首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular matrix (ECM) accumulation plays a key role in the progression of bladder outlet obstruction (BOO). Muscarinic receptors have been widely reported to serve as pivotal regulators in lung tissue remodeling. However, the influence of them on human bladder smooth muscle cells (HBSMCs) and the underlying molecular mechanisms have not yet been evaluated. The purposes of the present study are to investigate the effect of muscarinic receptors on the synthesis of ECM in HBSMCs and the involvement of intracellular signal transducers. The results indicated that M1-M5 muscarinic receptors were all encoded in HBSMCs. The expression rank order was M2 > M1 > M5 > M3 > M4. The gene and protein expression of collagen I (COL1), TIMP-1, and TIMP-2 was carbachol (CCH) concentration-dependently enhanced. The synthesis of COL1 in the supernatant of cell culture medium was significantly elevated by exposure to CCH. The CCH-induced protein expression of COL1, TIMP-1, and TIMP-2, however, was obviously reduced by the pretreatment of muscarinic receptor antagonists, atropine, and M3-preferring antagonist (1,1-dimethyl-4-diphenyl-acetoxypiperidinium iodide [4-DAMP]). Furthermore, ERK1/2 was activated by 100 µM CCH when compared with the control group and the pretreatment of ERK1/2 inhibitor significantly suppressed the synthesis of COL1 induced by 100 µM CCH. Besides, CCH-induced phosphorylation of ERK1/2 was remarkably restrained by the pretreatment of 4-DAMP. All in all, these findings demonstrated that M3 receptor can modulate extracellular matrix synthesis via the ERK1/2 signaling pathway, which may provide potential novel therapeutic targets for BOO.  相似文献   

2.
3.
Li AY  Han M  Zheng B  Wen JK 《FEBS letters》2008,582(2):243-248
Roscovitine is a potent CDK inhibitor often used as a biological tool in cell-cycle studies, but its working mechanism and real targets in vascular smooth muscle cells (VSMCs) remain unclear. In this study, we observed that ERK1/2 phosphorylation induced by Ang II was abrogated by pretreating VSMCs with roscovitine for 15h. Pretreating VSMCs with roscovitine also inhibited Ang II-induced c-Jun expression and phosphorylation. We further demonstrated that roscovitine could suppress the DNA binding activity of c-Jun and activation of angiotensinogen promoter by Ang II. These results suggest that roscovitine represses Ang II-induced angiotensinogen expression by inhibiting activation of ERK1/2 and c-Jun.  相似文献   

4.
Angiotensin II (Ang II), one of the main vasoactive hormones of the renin-angiotensin system, contributes to the development and progression of atherosclerosis by inducing vascular smooth muscle cells (VSMCs) migration. Although previous studies have shown that Ang II upregulates low density lipoprotein receptor-related protein 1 (LRP1) expression in VSMCs and increases VSMCs migration, the role of LRP1 in Ang II-induced VSMCs migration remains unclear. Here, we reveal a novel mechanism by which LRP1 induces the expression of matrix metalloproteinase 2 (MMP2) and thereby promotes the migration of rat aortic SMCs (RAoSMCs). Knockdown of LRP1 expression greatly decreased RAoSMCs migration, which was rescued by forced expression of a functional LRP1 minireceptor, suggesting that LRP1 is a key regulator of Ang II-induced RAoSMCs migration. Inhibition of ligand binding to LRP1 by the specific antagonist receptor-associated protein (RAP) also led to reduced RAoSMCs migration. Because MMPs play critical roles in RAoSMCs migration, we examined the expression of several MMPs and found that the expression of functional MMP2 was selectively increased by Ang II treatment and decreased in LRP1-knockdown RAoSMCs. More interestingly, reduced MMP2 expression in LRP1-knockdown cells was completely rescued by exogenous expression of mLRP4, suggesting that MMP2 is a downstream regulator of LRP1 in Ang II-induced RAoSMCs migration. Together, our data strongly suggest that LRP1 promotes the migration of RAoSMCs by regulating the expression and function of MMP2.  相似文献   

