首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1990,111(5):1785-1792
The properties and inducibility of the heat shock protein 70 (hsp 70) gene products were examined during differentiation of mouse testicular cells by one and two-dimensional gel electrophoresis and immunoblotting. Low levels of the 72- and 73-kD heat shock proteins normally found in mouse cell lines were detected in the mouse testis. A novel isoform with a relative molecular mass of 73 kD (called 73T) was also observed, in the presence or absence of heat shock. 73T was shown to be produced by germ cells since it was not detected in testes from mutant mice devoid of germ cells. Furthermore, 73T was found only in adult mouse testicular cells, not in testes from animals that lack meiotic germ cells. 73T was synthesized in enriched cell populations of both meiotic prophase and postmeiotic cells, but was not inducible by in vitro heat shock. In the adult testis, low levels of the bona fide 72-kD heat-inducible (hsp72) were induced in response to elevated temperatures. In contrast, in testes from animals in which only somatic cells and premeiotic germ cells were present, there was a substantial induction of hsp 72. It is suggested that hsp 72 is inducible in the somatic compartment and possibly in the premeiotic germ cells, but not in germ cells which have entered meiosis and which are expressing members of the hsp 70 gene family in a developmentally regulated fashion.  相似文献   

2.
Lifelong spermatogenesis is maintained by coordinated sequential processes including self-renewal of stem cells, proliferation of spermatogonial cells, meiotic division, and spermiogenesis. It has been shown that ataxia telangiectasia-mutated (ATM) is required for meiotic division of the seminiferous tubules. Here, we show that, in addition to its role in meiosis, ATM has a pivotal role in premeiotic germ cell maintenance. ATM is activated in premeiotic spermatogonial cells and the Atm-null testis shows progressive degeneration. In Atm-null testicular cells, differing from bone marrow cells of Atm-null mice, reactive oxygen species-mediated p16(Ink4a) activation does not occur in Atm-null premeiotic germ cells, which suggests the involvement of different signaling pathways from bone marrow defects. Although Atm-null bone marrow undergoes p16(Ink4a)-mediated cellular senescence program, Atm-null premeiotic germ cells exhibited cell cycle arrest and apoptotic elimination of premeiotic germ cells, which is different from p16(Ink4a)-mediated senescence.  相似文献   

3.
4.
Synaptonemal complexes reveal mutagen-induced effects in germ cell meiotic chromosomes. This study was aimed at characterizing relationships between damage to synaptonemal complexes and metaphase I chromosomes following radiation exposure at various stages of spermatogenesis. Male mice were irradiated with doses of 0, 2, or 4 Gy, and spermatocytes were harvested at times consistent with earlier exposures as spermatogonial stem cells, preleptotene cells (premeiotic DNA synthesis), or meiotic prophase cells. After stem-cell exposure, twice as many rearrangements were observed in synaptonemal complexes as in metaphase I chromosomes. Irradiation during premeiotic DNA synthesis resulted in dose-related increases in synaptonemal complex breakage and rearrangements (including novel forms) and in metaphase chromosomal aberrations. Following prophase exposure, various types and levels of damage to synaptonemal complexes and metaphase chromosomes were observed. Irradiation of zygotene cells led to high frequencies of chromosome multivalents in metaphase I without a correspondingly high level of damage in preceding prophase synaptonemal complexes. Thus irradiation of premeiotic and meiotic cells results in variable relationships between damage to synaptonemal complexes and metaphase chromosomes. Interpretations of these relationships are based upon what is known about both radiation clastogenesis and the structural/temporal relationships between synaptonemal complexes at prophase and chromosomes at metaphase I of meiosis.  相似文献   

5.
Genomic methylation patterns are established during maturation of primordial germ cells and during gametogenesis. While methylation is linked to DNA replication in somatic cells, active de novo methylation and demethylation occur in post-replicative spermatocytes during meiotic prophase (1). We have examined differentiating male germ cells for alternative forms of DNA (cytosine-5)-methyltransferase (DNA MTase) and have found a 6.2 kb DNA MTase mRNA that is present in appreciable quantities only in testis; in post-replicative pachytene spermatocytes it is the predominant form of DNA MTase mRNA. The 5.2 kb DNA MTase mRNA, characteristic of all somatic cells, was detected in isolated type A and B spermatogonia and haploid round spermatids. Immunobolt analysis detected a protein in spermatogenic cells with a relative mass of 180,000-200,000, which is close to the known size of the somatic form of mammalian DNA MTase. The demonstration of the differential developmental expression of DNA MTase in male germ cells argues for a role for testicular DNA methylation events, not only during replication in premeiotic cells, but also during meiotic prophase and postmeiotic development.  相似文献   

