首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
WWOX, the WW domain-containing oxidoreductase gene at chromosome region 16q23.3–q24.1, spanning chromosomal fragile site FRA16D, encodes the 46 kDa Wwox protein, a tumor suppressor that is lost or reduced in expression in a wide variety of cancers, including breast, prostate, ovarian, and lung. The function of Wwox as a tumor suppressor implies that it serves a function in the prevention of carcinogenesis. Indeed, in vitro studies show that Wwox protein interacts with many binding partners to regulate cellular apoptosis, proliferation, and/or maturation. It has been reported that newborn Wwox knockout mice exhibit nascent osteosarcomas while Wwox+/− mice exhibit increased incidence of spontaneous and induced tumors. Furthermore, absence or reduction of Wwox expression in mouse xenograft models results in increased tumorigenesis, which can be rescued by Wwox re-expression, though there is not universal agreement among investigators regarding the role of Wwox loss in these experimental models. Despite this proposed tumor suppressor function, the overlap of the human WWOX locus with FRA16D sensitizes the gene to protein-inactivating deletions caused by replication stress. The high frequency of deletions within the WWOX locus in cancers of various types, without the hallmark protein inactivation-associated mutations of “classical” tumor suppressors, has led to the proposal that WWOX deletions in cancers are passenger events that occur in early cancer progenitor cells due to fragility of the genetic locus, rather than driver events which provide the cancer cell a selective advantage. Recently, a proposed epigenetic cause of chromosomal fragility has suggested a novel mechanism for early fragile site instability and has implications regarding the involvement of tumor suppressor genes at chromosomal fragile sites in cancer. In this review, we provide an overview of the evidence for WWOX as a tumor suppressor gene and put this into the context of fragility associated with the FRA16D locus.  相似文献   

2.
3.
Since its discovery in 2000, WW domain-containing oxidoreductase (WWOX, FOR or WOX1) has been considered as a tumor suppressor protein. Global research focus has been aimed mainly toward this direction. In this thematic issue, updated information has been collected regarding the structure, function and signaling of WWOX, along with its critical role as a tumor suppressor and participation in metabolism, neurodegeneration, ataxia, epilepsy, neural disorders, neuronal damages, and interactions with oncogenic viruses. WWOX is not a driver of cancer initiation. Chromosomal alterations in the WWOX gene enhance cancer progression. Importantly, a homozygous nonsense mutation of WWOX gene in humans leads to neural pathologies and early death, rather than spontaneous cancer development. These findings suggest new physiological functions of WWOX in metabolism and neural diseases, and these areas require further investigation.  相似文献   

4.
5.
WWOX is a >1Mb gene spanning FRA16D Common Chromosomal Fragile Site, a region of DNA instability in cancer. Consequently, altered WWOX levels have been observed in a wide variety of cancers. In vitro studies have identified a large number and variety of potential roles for WWOX. Although its normal role in vivo and functional contribution to cancer have not been fully defined, WWOX does have an integral role in metabolism and can suppress tumor growth. Using Drosophila melanogaster as an in vivo model system, we find that WWOX is a modulator of TNFα/Egr-mediated cell death. We found that altered levels of WWOX can modify phenotypes generated by low level ectopic expression of TNFα/Egr and this corresponds to altered levels of Caspase 3 activity. These results demonstrate an in vivo role for WWOX in promoting cell death. This form of cell death is accompanied by an increase in levels of reactive oxygen species, the regulation of which we have previously shown can also be modified by altered WWOX activity. We now hypothesise that, through regulation of reactive oxygen species, WWOX constitutes a link between alterations in cellular metabolism observed in cancer cells and their ability to evade normal cell death pathways. We have further shown that WWOX activity is required for the efficient removal of tumorigenic cells from a developing epithelial tissue. Together these results provide a molecular basis for the tumor suppressor functions of WWOX and the better prognosis observed in cancer patients with higher levels of WWOX activity. Understanding the conserved cellular pathways to which WWOX contributes provides novel possibilities for the development of therapeutic approaches to restore WWOX function in cancer.  相似文献   

