首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Despite their predicted functional importance, most G protein-coupled receptors (GPCRs) in Caenorhabditis elegans have remained largely uncharacterized. Here, we focused on one GPCR, STR-33, encoded by the str-33 gene, which was discovered through a ligand-based screening procedure. To characterize STR-33 function, we performed UV-trimethylpsolaren mutagenesis and isolated an str-33-null mutant. The resulting mutant showed hypersinusoidal movement and a hyperactive egg-laying phenotype. Two types of egg laying-related mutations have been characterized: egg laying-deficient (Egl-d) and hyperactive egg laying (Egl-c). The defect responsible for the egg laying-deficient Egl-d phenotype is related to Gα(q) signaling, whereas that responsible for the opposite, hyperactive egg-laying Egl-c phenotype is related to Gα(o) signaling. We found that the hyperactive egg-laying defect of the str-33(ykp001) mutant is dependent on the G protein GOA-1/Gα(o). Endogenous acetylcholine suppressed egg laying in C. elegans via a Gα(o)-signaling pathway by inhibiting serotonin biosynthesis or release from the hermaphrodite-specific neuron. Consistent with this, in vivo expression of the serotonin biosynthetic enzyme, TPH-1, was up-regulated in the str-33(ykp001) mutant. Taken together, these results suggest that the GPCR, STR-33, may be one of the neurotransmitter receptors that regulates locomotion and egg laying in C. elegans.  相似文献   

2.
<正>Dear Editor,Neuronal apoptosis is considered to be essential for brain development and neurodegenerative disorders and has been a major focus in cell biological and neuroscientific studies since its first recognition a century ago[1].Remarkable progress has been made in defining the molecular and cel-  相似文献   

3.
Despite recent interest in reconstructing neuronal networks, complete wiring diagrams on the level of individual synapses remain scarce and the insights into function they can provide remain unclear. Even for Caenorhabditis elegans, whose neuronal network is relatively small and stereotypical from animal to animal, published wiring diagrams are neither accurate nor complete and self-consistent. Using materials from White et al. and new electron micrographs we assemble whole, self-consistent gap junction and chemical synapse networks of hermaphrodite C. elegans. We propose a method to visualize the wiring diagram, which reflects network signal flow. We calculate statistical and topological properties of the network, such as degree distributions, synaptic multiplicities, and small-world properties, that help in understanding network signal propagation. We identify neurons that may play central roles in information processing, and network motifs that could serve as functional modules of the network. We explore propagation of neuronal activity in response to sensory or artificial stimulation using linear systems theory and find several activity patterns that could serve as substrates of previously described behaviors. Finally, we analyze the interaction between the gap junction and the chemical synapse networks. Since several statistical properties of the C. elegans network, such as multiplicity and motif distributions are similar to those found in mammalian neocortex, they likely point to general principles of neuronal networks. The wiring diagram reported here can help in understanding the mechanistic basis of behavior by generating predictions about future experiments involving genetic perturbations, laser ablations, or monitoring propagation of neuronal activity in response to stimulation.  相似文献   

4.
In Caenorhabditis elegans, unc-33 encodes an orthologue of the vertebrate collapsin response mediator protein (CRMP) family. We previously reported that CRMP-2 accumulated in the distal part of the growing axon of vertebrate neurons and played critical roles in axon elongation. unc-33 mutants show axonal outgrowth defects in several neurons. It has been reported that UNC-33 accumulates in neurites, whereas a missense mutation causes the mislocalization of UNC-33 from neurites to cell body, which suggests that the localization of UNC-33 in neurites is important for axonal outgrowth. However, it is unclear how UNC-33 accumulates in neurites and regulates neuronal development. In this study, to understand the regulatory mechanisms of localization of UNC-33 in neurites, we screened for the mutants that were involved in the localization of UNC-33, and identified three mutants: unc-14 (RUN domain protein), unc-51 (ULK kinase) and unc-116 (kinesin heavy chain). UNC-14 is known to associate with UNC-51. UNC-116 forms a complex with KLC-2 as Kinesin-1, a microtubule-dependent motor complex. We found that UNC-33 interacted with UNC-14 and KLC-2 in vivo. These results suggest that the UNC-14/UNC-51 complex and Kinesin-1 are involved in the localization of UNC-33 in neurites.  相似文献   

