首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterogenous chitinases have been introduced in many plant species with the aim to increase the resistance of plants to fungal diseases. We studied the effects of the heterologous expression of sugar beet chitinase IV on the intensity of ectomycorrhizal (ECM) colonization and the structure of fungal communities in the field trial of 15 transgenic and 8 wild-type silver birch (Betula pendula Roth) genotypes. Fungal sequences were separated in denaturing gradient gel electrophoresis and identified by sequencing the ITS1 region to reveal the operational taxonomic units. ECM colonization was less intense in 7 out of 15 transgenic lines than in the corresponding non-transgenic control plants, but the slight decrease in overall ECM colonization in transgenic lines could not be related to sugar beet chitinase IV expression or total endochitinase activity. One transgenic line showing fairly weak sugar beet chitinase IV expression without significantly increased total endochitinase activity differed significantly from the non-transgenic controls in the structure of fungal community. Five sequences belonging to three different fungal genera (Hebeloma, Inocybe, Laccaria) were indicative of wild-type genotypes, and one sequence (Lactarius) indicated one transgenic line. In cluster analysis, the non-transgenic control grouped together with the transgenic lines indicating that genotype was a more important factor determining the structure of fungal communities than the transgenic status of the plants. With the tested birch lines, no clear evidence for the effect of the heterologous expression of sugar beet chitinase IV on ECM colonization or the structure of fungal community was found.  相似文献   

2.
Biotic and abiotic conditions in soil pose major constraints on growth and reproductive success of plants. Fungi are important agents in plant soil interactions but the belowground mycobiota associated with plants remains poorly understood. We grew one genotype each from Sweden and Italy of the widely-studied plant model Arabidopsis thaliana. Plants were grown under controlled conditions in organic topsoil local to the Swedish genotype, and harvested after ten weeks. Total DNA was extracted from three belowground compartments: endosphere (sonicated roots), rhizosphere and bulk soil, and fungal communities were characterized from each by amplification and sequencing of the fungal barcode region ITS2. Fungal species diversity was found to decrease from bulk soil to rhizosphere to endosphere. A significant effect of plant genotype on fungal community composition was detected only in the endosphere compartment. Despite A. thaliana being a non-mycorrhizal plant, it hosts a number of known mycorrhiza fungi in its endosphere compartment, which is also colonized by endophytic, pathogenic and saprotrophic fungi. Species in the Archaeorhizomycetes were most abundant in rhizosphere samples suggesting an adaptation to environments with high nutrient turnover for some of these species. We conclude that A. thaliana endosphere fungal communities represent a selected subset of fungi recruited from soil and that plant genotype has small but significant quantitative and qualitative effects on these communities.  相似文献   

3.
Ash dieback disease (caused by Hymenoscyphus fraxineus) has affected European ash species (Fraxinus spp.) in recent decades. However, some Asian and American species of Fraxinus and certain genotypes of Fraxinus excelsior are less affected by the disease. We used ITS1-metabacoding to explore the drivers influencing diversity and composition of the twig fungal communities of Fraxinus species and F. excelsior genotypes. Our results revealed that fungi in the classes Eurotiomycetes and Dothideomycetes were among the most prevalent taxa in both Fraxinus species and F. excelsior genotypes. The diversity of the fungal communities differed significantly among Fraxinus species and could be explained by seed origin. Neither host genotype nor season had a significant effect on the community diversity of F. excelsior genotypes. On the other hand, the composition of twig fungal communities differed significantly among host species and among F. excelsior genotypes, and in F. excelsior there was also a significant effect of season on the composition of the fungal community. We did not find a clear effect of ash dieback susceptibility on either diversity or composition of fungal communities in twigs of Fraxinus species, although the effect was significant on the composition of fungal communities among F. excelsior genotypes. Our results demonstrated differences in fungal communities among species of Fraxinus and of F. excelsior genotypes, suggesting specific relationship between individual host genotypes and endophytic fungi.  相似文献   

