共查询到20条相似文献,搜索用时 15 毫秒
1.
Maintaining genome integrity in the germline is essential for survival and propagation of a species. In both mouse and human, germ cells originate during fetal development and are hypersensitive to both endogenous and exogenous DNA damaging agents. Currently, mechanistic understanding of how primordial germ cells respond to DNA damage is limited in part by the tools available to study these cells. We developed a mouse transgenic reporter strain expressing a 53BP1‐mCherry fusion protein under the control of the Oct4ΔPE embryonic germ cell‐specific promoter. This reporter binds sites of DNA double strand breaks (DSBs) on chromatin, forming foci. Using ionizing radiation as a DNA DSB‐inducing agent, we show that the transgenic reporter expresses specifically in the embryonic germ cells of both sexes and forms DNA damage induced foci in both a dose‐ and time‐dependent manner. The dynamic time‐sensitive and dose‐sensitive DNA damage detection ability of this transgenic reporter, in combination with its specific expression in embryonic germ cells, makes it a versatile and valuable tool for increasing our understanding of DNA damage responses in these unique cells. 相似文献
2.
Fengxia Du Minjie Zhang Xiaohua Li Caiyun Yang Hao Meng Dong Wang Shuang Chang Ye Xu Brendan Price Yingli Sun 《Biochemical and biophysical research communications》2014
The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair. 相似文献
3.
Konstantina Marinoglou 《The Yale journal of biology and medicine》2012,85(4):469-480
It has been estimated that a human cell is confronted with 1 million DNA lesions
every day, one fifth of which may originate from the activity of Reactive Oxygen
Species (ROS) alone [1,2]. Terminally differentiated
neurons are highly active cells with, if any, very restricted regeneration
potential [3]. In
addition, genome integrity and maintenance during neuronal development is
crucial for the organism. Therefore, highly accurate and robust mechanisms for
DNA repair are vital for neuronal cells. This requirement is emphasized by the
long list of human diseases with neurodegenerative phenotypes, which are either
caused by or associated with impaired function of proteins involved in the
cellular response to genotoxic stress [4-8]. Ataxia
Telangiectasia Mutated (ATM), one of the major kinases of the DNA Damage
Response (DDR), is a node that links DDR, neuronal development, and
neurodegeneration [2,9-12]. In humans, inactivating mutations of ATM lead to
Ataxia-Telangiectasia (A-T) disease [11,13], which is
characterized by severe cerebellar neurodegeneration, indicating an important
protective function of ATM in the nervous system [14]. Despite the large number of studies on the
molecular cause of A-T, the neuroprotective role of ATM is not well established
and is contradictory to its general proapoptotic function. This review discusses
the putative functions of ATM in neuronal cells and how they might contribute to
neuroprotection. 相似文献
4.
Despite intense studies, highly effective therapeutic strategies against cancer have not yet been fully exploited, because few true cancer-specific targets have been identified. Most modalities, perhaps with the exception of radiation therapy, target proliferating cells, which are also abundant in normal tissues. Thus, most current cancer treatments have significant side effects. More than 10 years ago, the tumor suppressor p53 was first explored as a cancer-specific target. At the time, the approach was to introduce a normal p53 gene into mutant p53 (mp53) tumor cells to induce cell cycle arrest and apoptosis. However, this strategy did not hold up and mostly failed in subsequent clinical studies. Recent research developments have now returned p53 to the limelight. Several studies have reported that mutant or null p53 tumor cells undergo apoptosis more easily than genetically matched, normal p53 counterparts when inhibiting a specific stress kinase in combination with standard chemotherapy or when exposed to an ataxia-telangiectasia mutated (ATM) kinase inhibitor and radiation, thus achieving true cancer specificity in animal tumor models. This short review highlights several of these recent studies, discusses possible mechanism(s) for mp53-mediated “synthetic lethality,” and the implications for cancer therapy. 相似文献
5.
多聚核苷酸激酶/磷酸酶(polynucleotide kinase/phosphatase,PNKP)是一种DNA末端修复酶,同时具有激酶和磷酸酶活性,在DNA单链断裂修复途径、碱基切除修复途径以及DNA双链断裂修复中的非同源末端连接途径中发挥着至关重要的作用。近年来,由于一种与PNKP相关的常染色体隐性遗传病——MCSZ综合征的发现,使得人们对PNKP的关注度进一步增加。笔者从与PNKP相互作用的X射线交叉互补修复基因1(X-ray repair cross-complementing group 1,XRCC1)、X射线交叉互补修复基因4(X-ray repair cross-complementing group 4,XRCC4)和毛细血管扩张性共济失调突变基因(ataxia-telangiectasia mutated,ATM)入手,对PNKP在DNA损伤修复中的作用进行概述。 相似文献
6.