5.
Octopamine (OA) plays an important role in the regulation of a number of key processes in nematodes, including pharyngeal pumping, locomotion and egg-laying. However, while putative OA receptors can be tentatively identified in the Caenorhabditis elegans database, no OA receptors have been functionally characterized from any nematode. We have isolated two cDNAs, ser-2 and ser-2a, encoding putative C.elegans serotonin/OA receptors (C02D4.2, ser-2). The sequences of these cDNAs differ from that predicted by GeneFinder and lack 42 bp of exon 2. In addition, ser-2a appears to be alternatively spliced and lacks a predicted 23 amino acids in the third intracellular loop. COS-7 cells expressing SER-2 bind [3H]LSD in the low nM range and exhibit Kis for tyramine, octopamine and serotonin of 0.07, 2, and 13.7 micro m, respectively. Significantly, tyramine reduces forskolin-stimulated cAMP levels in HEK293 cells stably expressing SER-2 with an IC50 of about 360 nm, suggesting that SER-2 is a tyramine receptor.  相似文献   

6.
We have studied the organization of microtubules in neurons of the nematode Caenorhabditis elegans. Six neurons, which we call the microtubule cells, contain bundles of darkly staining microtubules which can be followed easily in serial-section electron micrographs. Reconstruction of individual microtubules in these cells indicate that most, if not all, microtubules are short compared with the length of the cell process. Average microtubule length varies characteristically with cell type. The arrangement of microtubules gives an overall polarity to each bundle: the distal ends of the microtubles are on the outside of the bundle, whereas the proximal ends are preferentially inside. The distal and proximal ends each have a characteristic appearance indicating that these microtubules may have a polarity of their own. Short microtubules in processes of other neurons in C. elegans have also been observed.  相似文献   

7.
This paper investigates the effect of epinastine, a selective octopamine antagonist in invertebrates, in Caenorhabditis elegans. Specifically, its ability to block the inhibitory action of octopamine on C. elegans-isolated pharynx was assayed. Isolated pharynxes were stimulated to pump by the addition of 500 nM 5-hydroxytryptamine (5-HT) (113 ± 2 per 30 s, n = 15). Octopamine inhibited the 5-HT-induced pumping in a concentration-dependent manner (threshold 1–5 μM) with a 61 ± 11% inhibition with 50 μM (n = 5). Epinastine (0.1 μM) antagonized the inhibitory response to octopamine (P < 0.001; n = 15). Tyramine also inhibited pharyngeal pumping induced by 5-HT but was less potent than octopamine. Tyramine, 50 μM to 1 mM, gave a transient inhibition e.g. of 40 ± 5% at 50 μM (n = 5). A higher (10 μM) concentration of epinastine was required to block the tryamine response compared with octopamine. It is concluded that epinastine selectively antagonizes the effect of octopamine on C. elegans pharynx. Further studies are required to test its selectivity for octopamine in other tissues and other nematodes.  相似文献   

8.
Tannic acid fixation reveals differences in the number of protofilaments between microtubules (MTs) in the nematode Caenorhabditis elegans. Most cells have MTs with 11 protofilaments but the six touch receptor neurons (the microtubule cells) have MTs with 15 protofilaments. No 13-protofilament (13-p) MT has been seen. The modified cilia of sensory neurons also possess unusual structures. The cilia contain nine outer doublets with A subfibers of 13 protofilaments and B subfibers of 11 protofilaments and a variable number of inner singlet MTs containing 11 protofilaments. The 15-p MTs but not the 11-p MTs are eliminated by colchicine-treatment or by mutation of the gene mec-7. Concomitantly, touch sensitivity is also lost. However, whereas colchicine treatment leads to the loss of all MTs from the microtubule cells, mutations in mec-7 result in the partial replacement of the 15-p MTs with 11-p MTs. Benzimidazoles (benomyl and nocodazole) have more general effects on C. elegans (slow growth, severe uncoordination, and loss of processes from the ventral cord) but do not affect the 15-p MTs. Benomyl will, however, disrupt the replacement 11-p MTs found in the microtubule cells of mec-7 mutants. The 11-p and 15-p MTs also respond differently to temperature and fixation conditions. It is likely that either type of MT will suffice for the proper outgrowth of the microtubule cell process, but only the 15-p MT can function in the specialized role of sensory transduction of the microtubule cells.  相似文献   