4.
Ectomycorrhizal (EM) fungal communities are taxonomically diverse, and independent manipulation of both intra- and interspecific diversity has previously been shown to positively influence the productivity and activity of EM fungi. Here, we combine manipulations of intra- and interspecific richness and test the effects of a genotype-species gradient on the biomass production and respiration of EM fungi in vitro. Genotype identity had the most pronounced effect on fungal productivity, and in some cases variation within species was greater than between species. We found small negative effects of both species and genotype richness on biomass production, CO2 efflux and the final nitrogen (N) content of the fungal communities corresponding to mixed negative selection and complementarity effects. Our study highlights the degree of variability between individual EM fungi at the genotype level, and consequently emphasises the importance of individual genotypes for playing key roles in shaping belowground community functioning.  相似文献   

5.
Increasing evidence supports the existence of variations in the association of plant roots with symbiotic fungi that can improve plant growth and inhibit pathogens. However, it is unclear whether intraspecific variations in the symbiosis exist among plant cultivars and if they can be used to improve crop productivity. In this study, we determined genotype-specific variations in the association of chickpea roots with soil fungal communities and evaluated the effect of root mycota on crop productivity. A 2-year field experiment was conducted in southwestern Saskatchewan, the central zone of the chickpea growing region of the Canadian prairie. The effects of 13 cultivars of chickpea, comprising a wide range of phenotypes and genotypes, were tested on the structure of root-associated fungal communities based on internal transcribed spacer (ITS) and 18S rRNA gene markers using 454 amplicon pyrosequencing. Chickpea cultivar significantly influenced the structure of the root fungal community. The magnitude of the effect varied with the genotypes evaluated, and effects were consistent across years. For example, the roots of CDC Corrine, CDC Cory, and CDC Anna hosted the highest fungal diversity and CDC Alma and CDC Xena the lowest. Fusarium sp. was dominant in chickpea roots but was less abundant in CDC Corrine than the other cultivars. A bioassay showed that certain of these fungal taxa, including Fusarium species, can reduce the productivity of chickpea, whereas Trichoderma harzianum can increase chickpea productivity. The large variation in the profile of chickpea root mycota, which included growth-promoting and -inhibiting species, supports the possibility of improving the productivity of chickpea by improving its root mycota in chickpea genetic improvement programs using traditional breeding techniques.  相似文献   

6.
Herbivores are important drivers of plant population dynamics and community composition in natural and managed systems. Intraspecific genetic diversity of long‐lived plants like trees might shape patterns of herbivory by different guilds of herbivores that trees experience through time. However, previous studies on plant genetic diversity effects on herbivores have been largely short‐term. We investigated how tree genotypic variation and diversity influence herbivory of silver birch Betula pendula in a long‐term field experiment. Using clones of eight genotypes, we constructed experimental plots consisting of one, two, four or eight genotypes, and measured damage by five guilds of arthropod herbivores twice a year over three different years (four, six and nine years after the experiment was established). Genotypes varied significantly for most types of herbivore damage, but genotype resistance rankings often shifted over time, and none of the clones was more resistant than all others to all types of herbivores. At the plot level, birch genotypic diversity had significant positive additive effect on leaf rollers and negative non‐additive effects on chewing herbivores and gall makers. In contrast, leaf‐mining and leaf‐tying damage was not influenced by birch genotypic diversity. Within diverse plots, the direction of genotypic diversity effects varied depending on birch genotype, some having lower and some having higher herbivory in mixed stands. This research highlights the importance of long‐term studies including different feeding guilds of herbivores to understand the effects of plant genetic diversity on arthropod communities. Different responses of various feeding guilds to genotypic diversity and shifts in resistance of individual genotypes over time indicate that genotypic mixtures are unlikely to result in overall reduction in herbivory over time.  相似文献   