6.
7.
WWOX, the gene that spans the second most common human chromosomal fragile site, FRA16D, is inactivated in multiple human cancers and behaves as a suppressor of tumor growth. Since we are interested in understanding WWOX function in both normal and cancer tissues we generated mice harboring a conditional Wwox allele by flanking Exon 1 of the Wwox gene with LoxP sites. Wwox knockout (KO) mice were developed by breeding with transgenic mice carrying the Cre-recombinase gene under the control of the adenovirus EIIA promoter. We found that Wwox KO mice suffered from severe metabolic defect(s) resulting in growth retardation and all mice died by 3 wk of age. All Wwox KO mice displayed significant hypocapnia suggesting a state of metabolic acidosis. This finding and the known high expression of Wwox in kidney tubules suggest a role for Wwox in acid/base balance. Importantly, Wwox KO mice displayed histopathological and hematological signs of impaired hematopoeisis, leukopenia, and splenic atrophy. Impaired hematopoeisis can also be a contributing factor to metabolic acidosis and death. Hypoglycemia and hypocalcemia was also observed affecting the KO mice. In addition, bone metabolic defects were evident in Wwox KO mice. Bones were smaller and thinner having reduced bone volume as a consequence of a defect in mineralization. No evidence of spontaneous neoplasia was observed in Wwox KO mice. We have generated a new mouse model to inactivate the Wwox tumor suppressor gene conditionally. This will greatly facilitate the functional analysis of Wwox in adult mice and will allow investigating neoplastic transformation in specific target tissues.  相似文献   

8.
The NADPH oxidase 2 (NOX2) complex is a professional producer of reactive oxygen species (ROS) and is mainly expressed in phagocytes. While the activity of the NOX2 complex is essential for immunity against pathogens and protection against autoimmunity, its role in the development of malignant tumors remains unclear. We compared wild type and Ncf1 m1J mutated mice, which lack functional NOX2 complex, in four different tumor models. Ncf1 m1J mutated mice developed significantly smaller tumors in two melanoma models in which B16 melanoma cells expressing a hematopoietic growth factor FLT3L or luciferase reporter were used. Ncf1 m1J mutated mice developed significantly fewer Lewis Lung Carcinoma (LLC) tumors, but the tumors that did develop, grew at a pace that was similar to the wild type mice. In the spontaneously arising prostate carcinoma model (TRAMP), tumor growth was not affected. The lack of ROS-mediated protection against tumor growth was associated with increased production of immunity-associated cytokines. A significant increase in Th2 associated cytokines was observed in the LLC model. Our present data show that ROS regulate rejection of the antigenic B16-luc and LLC tumors, whereas the data do not support a role for ROS in growth of intrinsically generated tumors.  相似文献   

9.
Low serum HDL-cholesterol (HDL-C) is a major risk factor for coronary artery disease. We performed targeted genotyping of a 12.4 Mb linked region on 16q to test for association with low HDL-C by using a regional-tag SNP strategy. We identified one SNP, rs2548861, in the WW-domain-containing oxidoreductase (WWOX) gene with region-wide significance for low HDL-C in dyslipidemic families of Mexican and European descent and in low-HDL-C cases and controls of European descent (p = 6.9 × 10−7). We extended our investigation to the population level by using two independent unascertained population-based Finnish cohorts, the cross-sectional METSIM cohort of 4,463 males and the prospective Young Finns cohort of 2,265 subjects. The combined analysis provided p = 4 × 10−4 to 2 × 10−5. Importantly, in the prospective cohort, we observed a significant longitudinal association of rs2548861 with HDL-C levels obtained at four different time points over 21 years (p = 0.003), and the T risk allele explained 1.5% of the variance in HDL-C levels. The rs2548861 resides in a highly conserved region in intron 8 of WWOX. Results from our in vitro reporter assay and electrophoretic mobility-shift assay demonstrate that this region functions as a cis-regulatory element whose associated rs2548861 SNP has a specific allelic effect and that the region forms an allele-specific DNA-nuclear-factor complex. In conclusion, analyses of 9,798 subjects show significant association between HDL-C and a WWOX variant with an allele-specific cis-regulatory function.  相似文献   