9.
10.
The plexin family transmembrane proteins are putative receptors for semaphorins, which are implicated in the morphogenesis of animal embryos, including axonal guidance. We have generated and characterized putative null mutants of the C. elegans plexinA gene, plx-1. plx-1 mutants exhibited morphological defects: displacement of ray 1 and discontinuous alae. The epidermal precursors for the affected organs were aberrantly arranged in the mutants, and a plx-1::gfp transgene was expressed in these epidermal precursor cells as they underwent dynamic morphological changes. Suppression of C. elegans transmembrane semaphorins, Ce-Sema-1a and Ce-Sema-1b, by RNA interference caused a displacement of ray 1 similar to that of plx-1 mutants, whereas mutants for the Ce-Sema-2a/mab-20 gene, which encodes a secreted-type semaphorin, exhibited phenotypes distinct from those of plx-1 mutants. A heterologous expression system showed that Ce-Sema-1a, but not Ce-Sema-2a, physically bound to PLX-1. Our results indicate that PLX-1 functions as a receptor for transmembrane-type semaphorins, and, though Ce-Sema-2a and PLX-1 both play roles in the regulation of cellular morphology during epidermal morphogenesis, they function rather independently.  相似文献   

11.
12.
13.
J S Kim  A M Rose 《Génome》1987,29(3):457-462
We have studied the effect of gamma radiation on recombination frequency for intervals across the cluster of linkage group I in Caenorhabditis elegans. Recombination frequency increased approximately twofold across the dpy-5-unc-13 interval after treatment with 2000 rads (1 rad = 10 mGy) of cobalt 60 gamma radiation. Several factors affecting the magnitude of the increase have been characterized. Recombination frequency increased more with higher doses of radiation. However, the increase in recombination frequency with increasing dose was accompanied by a reduced average number of progeny from radiation-treated individuals. The amount of the increase was affected by meiotic stage, age at the time of treatment (premeiotic), and radiation dose. The increase in recombination was detectable in the B brood and remained elevated for the remainder of egg production. X-chromosome nondisjunction was also increased by radiation treatment. A high frequency of the recombinant progeny produced with radiation treatment were sterile unlike their nonrecombinant siblings. When parameters affecting recombination frequency are held constant during treatment, chromosomal regions of high gene density on the meiotic map increased more (fourfold) than an adjacent region of low gene density (no increase). The greatest increase was across the dpy-14-unc-13 interval near the center of the gene cluster. These results may suggest that the physical length of DNA per map unit is greater within the cluster than outside.  相似文献   

14.
Ch'ng Q  Williams L  Lie YS  Sym M  Whangbo J  Kenyon C 《Genetics》2003,164(4):1355-1367
In C. elegans, cells of the QL and QR neuroblast lineages migrate with left-right asymmetry; QL and its descendants migrate posteriorly whereas QR and its descendants migrate anteriorly. One key step in generating this asymmetry is the expression of the Hox gene mab-5 in the QL descendants but not in the QR descendants. This asymmetry appears to be coupled to the asymmetric polarizations and movements of QL and QR as they migrate and relies on an asymmetric response to an EGL-20/Wnt signal. To identify genes involved in these complex layers of regulation and to isolate targets of mab-5 that direct posterior migrations, we screened visually for mutants with cell migration defects in the QL and QR lineages. Here, we describe a set of new mutants (qid-5, qid-6, qid-7, and qid-8) that primarily disrupt the migrations of the QL descendants. Most of these mutants were defective in mab-5 expression in the QL lineage and might identify genes that interact directly or indirectly with the EGL-20/Wnt signaling pathway.  相似文献   

15.
The neurotransmitter dopamine plays an important role in the regulation of behavior in both vertebrates and invertebrates. In mammals, dopamine binds and activates two classes of dopamine receptors, D1-like and D2-like receptors. However, D2-like dopamine receptors in Caenorhabditis elegans have not yet been characterized. We have cloned a cDNA encoding a putative C. elegans D2-like dopamine receptor. The deduced amino acid sequence of the cloned cDNA shows higher sequence similarities to vertebrate D2-like dopamine receptors than to D1-like receptors. Two splice variants that differ in the length of their predicted third intracellular loops were identified. The receptor heterologously expressed in cultured cells showed high affinity binding to [125I]iodo-lysergic acid diethylamide. Dopamine showed the highest affinity for this receptor among several amine neurotransmitters tested. Activation of the heterologously expressed receptor led to the inhibition of cyclic AMP production, confirming that this receptor has the functional property of a D2-like receptor. We have also analyzed the expression pattern of this receptor and found that the receptor is expressed in several neurons including all the dopaminergic neurons in C. elegans.  相似文献   