Wanda M. Waterworth Michael Wilson Dapeng Wang Thomas Nuhse Stacey Warward Julian Selley Christopher E. West 《The Plant journal : for cell and molecular biology》2019,100(5):1007-1021
DNA damage responses are crucial for plant growth under genotoxic stress. Accumulating evidence indicates that DNA damage responses differ between plant cell types. Here, quantitative shotgun phosphoproteomics provided high‐throughput analysis of the DNA damage response network in callus cells. MS analysis revealed a wide network of highly dynamic changes in the phosphoprotein profile of genotoxin‐treated cells, largely mediated by the ATAXIA TELANGIECTASIA MUTATED (ATM) protein kinase, representing candidate factors that modulate plant growth, development and DNA repair. A C‐terminal dual serine target motif unique to H2AX in the plant lineage showed 171‐fold phosphorylation that was absent in atm mutant lines. The physiological significance of post‐translational DNA damage signalling to plant growth and survival was demonstrated using reverse genetics and complementation studies of h2ax mutants, establishing the functional role of ATM‐mediated histone modification in plant growth under genotoxic stress. Our findings demonstrate the complexity and functional significance of post‐translational DNA damage signalling responses in plants and establish the requirement of H2AX phosphorylation for plant survival under genotoxic stress. 相似文献
7.
We report here results on forward mutation induction (recessive lethal mutations, RL) in Drosophila spermatozoa and spermatids by the three 1,2-alkyl-epoxides ethylene oxide (EO), propylene oxide (PO) and butylene oxide (BO), at doses ranging from 47 to 24,000 ppm h for EO, 375 to 48,000 ppm h for PO, and 24,000 to 91,200 ppm h for BO. The results indicate for EO mutation induction at doses 500-fold below the LD50. In crosses of mutagenized NER+ males with NER+ females, the 500-fold increase in EO dose from 47 ppm h to 24,000 ppm h resulted in no more than a 17-fold enhanced mutant frequency in spermatozoa. This flat dose–response relationship is primarily the result of efficient repair of EO-induced DNA adducts in the fertilized egg, as was evident from the up to 40-fold or 240-fold increased mutant frequencies above NER− or NER+ background levels, respectively, in crosses with NER− females. With decreasing dose,
/
ratios decreased from 9 to 14 at high doses down to ≈1 at the two lowest doses, indicating that a small fraction of premutagenic lesions induced by EO cannot be repaired by the NER system of Drosophila. Linear extrapolation from high to low EO exposure led to an underestimation of the mutation frequency actually observed at low doses. The pattern of EO-induced ring chromosome loss (CL) differed in two respects from that observed for forward mutations: (a) an increase in CL frequencies was observed only at the two highest EO exposure levels, and (b) inactivation of the NER pathway by the mus201 mutant had no measurable effect on the occurrence of CL. The absence of a potentiating effect of mus201 on EO-induced clastogenicity suggests the formation of clastogenic DNA lesions not causing point mutations, and which are not repaired by NER. Consistent with an inversed correlation of reactivities towards N7-guanine and chain length of 1,2-alkyl-epoxides, the relative mutagenic efficiencies of EO:PO:BO are 100:7.2:1.8 for the NER+ groups, and 100:20:0.7 in the absence of NER. Although in Drosophila germ cells EO is also more effective as a clastogen than PO, the difference (EO:PO=100:58) is much smaller than for recessive mutations. These results provide another argument that DNA lesions generating base substitutions as opposed to those causing clastogenic damage may not be the same for these agents. 相似文献
8.
DNA损伤修复是维持细胞基因组稳定性和完整性的基础,越来越多的研究发现,E3泛素连接酶在DNA损伤修复中起着重要的作用.该文将介绍DNA损伤修复的机制、DNA损伤修复与疾病的关系、及E3泛素连接酶接头蛋白MDM2和SPOP在DNA损伤修复中的作用.重点围绕DNA损伤修复的两条通路:E3泛素连接酶接头蛋白SPOP与ATM... 相似文献
9.
Ataxia telangiectasia mutated (ATM) kinase plays an essential role in the maintenance of genomic stability. ATM-deficient (ATM-/-) mice exhibit hematopoietic stem cell (HSC) dysfunction and a high incidence of lymphoma. Gadd45a controls cell cycle arrest, apoptosis and DNA repair, and is involved in the ATM-p53 mediated DNA damage response. However, the role of Gadd45a in regulating the functionality of ATM-/- HSCs is unknown. Here we report that Gadd45a deletion did not rescue the defects of T-cells and B-cells development in ATM-/- mice. Instead, ATM and Gadd45a double knockout (ATM-/- Gadd45a-/-) HSCs exhibited an aggravated defect in long-term self-renewal capacity compared to ATM-/- HSCs in HSC transplantation experiments. Further experiments revealed that the aggravated defect of ATM-/- Gadd45a-/- HSCs was due to a reduction of cell proliferation, associated with an accumulation of DNA damage and subsequent activation of DNA damage response including an up-regulation of p53-p21 signaling pathway. Additionally, ATM-/- Gadd45a-/- mice showed an increased incidence of hematopoietic malignancies, as well as an increased rate of metastasis than ATM-/- mice. In conclusion, Gadd45a deletion aggravated the DNA damage accumulation, which subsequently resulted in a further impaired self-renewal capacity and an increased malignant transformation in ATM-/- HSCs. 相似文献
10.