10.
11.
Allelic imbalance and microsatellite instability in operating materials from 78 patients with gastric cancer was studied. Microsatellite polymorphism for 17p13.1 (TP53), 1p36.1 (RUNX3), 16p22 (CDH1), and MH (BAT26) was determined in tumor and adjacent (morphologically normal) tissues of gastric mucosa. The allelic imbalance of 17p13.3 (p = 0.0176) and 16p22 (p = 0.023) loci by two and more loci in a single sample (p = 0.0176), as well as microsatellite instability (p = 0.047), is observed significantly more frequently in intestinal types of tumors than in tumors of a diffuse type. During the comparison of clinical groups with different degrees of tumor-cell differentiation, it was demonstrated that allelic imbalance by 16p22 locus (p = 0.041) and by two and more loci in a single sample (p = 0.0057) is observed more frequently in highly differentiated or moderately differentiated tumors. We did not detect significant differences in the groups of patients with metastases (or without them) in regional lymphatic nodes with different localizations and at different stages of the tumor process.  相似文献   

12.
The WW domain-containing oxidoreductase (WWOX) encodes a tumor suppressor that is frequently altered in cancer. WWOX binds several proteins and thus is postulated to be involved in a variety of cellular processes. Interestingly, Wwox-knockout mice develop normally in utero but succumb to hypoglycemia and other metabolic defects early in life resulting in their death by 3–4 weeks of age. Cumulative evidence has linked WWOX with cellular metabolism including steroid metabolism, high-density lipoprotein cholesterol (HDL-C) metabolism, bone metabolism and, more recently, glucose metabolism. In this review, we discuss these evolving functions for WWOX and how its deletion affects cellular metabolism and neoplastic progression.  相似文献   

13.
Tumor formation in cucurbit cultivars resulting from infection by various strains of Agrobacterium tumefaciens and Agrobacterium rhizogenes is environmentally affected. In all instances, tumors could be induced on excised cotyledons while inoculating attached cotyledons or stems resulted in no tumor formation. In addition, buttercup squash (Cucurbita maxima Duch. buttercup) was most susceptible to tumor formation, while butterbush squash (Cucurbita maxima Duch. butterbush) failed to form tumors when inoculated with any of the strains of Agrobacterium. Other tested cucurbit cultivars showed intermediate susceptibility to tumor induction by the various Agrobacterium strains.  相似文献   

14.
The stromal cells associated with tumors such as melanoma are significant determinants of tumor growth and metastasis. Using membrane-bound prostaglandin E synthase 1 (mPges1−/−) mice, we show that prostaglandin E2 (PGE2) production by host tissues is critical for B16 melanoma growth, angiogenesis, and metastasis to both bone and soft tissues. Concomitant studies in vitro showed that PGE2 production by fibroblasts is regulated by direct interaction with B16 cells. Autocrine activity of PGE2 further regulates the production of angiogenic factors by fibroblasts, which are key to the vascularization of both primary and metastatic tumor growth. Similarly, cell-cell interactions between B16 cells and host osteoblasts modulate mPGES-1 activity and PGE2 production by the osteoblasts. PGE2, in turn, acts to stimulate receptor activator of NF-κB ligand expression, leading to osteoclast differentiation and bone erosion. Using eicosanoid receptor antagonists, we show that PGE2 acts on osteoblasts and fibroblasts in the tumor microenvironment through the EP4 receptor. Metastatic tumor growth and vascularization in soft tissues was abrogated by an EP4 receptor antagonist. EP4-null Ptger4−/− mice do not support B16 melanoma growth. In vitro, an EP4 receptor antagonist modulated PGE2 effects on fibroblast production of angiogenic factors. Our data show that B16 melanoma cells directly influence host stromal cells to generate PGE2 signals governing neoangiogenesis and metastatic growth in bone via osteoclast erosive activity as well as angiogenesis in soft tissue tumors.  相似文献   

15.

Background

To investigate the dynamics of inter- and intratumoral molecular alterations during tumor progression in recurrent gliomas.

