首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The encounter of a replication fork with either a damaged DNA template, a nick in the template strand or a 'frozen' protein-DNA complex can stall the replisome and cause it to fall apart. Such an event generates a requirement for replication fork restart if the cell is going to survive. Recent evidence shows that replication fork restart is effected by the action of the recombination proteins generating a substrate for PriA-directed replication fork assembly.  相似文献   

2.
Replication of the genome is crucial for the accurate transmission of genetic information. It has become clear over the last decade that the orderly progression of replication forks in both prokaryotes and eukaryotes is disrupted with high frequency by encounters with various obstacles either on or in the template strands. Survival of the organism then becomes dependent on both removal of the obstruction and resumption of replication. This latter point is particularly important in bacteria, where the number of replication forks per genome is nominally only two. Replication restart in Escherichia coli is accomplished by the action of the restart primosomal proteins, which use both recombination intermediates and stalled replication forks as substrates for loading new replication forks. These reactions have been reconstituted with purified recombination and replication proteins.  相似文献   

3.
In this report, we study the role of pre-primosome proteins in a strain in which the frequency of replication arrest is increased because of a mutation in a replication protein. The holDG10 mutant was used, in which replication restart involves replication fork reversal. As expected, PriA primosome assembly function is essential for growth of the holDG10 mutant. The priA300 mutation, which inactivates only the helicase function of PriA in vitro, and priB inactivation strongly impair viability. In contrast, priC inactivation has no effect. Therefore, PriB is more important than PriC for PriA-dependent replication fork restart in vivo. The gain of function mutation dnaC809 restores the viability of holDG10 priA and holDG10 priB mutants only to some extent. The dnaC809 820 double mutation restores full viability to the holDG10 mutant lacking either PriA or PriB. Similarly to the holDG10 single mutant, the holDG10 priA dnaC809 820 strain is depend-ent on RecBC for viability, indicating that facilitating primosome assembly using the dnaC809 820 mutation does not allow bypass of replication fork reversal.  相似文献   

4.
5.
YiiP is a 32.9-kDa metal transporter found in the plasma membrane of Escherichia coli (Chao, Y., and Fu, D. (2004) J. Biol. Chem. 279, 17173-17180). Here we report the determination of the YiiP oligomeric state in detergent-lipid micelles and in membranes. Molecular masses of YiiP solubilized with dodecyl-, undecyl-, decyl-, or nonyl-beta-d-maltoside were measured directly using size-exclusion chromatography coupled with laser light-scattering photometry, yielding a mass distribution of YiiP homo-oligomers within a narrow range (68.0-68.8 kDa) that equals the predicted mass of a YiiP dimer within experimental error. The detergent-lipid masses associated with YiiP in the mixed micelles were found to increase from 135.5 to 232.6 kDa, with an apparent correlation with the alkyl chain length of the maltoside detergents. Cross-linking the detergent-solubilized YiiP with 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) resulted in a dimeric cross-linked product in an EDC concentration-dependent manner. The oligomeric state of the purified YiiP in reconstituted membranes was determined by electron microscopic analysis of two-dimensional YiiP crystals in negative stain. A projection structure calculated from measurable optical diffractions to 25 A revealed a pseudo-2-fold symmetry within a molecular boundary of approximately 75 x 40 A, indicative of the presence of YiiP dimers in membranes. These data provide direct structural evidence for a dimeric association of YiiP both in detergent-lipid micelles and in the reconstituted lipid bilayer. The functional relevance of the dimeric association in YiiP is discussed.  相似文献   

6.
The Escherichia coli PriA protein loads the DnaB replicative helicase at branched DNA structures independently of the replication initiator protein, DnaA, and thereby facilitates assembly of functional replisomes at sites removed from oriC. It is therefore a critical factor in the rescue of replication forks stalled at DNA lesions. It is also a DNA helicase. We describe insertions near the 3' end of priA that interfere with PriA activity. These insertions and the previously described priA300 encoding helicase-defective PriA K230R are shown to be effective suppressors of the DNA repair defect in recG strains, but substantially reduce the ability of ruv mutants to survive DNA damage. The data presented suggest that PriA helicase in conjunction with RecG can promote direct rescue of stalled forks independently of the recombinational pathway promoted by the combined activities of the RuvABC, RecBCD and RecA proteins, which requires only the primosome assembly activity of PriA to load DnaB at D loops. In cells lacking the helicase activity of PriA, we propose that stalled forks can be redirected to the recombination pathway via a Holliday junction intermediate common to both pathways, thus explaining the resistance of these cells to DNA damage.  相似文献   