5.
Guo RW  Yang LX  Wang H  Liu B  Wang L 《Regulatory peptides》2008,147(1-3):37-44
Angiotensin II (AngII) is widely recognized as a critical regulator of the development of atherosclerosis. Matrix metalloproteinases (MMPs) are thought to participate in plaque destabilization through degradation of the extracellular matrix. In the present study, we investigated the potential mechanism of AngII-induced MMP-9 expression in vascular smooth muscle cells (VSMC). AngII upregulated the expression of MMP-9 significantly in VSMC obtained from rat aorta. RNAi-mediated knockdown of p65 and losartan, an inhibitor of AngII receptors subtype-1 (AT1), could abolish AngII-induced MMP-9 expression. In addition, AngII induced the NF-κB binding activity via AT1 and AT2 receptors in VSMC, and AngII-induced activation of NF-κB is not associated with significant downregulation of IκB. In summary, this study demonstrates that AngII stimulates NF-κB nuclear translocation in VSMC via AT1 and AT2. AngII increases the expression of MMP-9 in VSMC, and AT1 and NF-κB pathways have an important role in this response.  相似文献   

6.
Clinical evidence suggests a relationship between hypertension and insulin resistance, and cross-talk between angiotensin II (Ang II) and insulin signaling pathways may take place. We now report the effect of Ang II on insulin-induced glucose uptake and its intracellular mechanisms in vascular smooth muscle cells (VSMC). We examined the translocation of glucose transporter-4 (GLUT-4) and glucose uptake in rat aortic smooth muscle cells (RASMC). Mitogen-activated protein (MAP) kinases and Akt activities, and phosphorylation of insulin receptor substrate-1 (IRS-1) at the serine and tyrosine residues were measured by immunoprecipitation and immunoblotting. As a result, Ang II inhibited insulin-induced GLUT-4 translocation from cytoplasm to the plasma membrane in RASMC. Ang II induced extracellular signal-regulated kinase (ERK) 1/2 and c-Jun N-terminal kinase (JNK) activation and IRS-1 phosphorylation at Ser307 and Ser616. Ang II-induced Ser307 and Ser616 phophorylation of IRS-1 was inhibited by a MEK inhibitor, PD98059, and a JNK inhibitor, SP600125. Ang II inhibition of insulin-stimulated IRS-1 tyrosyl phophorylation and Akt activation were reversed by PD98059 but not by SP600125. Ang II inhibited insulin-induced glucose uptake, which was also reversed by PD98059 but not by SP600125. It is shown that Ang II-induced ERK1/2 activation inhibits insulin-dependent glucose uptake through serine phophorylation of IRS-1 in RASMC.  相似文献   

7.
It has been reported that glucocorticoid modifies phosphoinositide (PI) hydrolysis stimulated by vasoactive agents in vascular smooth muscle cells. In the present study, we investigated the point at which glucocorticoid affects vasopressin-induced PI hydrolysis in primary cultured rat aortic smooth muscle cells. The pretreatment with dexamethasone significantly amplified the formation of inositol trisphosphate (IP3) induced by vasopressin in a dose-dependent manner in a range of 1 pM to 10 nM. The effect of dexamethasone was dependent on the time of pretreatment up to 8 h. Dexamethasone had little effect on the number of vasopressin receptor and its affinity to vasopressin. The pretreatment with dexamethasone also amplified the formation of IP3 induced by NaF, a GTP-binding protein activator, or angiotensin II. 12-O-Tetradecanoylphorbol-13-acetate, a protein kinase C (PKC)-activating phorbol ester, significantly reduced the dexamethasone-induced enhancement of IP3 formation stimulated by vasopressin, angiotensin II or NaF. 4α-Phorbol-12, 13-didecanoate, a PKC-nonactivating phorbol ester, had little effect on the enhancement by dexamethasone. These results strongly suggest that glucocorticoid amplifies vasopressin-induced PI hydrolysis at a point downstream from GTP-binding protein in primary cultured rat aortic smooth muscle cells, and that the activation of PKC has a negative feedback effect on the amplification by glucocorticoid of vasopressin-induced PI hydrolysis.  相似文献   