6.
7.
Ercc1 is essential for nucleotide excision repair (NER) but, unlike other NER proteins, Ercc1 and Xpf are also involved in recombination repair pathways. Ercc1 knockout mice have profound cell cycle abnormalities in the liver and die before weaning. Subsequently Xpa and Xpc knockouts have proved to be good models for the human NER deficiency disease, xeroderma pigmentosum, leading to speculation that the recombination, rather than the NER deficit is the key to the Ercc1 knockout phenotype. To investigate the importance of the recombination repair functions of Ercc1 we studied spermatogenesis and oogenesis in Ercc1-deficient mice. Male and female Ercc1-deficient mice were both infertile. Ercc1 was expressed at a high level in the testis and the highest levels of Ercc1 protein occurred in germ cells following meiotic crossing over. However, in Ercc1 null males some germ cell loss occurred prior to meiotic entry and there was no evidence that Ercc1 was essential for meiotic crossing over. An increased level of DNA strand breaks and oxidative DNA damage was found in Ercc1-deficient testis and increased apoptosis was noted in male germ cells. We conclude that the repair functions of Ercc1 are required in both male and female germ cells at all stages of their maturation. The role of endogenous oxidative DNA damage and the reason for the sensitivity of the germ cells to Ercc1 deficiency are discussed.  相似文献   

8.
A study of meiosis in chimeric mouse fetal gonads   总被引:1,自引:0,他引:1  
The influence of somatic environment on the onset and progression of meiosis in fetal germ cells was studied in chimeric gonads produced in vitro by dissociation-reaggregation experiments. Germ cells isolated from testes or ovaries of 11.5-13.5 days post coitum (dpc) CD-1 mouse embryos were loaded with the fluorescent supravital dye 5-6 carboxyfluorescein diacetate succinimyl ester (CFSE) and mixed with a cell suspension obtained by trypsin-EDTA treatment of gonads of various ages and of the same or opposite sex. Whereas 11.5 dpc donor germ cells appeared unable to survive in the chimeric gonads obtained, about 76% of the CFSE-labeled female germ cells obtained from 12.5 dpc donor embryos (premeiotic germ cells) found viable within host ovarian tissues showed a meiotic nucleus. In contrast, a smaller number (about 19%) were in meiosis in chimeric testes. None or very few of donor male germ cells entered meiosis in testes or ovarian host tissues. Aggregation of meiotic 13.5 dpc female germ cells with testis tissues from 13.5 to 14.5 dpc embryos resulted in inhibition of meiotic progression and pyknosis in most donor germ cells. These results support the existence of a meiosis-preventing substance or a factor causing oocyte degeneration in the fetal mouse testis, but not of a meiosis-inducing substance in the fetal ovary.  相似文献   

9.
10.
In male germ cells the repair of DNA double strand breaks (DSBs) differs from that described for somatic cell lines. Irradiation induced immunofluorescent foci (IRIF's) signifying a double strand DNA breaks, were followed in spermatogenic cells up to 16 h after the insult. Foci were characterised for Mdc1, 53BP1 and Rad51 that always were expressed in conjecture with gamma-H2AX. Subsequent spermatogenic cell types were found to have different repair proteins. In early germ cells up to the start of meiotic prophase, i.e. in spermatogonia and preleptotene spermatocytes, 53BP1 and Rad51 are available but no Mdc1 is expressed in these cells before and after irradiation. The latter might explain the radiosensitivity of spermatogonia. Spermatocytes from shortly after premeiotic S-phase till pachytene in epithelial stage IV/V express Mdc1 and Rad51 but no 53BP1 which has no role in recombination involved repair during the early meiotic prophase. Mdc1 is required during this period as in Mdc1 deficient mice all spermatocytes enter apoptosis in epithelial stage IV when they should start mid-pachytene phase of the meiotic prophase. From stage IV mid pachytene spermatocytes to round spermatids, Mdc1 and 53BP1 are expressed while Rad51 is no longer expressed in the haploid round spermatids. Quantifying foci numbers of gamma-H2AX, Mdc1 and 53BP1 at various time points after irradiation revealed a 70% reduction after 16 h in pachytene and diplotene spermatocytes and round spermatids. Although the DSB repair efficiency is higher then in spermatogonia where only a 40% reduction was found, it still does not compare to somatic cell lines where a 70% reduction occurs in 2 h. Taken together, DNA DSBs repair proteins differ for the various types of spermatogenic cells, no germ cell type possessing the complete set. This likely leads to a compromised efficiency relative to somatic cell lines. From the evolutionary point of view it may be an advantage when germ cells die from DNA damage rather than risk the acquisition of transmittable errors made during the repair process.  相似文献   