Methodology/Principal Findings

To address intertumoral heterogeneity we investigated non- microdissected tumor tissue of 106 gliomas representing 51 recurrent tumors. To address intratumoral heterogeneity a set of 16 gliomas representing 7 tumor pairs with at least one recurrence, and 4 single mixed gliomas were investigated by microdissection of distinct oligodendroglial and astrocytic tumor components. All tumors and tumor components were analyzed for allelic loss of 1p/19q (LOH 1p/19q), for TP53- mutations and for R132 mutations in the IDH1 gene. The investigation of non- microdissected tumor tissue revealed clonality in 75% (38/51). Aberrant molecular alterations upon recurrence were detected in 25% (13/51). 64% (9/14) of these were novel and associated with tumor progression. Loss of previously detected alterations was observed in 36% (5/14). One tumor pair (1/14; 7%) was significant for both. Intratumoral clonality was detected in 57% (4/7) of the microdissected tumor pairs and in 75% (3/4) of single microdissected tumors. 43% (3/7) of tumor pairs and one single tumor (25%) revealed intratumoral heterogeneity. While intratumoral heterogeneity affected both the TP53- mutational status and the LOH1p/19q status, all tumors with intratumoral heterogeneity shared the R132 IDH1- mutation as a common feature in both their microdissected components.

Conclusions/Significance

The majority of recurrent gliomas are of monoclonal origin. However, the detection of divertive tumor cell clones in morphological distinct tumor components sharing IDH1- mutations as early event may provide insight into the tumorigenesis of true mixed gliomas.  相似文献   

16.

Background

Urothelial bladder cancer is a highly heterogeneous disease. Cancer cell lines are useful tools for its study. This is a comprehensive genomic characterization of 40 urothelial bladder carcinoma (UBC) cell lines including information on origin, mutation status of genes implicated in bladder cancer (FGFR3, PIK3CA, TP53, and RAS), copy number alterations assessed using high density SNP arrays, uniparental disomy (UPD) events, and gene expression.

Results

Based on gene mutation patterns and genomic changes we identify lines representative of the FGFR3-driven tumor pathway and of the TP53/RB tumor suppressor-driven pathway. High-density array copy number analysis identified significant focal gains (1q32, 5p13.1-12, 7q11, and 7q33) and losses (i.e. 6p22.1) in regions altered in tumors but not previously described as affected in bladder cell lines. We also identify new evidence for frequent regions of UPD, often coinciding with regions reported to be lost in tumors. Previously undescribed chromosome X losses found in UBC lines also point to potential tumor suppressor genes. Cell lines representative of the FGFR3-driven pathway showed a lower number of UPD events.

Conclusions

Overall, there is a predominance of more aggressive tumor subtypes among the cell lines. We provide a cell line classification that establishes their relatedness to the major molecularly-defined bladder tumor subtypes. The compiled information should serve as a useful reference to the bladder cancer research community and should help to select cell lines appropriate for the functional analysis of bladder cancer genes, for example those being identified through massive parallel sequencing.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1450-3) contains supplementary material, which is available to authorized users.  相似文献   

17.
18.
Tumor Growth Complementation Among Strains of Agrobacterium   总被引:2,自引:1,他引:1       下载免费PDF全文
The ability of 31 strains of Agrobacterium to initiate the production of a tumor growth factor (TGF) which is associated with crown-gall tumors on primary pinto bean leaves was determined. Extracts from bean leaves inoculated with these bacteria were tested and they showed that 16 of the 19 strains that induced tumors on the leaves also initiated TGF production. The three strains for which no TGF was detected were of low infectivity and included two strains of A. tumefaciens and a strain of A. rhizogenes. Five of the 12 strains that did not induce pinto bean leaf tumors were found to initiate TGF production. Representatives of A. tumefaciens, A. rhizogenes, and A. radiobacter among these 12 strains were present in both categories. Mixed inocula composed of one of the three infectious TGF-negative strains and one of the five nontumorigenic TGF-positive strains resulted in increased growth of tumors induced by the former. These growth changes were not correlated with changes in tumor number. The ability of different strains to show these tumor growth complementation effects corresponded fully with their ability to initiate TGF, as determined by the assay of leaf extracts. The nontumorigenic TGF-positive strains also promoted the growth of tumors initiated by low concentrations of strain B6. These complementation effects were due, therefore, to the same TGF found in extracts of B6 inoculated leaves and of leaves inoculated with most tumorigenic as well as many nontumorigenic strains of Agrobacterium. Heat-inactivated cells of strain B6 failed to initiate sufficient TGF to be detected in extracts, and heat-inactivated cells of several strains failed to show tumor growth complementation, indicating bacterial viability to be one prerequisite for TGF initiation. Heat inactivated cells also inhibited TGF production by viable cells, similar to their ability to inhibit tumor initiation. Consequently, bacteria capable of attaching to the A. tumefaciens infection site may initiate one of four patterns of events: (i) TGF production only, (ii) tumor induction only, (iii) both, or (iv) neither. Suggestive evidence for a second tumor-associated growth factor is presented.  相似文献   