7.
Revegetation following dam removal projects may depend on recovery of arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungal communities, which perform valuable ecosystem functions. This study assessed the availability and function of AM and EM fungi for plants colonizing dewatered reservoirs following a dam removal project on the Elwha River, Olympic Peninsula, Washington, United States. Availability was assessed via AM fungal spore density in soils and EM root tip colonization of Salix sitchensis (Sitka willow) in an observational field study. The effect of mycorrhizal fungi from 4 sources (reservoir soils, commercial inoculum, and 2 mature plant community soils) on growth and nutrient status of S. sitchensis was quantified in a greenhouse study. AM fungal spores and EM root tips were present in all field samples. In the greenhouse, plants receiving reservoir soil inoculum had only incipient mantle formation, while plants receiving inoculum from mature plant communities had fully formed EM root tips. EM formation corresponded with alleviation of phosphorus stress in plants (lower shoot nitrogen:phosphorus). Thus, revegetating plants have access to AM and EM fungi following dam removal, and EM formation may be especially important for plant P uptake in reservoir soils. However, availability of mycorrhizal fungi declines with distance from established plant communities. Furthermore, EM fungal communities in recently dewatered reservoirs may not be as effective at forming beneficial mycorrhizae as those from mature plant communities. Whole soil inoculum from mature plant communities may be important for the success of revegetating plants and recovery of mycorrhizal fungal communities.  相似文献   

8.
Bacterial and fungal communities associated with plant roots are central to the host health, survival and growth. However, a robust understanding of the root-microbiome and the factors that drive host associated microbial community structure have remained elusive, especially in mature perennial plants from natural settings. Here, we investigated relationships of bacterial and fungal communities in the rhizosphere and root endosphere of the riparian tree species Populus deltoides, and the influence of soil parameters, environmental properties (host phenotype and aboveground environmental settings), host plant genotype (Simple Sequence Repeat (SSR) markers), season (Spring vs. Fall) and geographic setting (at scales from regional watersheds to local riparian zones) on microbial community structure. Each of the trees sampled displayed unique aspects to its associated community structure with high numbers of Operational Taxonomic Units (OTUs) specific to an individual trees (bacteria >90%, fungi >60%). Over the diverse conditions surveyed only a small number of OTUs were common to all samples within rhizosphere (35 bacterial and 4 fungal) and endosphere (1 bacterial and 1 fungal) microbiomes. As expected, Proteobacteria and Ascomycota were dominant in root communities (>50%) while other higher-level phylogenetic groups (Chytridiomycota, Acidobacteria) displayed greatly reduced abundance in endosphere compared to the rhizosphere. Variance partitioning partially explained differences in microbiome composition between all sampled roots on the basis of seasonal and soil properties (4% to 23%). While most variation remains unattributed, we observed significant differences in the microbiota between watersheds (Tennessee vs. North Carolina) and seasons (Spring vs. Fall). SSR markers clearly delineated two host populations associated with the samples taken in TN vs. NC, but overall host genotypic distances did not have a significant effect on corresponding communities that could be separated from other measured effects.  相似文献   

9.
Arbuscular mycorrhizal (AM) fungal communities can influence the species composition of plant communities. This influence may result from effects of AM on seedling recruitment, although the existing evidence is limited to experimental systems. We addressed the impact of AM fungi on the plant community composition and seedling recruitment of two species – Oxalis acetosella and Prunella vulgaris – in a temperate forest understory. We established a field experiment over two years in which soil fertility (using fertilizer to enhance and sucrose to decrease fertility) and the activity of AM fungi (using fungicide) was manipulated in a factorial design. Species richness, diversity and community composition of understory plants were not influenced by soil fertility or AM fungal activity treatments. However, plant community composition was marginally significantly affected by the interaction of these treatments as the effect of AM fungal activity became evident under enhanced soil fertility. Suppression of AM fungal activity combined with decreased soil fertility increased the number of shoots of herbaceous plants. Unchanged activity of AM fungi enhanced the growth of O. acetosella seedlings under decreased soil fertility, but did not influence the growth of P. vulgaris seedlings. We conclude that the role of AM fungi in structuring plant communities depends on soil fertility. AM fungi can have a strong influence on seedling recruitment, especially for those plants that are characteristic of the habitat.  相似文献   