11.
The effects of steel mutation on testicular germ cell differentiation   总被引:3,自引:0,他引:3  
The effects of artificial cryptorchidism and its surgical reversal on spermatogenesis were examined in germ cell mutant, S1/+ and wild type, +/+, mice. In cryptorchid testes no difference was found between S1/+ and +/+ mice in the number of undifferentiated type A spermatogonia. The activity of type A spermatogonia in mutant mice appeared normal as judged by its mitotic cell number and DNA synthesis. The surgical reversal of cryptorchidism resulted in regenerative differentiation of mature germ cells in both types of mice, but the pattern of cellular differentiation in the mutant testes was completely different from that of the wild type testes. At two steps of cellular differentiation, intermediate or type B spermatogonia and spermatid, the numbers of cells were much smaller in the S1/+ testes than those in the +/+ testes. The steel gene was therefore suggested to exert its effects on the differentiation of type A spermatogonia to intermediate or type B spermatogonia, on meiotic division and/or the survival rate of these cells, but not on the undifferentiated type A spermatogonia or stem cells.  相似文献   

12.
When a dicentric chromosome breaks in mitosis, the broken ends cannot be repaired by normal mechanisms that join two broken ends since each end is in a separate daughter cell. However, in the male germline of Drosophila melanogaster, a broken end may be healed by de novo telomere addition. We find that Chk2 (encoded by lok) and P53, major mediators of the DNA damage response, have strong and opposite influences on the transmission of broken-and-healed chromosomes: lok mutants exhibit a large increase in the recovery of healed chromosomes relative to wildtype control males, but p53 mutants show a strong reduction. This contrasts with the soma, where mutations in lok and p53 have the nearly identical effect of allowing survival and proliferation of cells with irreparable DNA damage. Examination of testes revealed a transient depletion of germline cells after dicentric chromosome induction in the wildtype controls, and further showed that P53 is required for the germline to recover. Although lok mutant males transmit healed chromosomes at a high rate, broken chromosome ends can also persist through spermatogonial divisions without healing in lok mutants, giving rise to frequent dicentric bridges in Meiosis II. Cytological and genetic analyses show that spermatid nuclei derived from such meiotic divisions are eliminated during spermiogenesis, resulting in strong meiotic drive. We conclude that the primary responsibility for maintaining genome integrity in the male germline lies with Chk2, and that P53 is required to reconstitute the germline when cells are eliminated owing to unrepaired DNA damage.  相似文献   

13.
14.
《Gene》1997,185(1):19-26
A rat cDNA clone encoding the mismatch repair protein MSH2 has been isolated and characterized. The cDNA has an open reading frame of 2802 nucleotides in length coding for a protein of 933 amino acids (100 kDa). It shows significant homology to human and mouse MSH2. Northern blot analysis of rat MSH2 in the testes of rats of different ages showed maximum expression at 20 days, at which time the germ cells are undergoing premeiotic DNA replication. We observed down-regulation in the expression of rat MSH2 beyond 25 days by which time the germ cells have entered meiotic prophase.  相似文献   

15.
A convenient method for fetal murine premeiotic germ cells to develop into oocytes in vitro has been established. Fetal ovaries from mice, collected 12.5 d postcoitus (dpc), were organ-cultured in vitro using a medium for organ growth, and the developmental potential regarding oocyte formation was determined. After 28 d of culture, premeiotic female germ cells developed into oocytes with a mean (±SD) diameter of 73.3 ± 7.7 μm. However, follicles developed in vitro versus in vivo had fewer granulosa cells (32 ± 2.6 vs. 142 ± 9.5, respectively; P < 0.01), and the ovaries had less mRNA for Cx37 and Cx43 (P < 0.01). Oocytes in the first meiotic division phase were isolated from cultured ovaries or after hormone treatments. After exposure to okadaic acid at a final concentration of 1 μM, oocytes derived from premeiotic fetal female germ cells were able to undergo germinal vesicle breakdown but failed to complete the first meiotic division. Furthermore, the intracellular content of GSH in oocytes cultured in vitro was lower than that of oocytes matured in vivo (P < 0.01). In conclusion, premeiotic germ cells derived from murine fetuses as early as 12.5 dpc were able to differentiate into germinal vesicle-stage oocytes but were unable to complete meiosis I in vitro.  相似文献   