19.
One of the key questions about genomic alterations in cancer is whether they are functional in the sense of contributing to the selective advantage of tumor cells. The frequency with which an alteration occurs might reflect its ability to increase cancer cell growth, or alternatively, enhanced instability of a locus may increase the frequency with which it is found to be aberrant in tumors, regardless of oncogenic impact. Here we’ve addressed this on a genome-wide scale for cancer-associated focal deletions, which are known to pinpoint both tumor suppressor genes (tumor suppressors) and unstable loci. Based on DNA copy number analysis of over one-thousand human cancers representing ten different tumor types, we observed five loci with focal deletion frequencies above 5%, including the A2BP1 gene at 16p13.3 and the MACROD2 gene at 20p12.1. However, neither RNA expression nor functional studies support a tumor suppressor role for either gene. Further analyses suggest instead that these are sites of increased genomic instability and that they resemble common fragile sites (CFS). Genome-wide analysis revealed properties of CFS-like recurrent deletions that distinguish them from deletions affecting tumor suppressor genes, including their isolation at specific loci away from other genomic deletion sites, a considerably smaller deletion size, and dispersal throughout the affected locus rather than assembly at a common site of overlap. Additionally, CFS-like deletions have less impact on gene expression and are enriched in cell lines compared to primary tumors. We show that loci affected by CFS-like deletions are often distinct from known common fragile sites. Indeed, we find that each tumor tissue type has its own spectrum of CFS-like deletions, and that colon cancers have many more CFS-like deletions than other tumor types. We present simple rules that can pinpoint focal deletions that are not CFS-like and more likely to affect functional tumor suppressors.  相似文献   

20.
PURPOSE: The identification of tumor pathologic characteristics is an important part of breast cancer diagnosis, prognosis, and treatment planning but currently requires biopsy as its standard. Here, we investigated a noninvasive quantitative ultrasound method for the characterization of breast tumors in terms of their histologic grade, which can be used with clinical diagnostic ultrasound data. METHODS: Tumors of 57 locally advanced breast cancer patients were analyzed as part of this study. Seven quantitative ultrasound parameters were determined from each tumor region from the radiofrequency data, including mid-band fit, spectral slope, 0-MHz intercept, scatterer spacing, attenuation coefficient estimate, average scatterer diameter, and average acoustic concentration. Parametric maps were generated corresponding to the region of interest, from which four textural features, including contrast, energy, homogeneity, and correlation, were determined as further tumor characterization parameters. Data were examined on the basis of tumor subtypes based on histologic grade (grade I versus grade II to III). RESULTS: Linear discriminant analysis of the means of the parametric maps resulted in classification accuracy of 79%. On the other hand, the linear combination of the texture features of the parametric maps resulted in classification accuracy of 82%. Finally, when both the means and textures of the parametric maps were combined, the best classification accuracy was obtained (86%). CONCLUSIONS: Textural characteristics of quantitative ultrasound spectral parametric maps provided discriminant information about different types of breast tumors. The use of texture features significantly improved the results of ultrasonic tumor characterization compared to conventional mean values. Thus, this study suggests that texture-based quantitative ultrasound analysis of in vivo breast tumors can provide complementary diagnostic information about tumor histologic characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号