10.
《Mycological Research》2006,110(6):734-748
Wooded meadows are seminatural plant communities that support high diversity of various taxa. Due to changes in land use, wooded meadows have severely declined during the last century. The dominant trees in wooded meadows acquire mineral nutrients via ectomycorrhizal fungi. Using anatomotyping and sequencing of root tips, interpolation and extrapolation methods, we studied the diversity and community structure of ectomycorrhizal fungi in two soil horizons of both managed and forested parts of a wooded meadow in Estonia. Species of Thelephoraceae, Sebacinaceae and the genus Inocybe dominated the whole ectomycorrhizal fungal community of 172 observed species. Forested and managed parts of the wooded meadow harboured different communities of ectomycorrhizal fungi, whereas soil horizon had a negligible effect on the fungal community composition. Diverse soil conditions and host trees likely support the high richness of ectomycorrhizal fungi in the wooded meadow ecosystem. Direct sequencing integrated with interpolation and extrapolation methods are promising to identify the fungi at the species level and to compare species richness between communities of ectomycorrhizal fungi.  相似文献   

11.
The number of genetically distinct individuals within a community is a key component of biodiversity and yet its impact at different trophic levels, especially upon the diversity of functionally important soil microorganisms is poorly understood. Here, we test the hypothesis that plant communities that are genetically impoverished will support fewer species of root-associated fungi. We used established grassland mesocosms comprising non-sterile natural soil supporting defined communities of 11 clonally-propagated plant species. Half of the mesocosms contained one genotype per species and half 16 genotypes per species. After 8 years growth, we sampled roots from the mesocosms and measured root-associated fungal richness and diversity using terminal restriction fragment length polymorphism (T-RFLP). Contrary to our hypothesis, we found that the roots of genetically impoverished communities contained more species of fungi and had greater diversity compared to genetically rich communities. Analysis of the plant species composition of the mesocosm communities indicated that genotypic diversity affects root-fungal diversity indirectly through its influence upon plant species diversity. Our findings highlight the need to include feedbacks with plant intraspecific diversity into existing models describing the maintenance of soil biodiversity.  相似文献   

12.
Mycorrhizas and global environmental change: research at different scales   总被引:1,自引:1,他引:0  
Staddon  P. L.  Heinemeyer  A.  Fitter  A. H. 《Plant and Soil》2002,244(1-2):253-261
Global environmental change (GEC), in particular rising atmospheric CO2 concentration and temperature, will affect most ecosystems. The varied responses of plants to these aspects of GEC are well documented. As with other key below-ground components of terrestrial ecosystems, the response of the ubiquitous mycorrhizal fungal root symbionts has received limited attention. Most of the research on the effects of GEC on mycorrhizal fungi has been pot-based with a few field (especially monoculture) studies. A major question that arises in all these studies is whether the GEC effects on the mycorrhizal fungi are independent of the effects on their plant hosts. We evaluate the current knowledge on the effects of elevated CO2 and increased temperature on mycorrhizal fungi and focus on the few available field examples. The value of using long-term and large-scale field experiments is emphasised. We conclude that the laboratory evidence to date shows that the effect of elevated CO2 on mycorrhizal fungi is dependent on plant growth and that temperature effects seen in the past might have reflected a similar dependence. Therefore, how temperature directly affects mycorrhizal fungi remains unknown. In natural ecosystems, we predict that GEC effects on mycorrhizal fungal communities will be strongly mediated by the effects on plant communities to the extent that community level interactions will prove to be the key mechanism for determining GEC-induced changes in mycorrhizal fungal communities.  相似文献   

13.
Individual plants typically interact with multiple mutualists and enemies simultaneously. Plant roots encounter both arbuscular mycorrhizal (AM) and dark septate endophytic (DSE) fungi, while the leaves are exposed to herbivores. AMF are usually beneficial symbionts, while the functional role of DSE is largely unknown. Leaf herbivory may have a negative effect on root symbiotic fungi due to decreased carbon availability. However, evidence for this is ambiguous and no inoculation-based experiment on joint effects of herbivory on AM and DSE has been done to date. We investigated how artificial defoliation impacts root colonization by AM (Glomus intraradices) and DSE (Phialocephala fortinii) fungi and growth of Medicago sativa host in a factorial laboratory experiment. Defoliation affected fungi differentially, causing a decrease in arbuscular colonization and a slight increase in DSE-type colonization. However, the presence of one fungal species had no effect on colonization by the other or on plant growth. Defoliation reduced plant biomass, with this effect independent of the fungal treatments. Inoculation by either fungal species reduced root/shoot ratios, with this effect independent of the defoliation treatments. These results suggest AM colonization is limited by host carbon availability, while DSE may benefit from root dieback or exudation associated with defoliation. Reductions in root allocation associated with fungal inoculation combined with a lack of effect of fungi on plant biomass suggest DSE and AMF may be functional equivalent to the plant within this study. Combined, our results indicate different controls of colonization, but no apparent functional consequences between AM and DSE association in plant roots in this experimental setup.  相似文献   