8.
采用Westernblot、氚 胸腺嘧啶 ( 3H TdR)和氚 亮氨酸 ( 3H Leu )掺入等技术和方法 ,用血管紧张素Ⅱ(AngⅡ )和血管紧张素 ( 1 7) [Ang ( 1 7) ]刺激大鼠血管平滑肌细胞 (VSMCs) ,观察和分析Ang ( 1 7)对VSMCs增殖及蛋白激酶C (PKC)和胞外调节蛋白激酶 (ERK)表达的影响。Ang ( 1 7)能明显抑制基础和AngⅡ刺激下的VSMCsPKC ζ和ERK1/ 2蛋白表达 (P <0 0 1或P <0 0 5 ) ,减少3H TdR和3H Leu掺入量 (P <0 0 1或P <0 0 5 )。结果提示 ,Ang ( 1 7)对VSMCs增殖有抑制作用 ,这可能与影响PKC ζ和ERK1/ 2蛋白表达有关。  相似文献   

9.
Angiotensin II plays a critical role in hypertrophy of vascular smooth muscle cells, however, the molecular underpinnings remain unclear. The present study indicated that AT1/PKC/PKD pathway was able to regulate downstream ERK5, affecting pro-hypertrophic responses to Ang II. Ang II-stimulated phosphorylation of ERK5 in a time- and dose-dependent manner in human aortic smooth muscle cells (HASMCs). The pharmacological inhibitors for AT1 and PKCs significantly inhibited Ang II-induced ERK5 activation, suggesting the involvement of the AT1/PKC pathway. In particular, PKD was critical for Ang II-induced ERK5 activation since silencing PKD by siRNA markedly inhibited Ang II-induced ERK5 activation. Consequently, we found that Losartan, Gö 6983 and PKD siRNA significantly attenuated ERK5 activated translocation and hypertrophy of HASMCs by Ang II. Taken together, we demonstrated for the first time that Ang II activates ERK5 via the AT1/PKC/PKD pathway and revealed a critical role of ERK5 in Ang II-induced HASMCs hypertrophy.  相似文献   

10.
Summary Monocyte chemotactic protein-1 (MCP-1), a potent chemoattractant for monocytes, is thought to play a major role in atherosclerosis, but whether its atherogenic effects involve the direct modulation of vascular smooth muscle cell (SMC) functions remains unclear. This study examined the effects of MCP-1 on the migration of cultured A7r5 SMCs and the signaling pathways involved. Addition of recombinant MCP-1 stimulated SMC migration in modified Boyden chambers coated with type I collagen in a concentration-dependent manner, with 10–9 M being maximally effective. Using untreated A7r5 cells, two MCP-1 receptors, CCR2 and CCR4, were detected and MCP-1 secretion was significantly increased by stimulation with platelet-derived growth factor. MCP-1-stimulated A7r5 migration was completely blocked by the NAD(P)H oxidase inhibitor, diphenylene iodonium (DPI), and dose-dependently inhibited by polyethylene glycol-conjugated superoxide dismutase (PEG-SOD), suggesting a role for reactive oxygen species (ROS) in this process. During MCP-1 stimulation, ROS production increased rapidly, then gradually decayed over 60 min, and this effect was markedly decreased by pretreatment with DPI or PEG-SOD. Interestingly, U0126 and PD98059, which inhibit activation of extracellular signal-regulated kinases 1/2 (ERK 1/2), significantly inhibited MCP-1-activated ROS generation. Furthermore, transfection of an active mutant of MEK1 (ERK 1/2 kinase) markedly increased superoxide production in rat aortic smooth muscle cells, as detected by dihydroethydium staining, suggesting that ERK 1/2 activation stimulates ROS generation. ERK 1/2 activation was increased for at least 30 min in cells incubated with MCP-1, and this effect was abolished by U0126 or DPI pretreatment. These results demonstrate that MCP-1 is a chemoattractant for SMCs and that MCP-1-stimulated migration requires both ROS production and ERK 1/2 activation in a positive activation loop, which may contribute to the atherogenic effects of MCP-1.These authors contributed equally to this work.  相似文献   

11.
Intimal hyperplasia is the main cause of restenosis after carotid artery injury, and the underlying mechanism involves the proliferation and migration of vascular smooth muscle cells (VSMCs). Angiotensin II Type 1 Receptor-Associated Protein (ATRAP) has been reported to withstand intimal hyperplasia by inhibiting VSMCs proliferation and migration; however, whether the beneficial effect of ATRAP associates with VSMCs apoptosis remains unclarified. We demonstrated that the adenoviral-mediated overexpression of ATRAP induced VSMC apoptosis, alleviating the balloon injury-induced neointima formation in rats. Under the condition of Angiotensin-II stimulation, ATRAP overexpression induced the apoptosis of rat VSMCs by depressing the PI3K-Akt signaling; whereas up-regulation of Akt by PTEN inhibitor abolished the apoptotic death. Thus, ATRAP regulates carotid intimal hyperplasia through controlling the PI3K-Akt signal-mediated VSMCs apoptosis.  相似文献   