Frederick A. Derheimer 《FEBS letters》2010,584(17):3675-4310
The ability of our cells to maintain genomic integrity is fundamental for protection from cancer development. Central to this process is the ability of cells to recognize and repair DNA damage and progress through the cell cycle in a regulated and orderly manner. In addition, protection of chromosome ends through the proper assembly of telomeres prevents loss of genetic information and aberrant chromosome fusions. Cells derived from patients with ataxia-telangiectasia (A-T) show defects in cell cycle regulation, abnormal responses to DNA breakage, and chromosomal end-to-end fusions. The identification and characterization of the ATM (ataxia-telangiectasia, mutated) gene product has provided an essential tool for researchers in elucidating cellular mechanisms involved in cell cycle control, DNA repair, and chromosomal stability. 相似文献
11.
Loss of ATM kinase, a transducer of the DNA damage response and redox sensor, causes the neurodegenerative disorder ataxia-telangiectasia (A-T). While a great deal of progress has been made in elucidating the ATM-dependent DNA damage response (DDR) network, a key challenge remains in understanding the selective susceptibility of the nervous system to faulty DDR. Several factors appear implicated in the neurodegenerative phenotype in A-T, but which of them plays a crucial role remains unclear, especially since mouse models of A-T do not fully mirror the respective human syndrome. Therefore, a number of human neural stem cell (hNSC) systems have been developed to get an insight into the molecular mechanisms of neurodegeneration as consequence of ATM inactivation. Here we review the hNSC systems developed by us an others to model A-T. 相似文献
12.
Dganit Shkedy Nishant Singh Keren Shemesh Ayelet Amir Tamar Geiger Batia Liefshitz Yaniv Harari Martin Kupiec 《Cell cycle (Georgetown, Tex.)》2015,14(23):3689-3697
ELG1 is a conserved gene with important roles in the maintenance of genome stability. Elg1''s activity prevents gross chromosomal rearrangements, maintains proper telomere length regulation, helps repairing DNA damage created by a number of genotoxins and participates in sister chromatid cohesion. Elg1 is evolutionarily conserved, and its Fanconi Anemia-related mammalian ortholog (also known as ATAD5) is embryonic lethal when lost in mice and acts as a tumor suppressor in mice and humans. Elg1 encodes a protein that forms an RFC-like complex that unloads the replicative clamp, PCNA, from DNA, mainly in its SUMOylated form. We have identified 2 different regions in yeast Elg1 that undergo phosphorylation. Phosphorylation of one of them, S112, is dependent on the ATR yeast ortholog, Mec1, and probably is a direct target of this kinase. We show that phosphorylation of Elg1 is important for its role at telomeres. Mutants unable to undergo phosphorylation suppress the DNA damage sensitivity of Δrad5 mutants, defective for an error-free post-replicational bypass pathway. This indicates a role of phosphorylation in the regulation of DNA repair. Our results open the way to investigate the mechanisms by which the activity of Elg1 is regulated during DNA replication and in response to DNA damage. 相似文献
13.
DNA double-strand breaks (DSBs) can be processed by the Mre11-Rad50-Nbs1 (MRN) complex, which is essential to promote ataxia telangiectasia-mutated (ATM) activation. However, the molecular mechanisms linking MRN activity to ATM are not fully understood. Here, using Xenopus laevis egg extract we show that MRN-dependent processing of DSBs leads to the accumulation of short single-stranded DNA oligonucleotides (ssDNA oligos). The MRN complex isolated from the extract containing DSBs is bound to ssDNA oligos and stimulates ATM activity. Elimination of ssDNA oligos results in rapid extinction of ATM activity. Significantly, ssDNA oligos can be isolated from human cells damaged with ionizing radiation and injection of small synthetic ssDNA oligos into undamaged cells also induces ATM activation. These results suggest that MRN-dependent generation of ssDNA oligos, which constitute a unique signal of ongoing DSB repair not encountered in normal DNA metabolism, stimulates ATM activity. 相似文献
14.