14.
The research aim was to assess the effects of the plant hormone abscisic acid (ABA) and the growth regulator paclobutrazol (PBZ) on root system development during the in vitro culture of different birch and aspen genotypes. The studied genotypes involved two aspen (Populus tremula and Populus tremuloides × P. tremula) and two silver birch (Betula pendula) trees, with one of the birches characterized by its inability to root in vitro. For experiments, apical shoot segments were cultured on nutrient medium enriched with either ABA or PBZ. Additionally, the analysis of the endogenous hormones in shoots developed on hormone‐free medium was conducted by high‐performance liquid chromatography. The endogenous concentration of auxin indole‐3‐acetic acid was much higher in the aspens than that in the birches, while the highest concentration of ABA was found in the root‐forming birch. The culturing of this birch genotype on medium enriched with ABA resulted in an increased root length and a higher number of lateral roots without any negative effect on either shoot growth or adventitious root (AR) formation, although these two processes were largely inhibited by ABA in the aspens. Meanwhile, PBZ promoted AR formation in both aspen and birch cultures but impaired secondary root formation and shoot growth in birches. These results suggest the use of ABA for the in vitro rooting of birches and PBZ for the rooting of aspens.  相似文献   

15.
Interest in the diversity of arbuscular mycorrhizal (AM) fungal communities has been stimulated by recent data that demonstrate that fungal communities influence the competitive hierarchies, productivity, diversity, and successional patterns of plant communities. Although natural communities of AM fungi are diverse, we have a poor understanding of the mechanisms that promote and maintain that diversity. Plants may coexist by inhabiting disparate temporal niches; plants of many grasslands are either warm or cool season specialists. We hypothesized that AM fungi might be similarly seasonal. To test our hypothesis, we tracked the sporulation of individual AM fungal species growing within a North Carolina grassland. Data were collected in 1996 and 1997; in 1997, sampling focused on two common species. We found that AM fungi, especially Acaulospora colossica and Gigaspora gigantea, maintained different and contrasting seasonalities. Acaulospora colossica sporulated more frequently in the warm season, but Gi. gigantea sporulated more frequently in the cool season. Moreover, AM fungal species were spatially aggregated at a fine scale. Contrasting seasonal and spatial niches may facilitate the maintenance of a diverse community of AM fungi. Furthermore, these data may illuminate our understanding of the AM fungal influence on plant communities: various fungal species may preferentially associate with different plant species and thereby promote diversity in the plant community.  相似文献   

16.
Changes in plant–fungal interactions were often suggested as one of possible mechanisms behind facilitative plant–plant effects in harsh environments. We asked how the mycorrhizal and dark septate endophyte (DSE) colonisations of understorey crowberry (Empetrum nigrum ssp. hermaphroditum) are affected by proximity to mature mountain birch trees (Betula pubescens ssp. czerepanovii) along three abiotic stress gradients (pollution, elevation, seashore) in the Kola peninsula, NW Russia. Stress level affected shoot growth and reproduction in crowberry, but had no effect on root fungal colonisation. In contrast, proximity to a mountain birch tree had no effect on either growth or reproduction of crowberry, but changed all characteristics of root colonisation. The mycorrhizal coil colonisation of crowberry was on average 21% higher near a birch tree, whereas other parameters were higher outside of canopy area (hyaline hyphae: 12%; DSE hyphae: 16%; DSE sclerotia: 42%). Effects of birch tree on root fungal colonisation in crowberry did not depend on the level of abiotic stress. Although we detected a weak positive association between growth of crowberry and its mycorrhizal coil colonisation, we conclude that mycorrhizal and DSE colonisations of crowberry are primarily affected by the abiotic environment. None of the detected patterns was consistent with the patterns expected from the theories concerning stress effects on plant–plant interactions.  相似文献   