12.
Summary Elastin accumulation in the extracellular matrix of cultured rat aortic smooth muscle cells was monitored as a function of age. The effect of the animal donor age and time in culture in single or consecutive passages on the cells’ ability to accumulate total protein as well as elastin was evaluated. Smooth muscle cells were obtained from animals ranging in age from 2 d to 36 mo. Protein accumulation by the cells based on DNA content was similar regardless of which of the above aging parameters was examined. Although there were significant amounts of elastin present in the extracellular matrix of those cells originating from the younger animals (2 d and 6 wk old), little or none was detected in cell cultures derived from the oldest animals. A soluble elastin-like fraction which was isolated from the cultures of the 2-d-old rats seemed to be lacking in the cultures of cells from the 36-mo-old animals. This observation may, in part, explain the absence of insoluble elastin in the matrix of some cultures obtained from older animals. The data strongly suggest that the age of the donor animal from which the cells originate has the greatest influence on in vitro elastin accumulation. This study was supported by National Institutes of Health Grants HL 19717 and HL 13262.  相似文献   

13.
Aortic stiffening is an independent risk factor that underlies cardiovascular morbidity in the elderly. We have previously shown that intrinsic mechanical properties of vascular smooth muscle cells (VSMCs) play a key role in aortic stiffening in both aging and hypertension. Here, we test the hypothesis that VSMCs also contribute to aortic stiffening through their extracellular effects. Aortic stiffening was confirmed in spontaneously hypertensive rats (SHRs) vs. Wistar‐Kyoto (WKY) rats in vivo by echocardiography and ex vivo by isometric force measurements in isolated de‐endothelized aortic vessel segments. Vascular smooth muscle cells were isolated from thoracic aorta and embedded in a collagen I matrix in an in vitro 3D model to form reconstituted vessels. Reconstituted vessel segments made with SHR VSMCs were significantly stiffer than vessels made with WKY VSMCs. SHR VSMCs in the reconstituted vessels exhibited different morphologies and diminished adaptability to stretch compared to WKY VSMCs, implying dual effects on both static and dynamic stiffness. SHR VSMCs increased the synthesis of collagen and induced collagen fibril disorganization in reconstituted vessels. Mechanistically, compared to WKY VSMCs, SHR VSMCs exhibited an increase in the levels of active integrin β1‐ and bone morphogenetic protein 1 (BMP1)‐mediated proteolytic cleavage of lysyl oxidase (LOX). These VSMC‐induced alterations in the SHR were attenuated by an inhibitor of serum response factor (SRF)/myocardin. Therefore, SHR VSMCs exhibit extracellular dysregulation through modulating integrin β1 and BMP1/LOX via SRF/myocardin signaling in aortic stiffening.  相似文献   

14.
Previous studies have shown that epigallocatechin-3-gallate (EGCG) inhibits the proliferation of vascular smooth muscle cells (VSMCs) via the extracellular-signal-regulated kinase (ERK1/2) and mitogen activated protein kinases (MAPKs) pathway. Mitofusin 2 (Mfn-2) also suppresses VSMC proliferation through Ras-Raf-ERK/MAPK, suggesting a possible link between EGCG, Mfn-2 and ERK/MAPK. However, the effect of EGCG on Mfn-2 remains unknown. In this study, we investigated the role of Mfn-2 in the regulation of VSMC proliferation by EGCG, and assessed the underlying mechanisms. The effects of EGCG on the proliferation of cultured human aortic smooth muscle cells (HASMCs) were observed by 5-ethynl-2-deoxyuridine (EdU) incorporation assay. Mfn-2 gene and protein levels, and Ras, p-c-Raf and p-ERK1/2 protein levels were determined by quantitative real-time polymerase chain reaction and western blotting, respectively. Mfn-2 gene silencing was achieved by RNA interference. EGCG 50 μmol/L profoundly inhibited the proliferation of HASMCs in culture, up-regulated Mfn-2, and down-regulated the expression of p-c-Raf and p-ERK1/2. Furthermore, RNA interference-mediated gene knockdown of Mfn-2 antagonized EGCG-induced anti-proliferation and down-regulation of Ras, p-c-Raf and p-ERK1/2. These results suggest that EGCG inhibits the proliferation of HASMCs in vitro largely via Mfn-2-mediated suppression of the Ras-Raf-ERK/MAPK signaling pathway.  相似文献   