7.
In eubacterial organisms, the oriC‐independent primosome plays an essential role in replication restart after the dissociation of the replication DNA‐protein complex by DNA damage. PriC is a key protein component in the replication restart primosome. Our recent study suggested that PriC is divided into two domains: an N‐terminal and a C‐terminal domain. In the present study, we determined the solution structure of the N‐terminal domain, whose structure and function have remained unknown until now. The revealed structure was composed of three helices and one extended loop. We also observed chemical shift changes in the heteronuclear NMR spectrum and oligomerization in the presence of ssDNA. These abilities may contribute to the PriC‐ssDNA complex, which is important for the replication restart primosome.  相似文献   

8.
Maintenance of genome stability following DNA damage requires origin-independent reinitiation of DNA replication at repaired replication forks. In E. coli, PriA, PriB, PriC, and DnaT play critical roles in recognizing repaired replication forks and reloading the replisome onto the template to reinitiate DNA replication. Here, we report the 2.0 A resolution crystal structure of E. coli PriB, revealing a dimer that consists of a single structural domain formed by two oligonucleotide/oligosaccharide binding (OB) folds. Structural similarity of PriB to single-stranded DNA binding proteins reveals insights into its mechanisms of DNA binding. The structure further establishes a putative protein interaction surface that may contribute to the role of PriB in primosome assembly by facilitating interactions with PriA and DnaT. This is the first high-resolution structure of a protein involved in oriC-independent replisome loading and provides unique insight into mechanisms of replication restart in E. coli.  相似文献   

9.
We report the crystal structure of the N-terminal domain of Escherichia coli adenylyltransferase that catalyzes the reversible nucleotidylation of glutamine synthetase (GS), a key enzyme in nitrogen assimilation. This domain (AT-N440) catalyzes the deadenylylation and subsequent activation of GS. The structure has been divided into three subdomains, two of which bear some similarity to kanamycin nucleotidyltransferase (KNT). However, the orientation of the two domains in AT-N440 differs from that in KNT. The active site of AT-N440 has been identified on the basis of structural comparisons with KNT, DNA polymerase beta, and polyadenylate polymerase. AT-N440 has a cluster of metal binding residues that are conserved in polbeta-like nucleotidyl transferases. The location of residues conserved in all ATase sequences was found to cluster around the active site. Many of these residues are very likely to play a role in catalysis, substrate binding, or effector binding.  相似文献   

10.
Gyrase is an essential topoisomerase in bacteria that introduces negative supercoils in DNA and relaxes the positive supercoils that form downstream of proteins tracking on DNA, such as DNA or RNA polymerases. Two gyrase mutants that suffer partial loss of function were used here to study the need for replication restart in conditions in which gyrase activity is affected. We show that the preprimosomal protein PriA is essential for the viability of these gyrB mutants. The helicase function of PriA is not essential. The lethality of the gyrB priA double mutants is suppressed by a dnaC809 mutation, indicating a requirement for primosome assembly in gyrB strains. The lethality of gyrB priA combination of mutations is independent of the level of DNA supercoiling, as gyrB and priA were also co-lethal in the presence of a DeltatopA mutation. Inactivation of homologous recombination did not affect the viability of gyrB mutants, indicating that replication restart does not require the formation of a recombination intermediate. We propose that the replisome is disassembled from replication forks when replication progression is blocked by the accumulation of positive supercoils in gyrase mutants, and that replication restarts via PriA-dependent primosome assembly, directly on the in-activated replication forks, without the formation of a recombination intermediate.  相似文献   

11.
We report an efficient, controllable, site-specific replication roadblock that blocks cell proliferation, but which can be rapidly and efficiently reversed, leading to recovery of viability. Escherichia coli replication forks of both polarities stalled in vivo within the first 500 bp of a 10 kb repressor-bound array of operator DNA-binding sites. Controlled release of repressor binding led to rapid restart of the blocked replication fork without the participation of homologous recombination. Cytological tracking of fork stalling and restart showed that the replisome-associated SSB protein remains associated with the blocked fork for extended periods and that duplication of the fluorescent foci associated with the blocked operator array occurs immediately after restart, thereby demonstrating a lack of sister cohesion in the region of the array. Roadblocks positioned near oriC or the dif site did not prevent replication and segregation of the rest of the chromosome.  相似文献   