Hasthorpe S Tainton K Peart M Roeszler KN Bell KM Lusby PE Hutson JM Tymms MJ 《Molecular reproduction and development》2007,74(5):531-538
Cell cycle progression is prevented by signal transduction pathways known as checkpoints which are activated in response to replication interference and DNA damage. We cloned a G2/M cell cycle phase-related checkpoint gene from a neonatal mouse testis cDNA library which was identified as mouse claspin, a proposed adaptor protein for Chk1. As part of a study on germ cell differentiation we examined the expression of the checkpoint gene, Chk1, and claspin at 12.5 and 14.5 days post coitum (dpc) and in the post-natal phase. Chk1 mRNA expression increased from 12.5 to 14.5 dpc in female gonads and was strong in males at both time points. Claspin however, was not detected until 14.5 dpc. This suggests there may be some dissociation of claspin expression from Chk1 in fetal germ cell development. Chk1 and claspin expression was also studied in testis over the first 3 days following birth, when apoptosis regulates germ stem cell number. We modulated checkpoint-related gene expression in testis using the anti-metabolite, 5-fluorouracil, resulting in increased apoptosis and upregulation of Chk1 (P<0.0001) and Cdc2 (P<0.02) mRNA. Although we do not fully understand the role checkpoint gene expression has during mammalian germ cell development this report is the first to show the expression of checkpoint-related genes in early mammalian germ cells. 相似文献
15.
16.
Sunwoo Min Sujin Jo Ho-Soo Lee Sunyoung Chae Jong-Soo Lee 《Cell cycle (Georgetown, Tex.)》2014,13(4):666-677
As a member of imitation switch (ISWI) family in ATP-dependent chromatin remodeling factors, RSF complex consists of SNF2h ATPase and Rsf-1. Although it has been reported that SNF2h ATPase is recruited to DNA damage sites (DSBs) in a poly(ADP-ribosyl) polymerase 1 (PARP1)-dependent manner in DNA damage response (DDR), the function of Rsf-1 is still elusive. Here we show that Rsf-1 is recruited to DSBs confirmed by various cellular analyses. Moreover, the initial recruitment of Rsf-1 and SNF2h to DSBs shows faster kinetics than that of γH2AX after micro-irradiation. Signals of Rsf-1 and SNF2h are retained over 30 min after micro-irradiation, whereas γH2AX signals are gradually reduced at 10 min. In addition, Rsf-1 is accumulated at DSBs in ATM-dependent manner, and the putative pSQ motifs of Rsf-1 by ATM are required for its accumulation at DSBs. Furtheremore, depletion of Rsf-1 attenuates the activation of DNA damage checkpoint signals and cell survival upon DNA damage. Finally, we demonstrate that Rsf-1 promotes homologous recombination repair (HRR) by recruiting resection factors RPA32 and Rad51. Thus, these findings reveal a new function of chromatin remodeler Rsf-1 as a guard in DNA damage checkpoints and homologous recombination repair. 相似文献
17.
18.
19.
Methods for studying breaks in DNA strands and their repair, originally developed for prokaryotes and cultured cell lines, have been applied to preparations from rat brain. The relative sensitivities of these methods, which include alkaline sucrose density gradient sedimentation, nucleoid sedimentation, and ADP-ribosyltransferase assay, are compared. 相似文献
20.
Ragini Kumari Kamaleshwar P. Singh James W. DuMond Jr. 《Journal of cellular biochemistry》2009,107(4):723-731
The effect of simulated microgravity on DNA damage and apoptosis is still controversial. The objective of this study was to test whether simulated microgravity conditions affect the expression of genes for DNA repair and apoptosis. To achieve this objective, human lymphocyte cells were grown in a NASA‐developed rotating wall vessel (RWV) bioreactor that simulates microgravity. The same cell line was grown in parallel under normal gravitational conditions in culture flasks. The effect of microgravity on the expression of genes was measured by quantitative real‐time PCR while DNA damage was examined by comet assay. The result of this study revealed that exposure to simulated microgravity condition decreases the expression of DNA repair genes. Mismatch repair (MMR) class of DNA repair pathway were more susceptible to microgravity condition‐induced gene expression changes than base excision repair (BER) and nucleotide excision repair (NER) class of DNA repair genes. Downregulation of genes involved in cell proliferation (CyclinD1 and PCNA) and apoptosis (Bax) was also observed. Microgravity‐induced changes in the expression of some of these genes were further verified at the protein level by Western blot analysis. The findings of this study suggest that microgravity may induce alterations in the expression of these DNA repair genes resulting in accumulation of DNA damage. Reduced expression of cell‐cycle genes suggests that microgravity may cause a reduction in cell growth. Downregulation of pro‐apoptotic genes further suggests that extended exposure to microgravity may result in a reduction in the cells' ability to undergo apoptosis. Any resistance to apoptosis seen in cells with damaged DNA may eventually lead to malignant transformation of those cells. J. Cell. Biochem. 107: 723–731, 2009. © 2009 Wiley‐Liss, Inc. 相似文献