15.
Our goal was to characterize the role of integrin-linked kinase (ILK) in vascular smooth muscle cells (VSMC), which play a crucial role in atherogenesis. Transfection of VSMC with wild-type and dominant-negative ILK cDNA constructs revealed that ILK mediates migration and proliferation of VSMC but has no effect on VSMC survival. The pro-atherogenic mediator angiotensin II increases ILK protein expression and kinase activity while statin treatment down-regulates ILK in VSMC. Functionally, ILK is necessary for angiotensin II-mediated VSMC migration and proliferation. In VSMC transduced with dominant-negative ILK, statins mediate an additive inhibition of VSMC migration and proliferation, while transfection with wild-type ILK is sufficient to overcome the inhibitory effects of statin treatment on VSMC migration and proliferation. In vivo, ILK is expressed in VSMC of aortic sections from wild-type mice where it is down-regulated following statin treatment and up-regulated following induction of atherosclerosis in apoE-/- mice. These data identify ILK as a novel target in VSMC for anti-atherosclerotic therapy.  相似文献   

16.
Chronic oxidative injury by allylamine (AAM) induces proliferative vascular smooth muscle cell (vSMC) phenotypes in the rat aorta similar to those seen in rodent and human atherosclerotic lesions. The proliferative advantage of AAM vSMC compared to control cells is maintained with serial passage of the cells and the advantage is nullified when AAM cells are seeded on a collagen substrate. In this study, we evaluate the potential role of cyclin dependent kinase inhibitors, p27 and p21, and mitogen activated protein (MAP) kinases, ERK1/2, in mediating the proliferative advantage of AAM stressed vSMC over control cells on plastic or collagen substrates. p27 levels in randomly cycling cells were comparable in both cell types irrespective of the substrate. In contrast, basal levels of p21 were 1.9 +/- 0.3 (P < 0.05)-fold higher in randomly cycling AAM cells seeded on plastic compared to controls, a difference that was lost on a collagen substrate. Following G0 synchronization, basal levels of both p27 and p21 were higher in AAM cells seeded on plastic compared to controls (1.7 +/- 0.2 and 2.0 +/- 0.3-fold, respectively, P < 0.05), but these differences were lost upon mitogenic stimulation. Pyrrolidine dithiocarbamate (PDTC) decreased p27 and p21 levels in cycling AAM cells relative to controls in a substrate-dependent manner. AAM cells seeded on plastic exhibited enhanced ERK1/2 activation upon mitogenic stimulation; seeding on collagen nullified this advantage. The duration of ERK1/2 activation was prolonged in AAM cells independently of the seeding substrate. We conclude that substrate-dependent acquisition of proliferative phenotypes following repeated cycles of AAM injury correlates with modulation of the cyclin dependent kinase inhibitors, p27 and p21.  相似文献   

17.
Hyperglycemia stimulates a plethora of intracellular signaling pathways within the cells of the vascular wall resulting in dysfunction-associated pathologies. Most of the studies reported so far explored the effect of rather short-time exposure of smooth muscle cells to high glucose concentrations. To mimic situation in Type 2 diabetes in which vascular wall is constantly exposed to circulating hyperglycemia, we report here the long-term (7 days) effect of high glucose concentration on human media artery smooth muscle cells. This consists in up-regulation of PTP1B protein expression, down-regulation of basal Akt phosphorylation, and elevation of basal ERK1/2 activation. Acute stimulation of cells in high glucose with insulin down-regulated PTP1B expression, slightly decreased ERK1/2 activity, and activated Akt, whereas oxidative stress up-regulated Akt and ERK1/2 phosphorylation. In conclusion, long-term high glucose and acute oxidative stress and insulin stimulation imbalance the expression of activated kinases Akt and ERK1/2 and of dephosphorylating PTP1B in the insulin signaling pathway.  相似文献   