16.
The nematode Caenorhabditis elegans, with information on neural connectivity, three-dimensional position and cell linage, provides a unique system for understanding the development of neural networks. Although C. elegans has been widely studied in the past, we present the first statistical study from a developmental perspective, with findings that raise interesting suggestions on the establishment of long-distance connections and network hubs. Here, we analyze the neuro-development for temporal and spatial features, using birth times of neurons and their three-dimensional positions. Comparisons of growth in C. elegans with random spatial network growth highlight two findings relevant to neural network development. First, most neurons which are linked by long-distance connections are born around the same time and early on, suggesting the possibility of early contact or interaction between connected neurons during development. Second, early-born neurons are more highly connected (tendency to form hubs) than later-born neurons. This indicates that the longer time frame available to them might underlie high connectivity. Both outcomes are not observed for random connection formation. The study finds that around one-third of electrically coupled long-range connections are late forming, raising the question of what mechanisms are involved in ensuring their accuracy, particularly in light of the extremely invariant connectivity observed in C. elegans. In conclusion, the sequence of neural network development highlights the possibility of early contact or interaction in securing long-distance and high-degree connectivity.  相似文献   

17.
We have previously identified two G protein-linked acetylcholine receptors (GARs), GAR-1 and GAR-3, in the nematode Caenorhabditis elegans. Whereas GAR-3 is a homologue of muscarinic acetylcholine receptors (mAChRs), GAR-1 is similar to but pharmacologically distinct from mAChRs. In the current work we isolated a new type of GAR using C. elegans genome sequence information. This receptor, named GAR-2, consists of 614 amino acid residues and has seven putative transmembrane domains. Database searches indicate that GAR-2 is most similar to GAR-1 and closely related to GAR-3/mAChRs. The overall amino acid sequence identities to GAR-1 and GAR-3 are approximately 32 and approximately 23%, respectively. When GAR-2 was coexpressed with the G protein-activated inwardly rectifying K(+) (GIRK1) channel in XENOPUS: oocytes, acetylcholine was able to evoke the GIRK current in a dose-dependent fashion. Oxotremorine, a classical muscarinic agonist, had little effect on the receptor, indicating that GAR-2 is pharmacologically different from mAChRs but rather similar to GAR-1. GAR-2 differs from GAR-1, however, in that it showed virtually no response to muscarinic antagonists such as atropine, scopolamine, and pirenzepine. Expression studies using green fluorescent protein reporter gene fusion revealed that GAR-2 is expressed in a subset of C. elegans neurons, distinct from those expressing GAR-1. Together with our previous reports, this study demonstrates that diverse types of GARs are present in C. elegans.  相似文献   

18.
Alvarez LD  Mañez PA  Estrin DA  Burton G 《Proteins》2012,80(7):1798-1809
A structure for the ligand binding domain (LBD) of the DAF-12 receptor from Caenorhabditis elegans was obtained from the X-ray crystal structure of the receptor LBD from Strongyloides stercoralis bound to (25R)-Δ(7)-dafachronic acid (DA) (pdb:3GYU). The model was constructed in the presence of the ligand using a combination of Modeller, Autodock, and molecular dynamics (MD) programs, and then its dynamical behavior was studied by MD. A strong ligand binding mode (LBM) was found, with the three arginines in the ligand binding pocket (LBP) contacting the C-26 carboxylate group of the DA. The quality of the ceDAF-12 model was then evaluated by constructing several ligand systems for which the experimental activity is known. Thus, the dynamical behavior of the ceDAF-12 complex with the more active (25S)-Δ(7)-DA showed two distinct binding modes, one of them being energetically more favorable compared with the 25R isomer. Then the effect of the Arg564Cys and Arg598Met mutations on the (25R)-Δ(7)-DA binding was analyzed. The MD simulations showed that in the first case the complex was unstable, consistent with the lack of transactivation activity of (25R)-Δ(7)-DA in this mutant. Instead, in the case of the Arg598Met mutant, known to produce a partial loss of activity, our model predicted smaller effects on the LBM with a more stable MD trajectory. The model also showed that removal of the C-25 methyl does not impede the simultaneous strong interaction of the carboxylate with the three arginines, predicting that 27-nor-DAs are putative ceDAF-12 ligands.  相似文献   

19.
20.
Shibata Y  Fujii T  Dent JA  Fujisawa H  Takagi S 《Genetics》2000,154(2):635-646
The pharynx of Caenorhabditis elegans is a neuromuscular organ responsible for feeding, concentrating food by its pumping movement. A class of mutants, the eat mutants, are defective in this behavior. We have identified a novel eat gene, eat-20, encoding a unique transmembrane protein with three EGF motifs. Staining with a specific polyclonal antibody reveals that EAT-20 is expressed predominantly in the pharyngeal muscles and a subset of neurons. Some hypodermal cells also express EAT-20. eat-20 mutant animals are starved, have smaller brood sizes, and have prolonged egg-laying periods. The starvation apparently results from pharyngeal pumping defects, including a reduced pumping rate and "slippery pumping," in which the contents of the pharynx sometimes move rostrally. However, electrical activity of eat-20 mutants appears normal by electropharyngeogram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号