12.
When the replisome collapses at a DNA damage site, a sequence-independent replication restart system is required. In Escherichia coli, PriA, PriB, and DnaT assemble in an orderly fashion at the stalled replication fork and achieve the reloading of the replisome. PriB-DnaT interaction is considered a significant step in the replication restart. In this study, we examined the contribution of the residues Ser20, His26 and Ser55, which are located on the PriB dimer interface. These residues are proximal to Glu39 and Arg44, which are important for PriB-DnaT interaction. Mutational analyses revealed that His26 and Ser20 of PriB are important for the interaction with DnaT, and that the Ser55 residue of PriB might have a role in negatively regulating the DnaT binding. These residues are involved in not only the interaction between PriB and DnaT but also the dissociation of single-stranded DNA (ssDNA) from the PriB−ssDNA complex due to DnaT binding. Moreover, NMR study indicates that the region Asp66−Glu76 on the linker between DnaT domains is involved in the interaction with wild-type PriB. These findings provide significant information about the molecular mechanism underlying replication restart in bacteria.  相似文献   

13.
14.
Blocking replication forks in the Escherichia coli chromosome by ectopic Ter sites renders the RecBCD pathway of homologous recombination and SOS induction essential for viability. In this work, we show that the E. coli helicase II (UvrD) is also essential for the growth of cells where replication forks are arrested at ectopic Ter sites. We propose that UvrD is required for Tus removal from Ter sites. The viability of a SOS non-inducible Ter-blocked strain is fully restored by the expression of the two SOS-induced proteins UvrD and RecA at high level, indicating that these are the only two SOS-induced proteins required for replication across Ter/Tus complexes. Several observations suggest that UvrD acts in concert with homologous recombination and we propose that UvrD is associated with recombination-initiated replication forks and that it removes Tus when a PriA-dependent, restarted replication fork goes across the Ter/Tus complex. Finally, expression of the UvrD homologue from Bacilus subtilis PcrA restores the growth of uvrD-deficient Ter-blocked cells, indicating that the capacity to dislodge Tus is conserved in this distant bacterial species.  相似文献   

15.
Riboflavin synthase from Escherichia coli is a homotrimer of 23.4 kDa subunits and catalyzes the formation of one molecule each of riboflavin and 5-amino-6-ribitylamino- 2,4(1H,3H)-pyrimidinedione by the transfer of a 4-carbon moiety between two molecules of the substrate, 6,7- dimethyl-8-ribityllumazine. Each subunit comprises two closely similar folding domains. Recombinant expression of the N-terminal domain is known to provide a c(2)-symmetric homodimer. In this study, the binding properties of wild type as well as two mutated proteins of N-terminal domain of riboflavin synthase with various ligands were tested. The replacement of the amino acid residue A43, located in the second shell of riboflavin synthase active center, in the recombinant N-terminal domain dimer reduces the affinity for 6,7-dimethyl-8-ribityllumazine. The mutation of the amino acid residue C48 forming part of activity cavity of the enzyme causes significant (19)F NMR chemical shift modulation of trifluoromethyl derivatives of 6,7-dimethyl-8-ribityllumazine in complex with the protein, while substitution of A43 results in smaller chemical shift changes.  相似文献   

16.
The putative turgor sensor KdpD is characterized by a large, N-terminal domain of about 400 amino acids, which is not found in any other known sensor kinase. Comparison of 12 KdpD sequences from various microorganisms reveals that this part of the kinase is highly conserved and includes two motifs (Walker A and Walker B) that are very similar to the classical ATP-binding sites of ATP-requiring enzymes. By means of photoaffinity labeling with 8-azido-[alpha-(32)P]ATP, direct evidence was obtained for the existence of an ATP-binding site located in the N-terminal domain of KdpD. The N-terminal domain, KdpD/1-395, was overproduced and purified. Although predicted to be hydrophilic, it was found to be membrane-associated and could be solubilized either by treatment with buffer of low ionic strength or detergent. The membrane-associated form, but not the solubilized one, retained the ability to bind 8-azido-[alpha-(32)P]ATP. Previously, it was shown that the phosphatase activity of a truncated KdpD, KdpD/Delta12-395, is deregulated in vitro (Jung, K., and Altendorf, K. (1998) J. Biol. Chem. 273, 17406-17410). Here, we demonstrated that this effect was reversed in vesicles containing both the truncated KdpD and the N-terminal domain. Furthermore, coexpression of kdpD/Delta12-395 and kdpD/1-395 restored signal transduction in vivo. These results highlight the importance of the N-terminal domain for the function of KdpD and provide evidence for an interaction of this domain and the transmitter domain of the sensor kinase.  相似文献   