18.
Xie M  Liu XS  Xu YJ  Zhang ZX  Bai J  Ni W  Chen SX 《生理学报》2007,59(1):94-102
本研究旨在探讨细胞外信号调节激酶1/2(extracellular signal-regulated kinase,ERK1/2)信号通路在慢性哮喘模型大鼠支气管平滑肌细胞(bronchial smooth muscle cells,BSMCs)迁移能力改变中的调控作用。应用卵清蛋白致敏和雾化方法制备大鼠慢性哮喘模型,体外培养大鼠BSMCs,采用免疫荧光细胞化学、Western blot和RT-PCR方法检测ERK1/2信号通路的表达,分别用平面迁移实验和跨膜迁移实验来评价BSMCs的活动和趋向迁移能力,并比较用和不用ERK1/2信号通路干预剂的差异。Western blot结果显示慢性哮喘模型大鼠BSMCs中总ERK1/2(9.13±0.87)较对照组(4.68±0.59)明显增加,磷酸化ERK1/2(p-ERK1/2)占总ERK1/2的比值(0.55±0.05)较对照组(0.48±0.04)显著提高(n=10,P<0.01)。慢性哮喘组ERK1和ERK2 mRNA的表达(1.83±0.24和1.07±0.11)较对照组(0.58±0.14和0.51±0.12)明显增高(n=10,P<0.01)。在平面迁移实验中,慢性哮喘大鼠BSMCs的迁移最远距离是对照组的(2.9±0.1)倍,在ERK1/2激动剂表皮生长因子(epidermal growth factor, EGF)刺激下增加到(5.0±0.2)倍,而在30μmol/L PD98059的作用后下降到(1.7±0.2)倍。正常对照大鼠BSMCs平面迁移能力对PD98059的反应较慢性哮喘组弱,仅在100μmol/L PD98059的作用下下降到(0.8±0.1)倍。跨膜迁移实验中,慢性哮喘大鼠BSMCs的跨膜迁移细胞是对照组的(1.9±0.1)倍,在EGF刺激下增加到(3.1±0.2)倍,而在30μmol/L PD98059作用后下降到(1.45±0.2)倍。这些结果表明慢性哮喘模型大鼠BSMCs的迁移能力明显增强,ERK1/2信号通路在该功能变化的调控中可能发挥了重要作用。  相似文献   

19.
Summary The ganglioside composition of calf aortic smooth muscle cells, cultured in the presence and absence of ascorbate, was analyzed. Previous work has shown that ascorbate supplementation leads to the formation of an extracellular matrix consisting primarily of collagen and that this matrix influences the biosynthetic capabilities of the cell. Cell cultures were supplemented with ascorbate for 3 wk and labeled with [14C]glucosamine for 3 d before harvesting. Ascorbate supplementation resulted in increased ganglioside sialic acid levels and a change in chromatographic profile involving both absolute and relative increases in GD1a. The latter, along with polysialo species, showed increased incorporation of [14C]glucosamine. These findings are interpreted in relation to the proposed role of gangliosides as mediators in the interaction of various cells with extracellular matrix. This work was supported by grants 1-P01-AG05554 and 2-R01-NS-04834 from the Public Health Service, Washington, DC, as well as a Presidential Junior Faculty Development Award (JAS) from the Purchase College Foundation.  相似文献   

20.
ABSTRACT

C-C motif Chemokine ligand 8 (CCL8) has been found in diseases’ pathogenesis. But its molecular mechanism in atherosclerosis (AS) remains to be elucidated. Human aortic smooth muscle cells (HASMCs) were stimulated by PDGF-BB to establish cell model. α-SMA in PDGF-BB-stimulated HASMCs was measured by immunofluorescence staining. Relative gene expressions in PDGF-BB-stimulated HASMCs were detected by quantitative real-time polymerase chain reaction and western blot. HASMCs proliferation, migration, and cell cycle were assessed by cell counting kit-8, wound-healing assay, and flow cytometry. HASMCs viability was increased after PDGF-BB stimulation, with α-SMA downregulation yet CCL8 upregulation. Silencing CCL8 inhibited PDGF-BB-stimulated HASMCs proliferation and migration, and increased cells percentage in G1 phases but decreased those in S phase. Also, silencing CCL8 decreased OPN and cyclinD1 expressions and AKT and ERK1/2 phosphorylation while increased those of α-SMA and Sm22α. However, upregulating CCL8 led to opposite effects, suggesting CCL8 could be an atherosclerosis therapeutic target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号