho-MKK4. Interleukin-1beta (IL-1β), MMP3 and MMP13 gene expression in ankle joints were decreased by MKK7 ASO (P < 0.01).

Conclusions

MKK7 plays a critical regulatory role in the JNK pathway in a murine model of arthritis. Targeting MKK7 rather than JNK could provide site and event specificity when treating synovitis.  相似文献   

16.
Signal transduction is a complex protein signaling process with a rich network of multifunctional interactions that occur in a non‐linear fashion. Mitogen‐activated protein kinase (MAPK) signal transduction pathways regulate diverse cellular processes ranging from proliferation and differentiation to apoptosis. In mammals, out of five, there are three well characterized subfamilies of MAPKs ‐ ERKs (Extracellular signal‐regulated kinases), JNKs (c‐Jun N‐terminal kinases), and P38 kinases, and their activators, are implicated in human diseases and are targets for drug development. Kinase cascades in MAPK pathways mediate the sensing and processing of stimuli. To understand how cells makes decisions, the dynamic interactions of components of signaling cascades are important rather than just creating static maps. Based on enzyme kinetic reactions, we have developed a mathematical model to analyze the impact of the cross‐talks between JNK and P38 kinase cascades. Cross‐talks between JNK and P38 kinase cascades influence the activities of P38 kinases. Responses of the signals should be studied for network of kinase cascades by considering cross‐talks.  相似文献   

17.
18.
19.
20.
MAP kinase pathways comprise a group of parallel protein phosphorylation cascades, which are involved in signaling triggered by a variety of stimuli. Previous findings suggested that the ERK and the JNK pathways have opposing roles in regulating proliferation and survival or apoptosis and that apoptosis can be promoted by inhibiting the ERK pathway or by activation of the JNK pathway. In order to test this hypothesis and explore whether it can be exploited as a strategy for killing human cancer cells, we used gene transfer experiments with a range of cancer cell lines. We expressed the catalytic fragment of human MEKK1 to activate JNK and the Ras-binding domain (RBD) of Raf-1 to inhibit the Ras-ERK pathway. In addition, we designed several RBD-MEKK1 fusion proteins aiming to simultaneously activate the JNK and block the ERK pathway. We found that the MEKK1 proteins as well as the RBD alone could reduce colony formation in all cell lines. The survival time of MEKK1-expressing cells depended on the cell line. In HeLa cells, survival could be prolonged by inhibition of caspases but not by coexpression of the anti-apoptotic protein Bcl-2. Due to a lower kinase activity the RBD-MEKK1 fusion proteins were less effective in apoptosis induction than the MEKK1 kinase domain alone. Using mutant forms of Ras and Raf-1 we could show that the reduced kinase activity of RBD-MEKK1 fusion proteins was caused by binding to the Ras protein. The expression of lethal doses of MEKK1 resulted in a strong activation of all three major MAP kinase families JNK, ERK, and p38. Blocking these pathways either by coexpressing a dominant negative form of MKK4 or with inhibitors of MEK or p38 failed to inhibit apoptosis. This suggests that MEKK1 induces apoptosis by causing a general deregulation of MAP kinase signaling rather than by the activation of a single pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号