17.
Escherichia coli strains in which initiation of chromosome replication could be specifically blocked while other cellular processes continued uninhibited were constructed. Inhibition of replication resulted in a reduced growth rate and in inhibition of cell division after a time period roughly corresponding to the sum of the lengths of the C and D periods. The division inhibition was not mediated by the SOS regulon. The cells became elongated, and a majority contained a centrally located nucleoid with a fully replicated chromosome. The replication block was reversible, and restart of chromosome replication allowed cell division and rapid growth to resume after a time delay. After the resumption, the septum positions were nonrandomly distributed along the length axis of the cells, and a majority of the divisions resulted in at least one newborn cell of normal size and DNA content. With a transient temperature shift, a single synchronous round of chromosome replication and cell division could be induced in the population, making the constructed system useful for studies of cell cycle-specific events. The coordination between chromosome replication, nucleoid segregation, and cell division in E. coli is discussed.  相似文献   

18.
PriA, a DEXH-type DNA helicase, binds specifically to the 3' end of DNA through its N-terminal domain, and is a candidate sensor protein that recognizes arrested DNA replication forks in bacteria. We crystallized an N-terminal fragment of PriA in the absence and the presence of oligonucleotides to elucidate the structural basis for the specific recognition of the 3' terminus of DNA.  相似文献   

19.
Escherichia coli RecA mediates homologous recombination, a process essential to maintaining genome integrity. In the presence of ATP, RecA proteins bind a single-stranded DNA (ssDNA) to form a RecA-ssDNA presynaptic nucleoprotein filament that captures donor double-stranded DNA (dsDNA), searches for homology, and then catalyzes the strand exchange between ssDNA and dsDNA to produce a new heteroduplex DNA. Based upon a recently reported crystal structure of the RecA-ssDNA nucleoprotein filament, we carried out structural and functional studies of the N-terminal domain (NTD) of the RecA protein. The RecA NTD was thought to be required for monomer-monomer interaction. Here we report that it has two other distinct roles in promoting homologous recombination. It first facilitates the formation of a RecA-ssDNA presynaptic nucleoprotein filament by converting ATP to an ADP-Pi intermediate. Then, once the RecA-ssDNA presynaptic nucleoprotein filament is stably assembled in the presence of ATPγS, the NTD is required to capture donor dsDNA. Our results also suggest that the second function of NTD may be similar to that of Arg243 and Lys245, which were implicated earlier as binding sites of donor dsDNA. A two-step model is proposed to explain how a RecA-ssDNA presynaptic nucleoprotein filament interacts with donor dsDNA.  相似文献   

20.
The N-terminal domain of enzyme IIA(Glc) of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system confers amphitropism to the protein, allowing IIA(Glc) to shuttle between the cytoplasm and the membrane. To further understand this amphitropic protein, we have elucidated, by NMR spectroscopy, the solution structure of a synthetic peptide corresponding to the N-terminal domain of IIA(Glc). In water, this peptide is predominantly disordered, consistent with previous data obtained in the absence of membranes. In detergent micelles of dihexanoylphosphatidylglycerol (DHPG) or sodium dodecylsulfate (SDS), however, residues Phe 3-Val 10 of the peptide adopt a helical conformation in the ensemble of structures calculated on the basis of NOE-derived distance restraints. The root mean square deviations for superimposing the backbone atoms of the helical region are 0.18 A in DHPG and 0.22 A in SDS. The structure, chemical shifts, and spin-spin coupling constants all indicate that, of the four lysines in the N-terminal domain of IIA(Glc), only Lys 5 and Lys 7 in the amphipathic helical region interact with DHPG. In addition, the peptide-detergent interactions were investigated using intermolecular NOESY experiments. The aliphatic chains of anionic detergents DHPG, SDS, and 2,2-dimethyl-2-silapentane-5-sulfonate sodium salt (DSS) all showed intermolecular NOE cross-peaks to the peptide, providing direct evidence for the putative membrane anchor of IIA(Glc) in binding to the membrane-mimicking micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号