17.
Diverse fungal assemblages colonize the fine feeder roots of woody plants, including mycorrhizal fungi, fungal root endophytes and soil saprotrophs. The fungi co-inhabiting Cenococcum geophilum ectomycorrhizae (ECM) of Abies balsamea, Betula papyrifera and Picea glauca were studied at two boreal forest sites in Eastern Canada by direct PCR of ITS rDNA. 50 non-Cenococcum fungal sequence types were detected, including several potentially mycorrhizal species as well as fungal root endophytes. Non-melanized ascomycetes dominated, in contrast to the dark septate endophytes (DSE) reported in most culture dependent studies. The results demonstrate significant differences in root associated fungal assemblages among the host species studied. Fungal diversity was also host dependent, with P. glauca roots supporting a more diverse community than A. balsamea. Differences in root associated fungal communities may well influence ecological interactions among host plant species.  相似文献   

18.
为研究长白山自然保护区北坡岳桦树(Betula ermanli)的根系内生真菌的种类及其分布,笔者于2011年7~9月分别在长白山自然保护区北坡海拔1700~2100m处采集岳桦树根系组织。分离得到411株内生真菌,经形态学鉴定,分别属于17个属。研究结果表明:除不产孢菌株外,青霉属Penieillium分离频率最高(21.90%),木霉属Trichodmma分离频率次之(17.52%),镰孢菌属Fusarium、伞形霉属Umbelopsis和曲霉属Aspergillus分离频率也相对较高(5.60%、5.35%和4.87%)。通过分析发现,从不同月份和不同海拔高度采集的岳桦树根系分离的内生真菌的种类和数量不同。试验结果表明,长白山自然保护区岳桦树根系的内生真菌种类较多,其种类、数量和分布与采样时间以及海拔等因素存在一定的联系。  相似文献   

19.
Arbuscular mycorrhizal (AM) symbiosis is among the factors contributing to plant survival in serpentine soils characterised by unfavourable physicochemical properties. However, AM fungi show a considerable functional diversity, which is further modified by host plant identity and edaphic conditions. To determine the variability among serpentine AM fungal isolates in their effects on plant growth and nutrition, a greenhouse experiment was conducted involving two serpentine and two non-serpentine populations of Knautia arvensis plants grown in their native substrates. The plants were inoculated with one of the four serpentine AM fungal isolates or with a complex AM fungal community native to the respective plant population. At harvest after 6-month cultivation, intraradical fungal development was assessed, AM fungal taxa established from native fungal communities were determined and plant growth and element uptake evaluated. AM symbiosis significantly improved the performance of all the K. arvensis populations. The extent of mycorrhizal growth promotion was mainly governed by nutritional status of the substrate, while the effect of AM fungal identity was negligible. Inoculation with the native AM fungal communities was not more efficient than inoculation with single AM fungal isolates in any plant population. Contrary to the growth effects, a certain variation among AM fungal isolates was revealed in terms of their effects on plant nutrient uptake, especially P, Mg and Ca, with none of the AM fungi being generally superior in this respect. Regardless of AM symbiosis, K. arvensis populations significantly differed in their relative nutrient accumulation ratios, clearly showing the plant’s ability to adapt to nutrient deficiency/excess.  相似文献   

20.
Microbial communities in plant roots provide critical links between above‐ and belowground processes in terrestrial ecosystems. Variation in root communities has been attributed to plant host effects and microbial host preferences, as well as to factors pertaining to soil conditions, microbial biogeography and the presence of viable microbial propagules. To address hypotheses regarding the influence of plant host and soil biogeography on root fungal and bacterial communities, we designed a trap‐plant bioassay experiment. Replicate Populus, Quercus and Pinus plants were grown in three soils originating from alternate field sites. Fungal and bacterial community profiles in the root of each replicate were assessed through multiplex 454 amplicon sequencing of four loci (i.e., 16S, SSU, ITS, LSU rDNA). Soil origin had a larger effect on fungal community composition than did host species, but the opposite was true for bacterial communities. Populus hosted the highest diversity of rhizospheric fungi and bacteria. Root communities on Quercus and Pinus were more similar to each other than to Populus. Overall, fungal root symbionts appear to be more constrained by dispersal and biogeography than by host availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号