16.
Cyclophosphamide (CPA) and mitomen (DMO) are chemical mutagens that require metabolic activation to produce their biological effect. We have used an in vivo UDS assay in various meiotic and postmeiotic germ-cell stages of male mice to study DNA repair after treatment with these chemicals. EMS, a compound requiring no metabolic activation, was also used for comparative purposes.CPA and DMO induced UDS in meiotic through early-to-midspermatid stages, but no UDS was detected in late spermatids and mature sperm. While EMS produced a maximum UDS response in the germ cells immediately after treatment, CPA and DMO did not produce a maximum response until ~0.5 to 1 h after injection. This delay is attributed to the time required for CPA and DMO to be enzymatically vonverted active alkylating metabolites.Unlike the results found with EMS, mutation frequencies (dominant lethals, translocations, specific-locus mutations) following CPA treatment are not noticeably reduced in germ-cell stages in which UDS occurred. In the case of DMO, mutations are induced only in mature spermatozoa, and these germ-cell stages represent only a fraction of those in which no UDS is detected. The results with CPA and DMO thus still leave unclear the relationship between DNA repair and the differential spermatogenic response of mice to genetic damage.  相似文献   

17.
18.
Genome maintenance in germ cells is critical for fertility and the stable propagation of species. While mechanisms of meiotic DNA repair and chromosome behavior are well-characterized, the same is not true for primordial germ cells (PGCs), which arise and propagate during very early stages of mammalian development. Fanconi anemia (FA), a genomic instability syndrome that includes hypogonadism and testicular failure phenotypes, is caused by mutations in genes encoding a complex of proteins involved in repair of DNA lesions associated with DNA replication. The signaling mechanisms underlying hypogonadism and testicular failure in FA patients or mouse models are unknown. We conducted genetic studies to show that hypogonadism of Fancm mutant mice is a result of reduced proliferation, but not apoptosis, of PGCs, resulting in reduced germ cells in neonates of both sexes. Progressive loss of germ cells in adult males also occurs, overlaid with an elevated level of meiotic DNA damage. Genetic studies indicated that ATM-p53-p21 signaling is partially responsible for the germ cell deficiency.  相似文献   

19.
Genes containing the DM domain, a conserved DNA binding motif first found in Doublesex of Drosophila and mab-3 of Caenorhabditis elegans, regulate sexual differentiation in multiple phyla. The DM domain gene Dmrt1 is essential for testicular differentiation in vertebrates. In the mouse, Dmrt1 is expressed in pre-meiotic germ cells and in Sertoli cells, which provide essential support for spermatogenesis. Dmrt1 null mutant mice have severely dysgenic testes in which Sertoli cells and germ cells both fail to differentiate properly after birth. Here we use conditional gene targeting to identify the functions of Dmrt1 in each cell type. We find that Dmrt1 is required in Sertoli cells for their postnatal differentiation, and for germ line maintenance and for meiotic progression. Dmrt1 is required in germ cells for their radial migration to the periphery of the seminiferous tubule where the spermatogenic niche will form, for mitotic reactivation and for survival beyond the first postnatal week. Thus Dmrt1 activity is required autonomously in the Sertoli and germ cell lineages, and Dmrt1 activity in Sertoli cells is also required non-autonomously to maintain the germ line. These results demonstrate that Dmrt1 plays multiple roles in controlling the remodeling and differentiation of the juvenile testis.  相似文献   

20.
The development of DNA and RNA synthesis in the germ cell population was studied after a 3H-thymidine or 3H-uridine pulse at each stage of spermatogenesis. The autoradiographic results show that the first sign (after 3 days in vitro) of cellular changes is an increase in RNA synthesis which reaches a maximum at day 5. DNA replication (premeiotic S phase) occurred at day 7, then cells entered meiotic prophase (day 9). Meiotic divisions and spermiogenesis occurred after 11 days. Silver grain counts permit the conclusion that RNA synthesis is clearly higher during premeiotic interphase (days 3-7) than during spermatogonial proliferation (day 0). It appears therefore that male meiotic differentiation in Nereidae is accompanied by increased RNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号