首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Double-stranded RNA (dsRNA) is produced during replicative viral infection or genotoxic stress. Thus knowledge of the cellular response to dsRNA is necessary to understand the effects of DNA damage or viral infection in biliary epithelia. We assessed the effect of dsRNA on biliary epithelial cell proliferation and apoptosis and the role of the stress-activated p38 MAPK signaling pathway in these responses. dsRNA did not induce apoptosis or proliferation in Mz-ChA-1 human malignant cholangiocytes, but decreased cytotoxicity induced by camptothecin or tumor necrosis factor-related apoptosis inducing ligand and decreased activity of caspases 3, 8, and 9. Furthermore, dsRNA increased p38 MAPK and JNK kinase active site phosphorylation but had no effect on either MAPK kinase (MEK)1/2 or protein kinase R phosphorylation. Inhibition of p38 MAPK with SB-203580 increased basal caspase activity. Thus dsRNA stimulates a p38 MAPK-dependent cell-survival pathway in biliary epithelial cells that may modulate the response of the biliary epithelia to dsRNA produced during genotoxic injury or virus infection.  相似文献   

2.
Serum contains a variety of biomolecules, which play an important role in cell proliferation and survival. We sought to identify the serum factor responsible for mitigating tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis and to investigate its molecular mechanism. TRAIL induced effective apoptosis without serum, whereas bovine serum decreased apoptosis by suppressing cytochrome c release and caspase activation. Indeed, albumin-bound lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) inhibited TRAIL-induced apoptosis by suppressing caspase activation and cytochrome c release. LPA increased phosphatidylinositol 3-kinase (PI3K)-dependent Akt activation, cellular FLICE-inhibitory protein (cFLIP) expression, and Bad phosphorylation, resulting in inhibition of caspase-8 activation and Bad translocation to mitochondria. The antiapoptotic effect of LPA was abrogated by PI3K inhibitor, transfection with dominant-negative Akt, and specific downregulation of cFLIP expression using siRNA and further increased by siRNA-mediated suppression of Bad expression. Moreover, sera from ovarian cancer patients showed more protective effect against TRAIL-induced apoptosis than those from healthy donors, and this protection was suppressed by PI3K inhibitor. Our results indicate that albumin-bound LPA and S1P prevent TRAIL-induced apoptosis by upregulation of cFLIP expression and in part by Bad phosphorylation, through the activation of PI3K/Akt pathway.  相似文献   

3.
Viral subversion of apoptosis regulation plays an important role in the outcome of host/virus interactions. Although human cytomegalovirus (HCMV) encodes several immediate early (IE) antiapoptotic proteins (IE1, IE2, vMIA and vICA), no proapoptotic HCMV protein has yet been identified. Here we show that US28, a functional IE HCMV-encoded chemokine receptor, which may be involved in both viral dissemination and immune evasion, constitutively induces apoptosis in several cell types. In contrast, none of nine human cellular chemokine receptors, belonging to three different subfamilies, induced any significant level of apoptosis. US28-induced cell death involves caspase 10 and caspase 8 activation, but does not depend on the engagement of cell-surface death receptors of the tumour necrosis factor receptor/CD95 family. US28 cell-death induction is prevented by coexpression of C-FLIP, a protein that inhibits Fas-associated death domain protein (FADD)-mediated activation of caspase 10 and caspase 8, and by coexpression of the HCMV antiapoptotic protein IE1. The use of US28 mutants indicated that the DRY sequence of its third transmenbrane domain, required for constitutive G-protein signalling, and the US28 intracellular terminal domain required for constitutive US28 endocytosis, are each partially required for cell-death induction. Thus, in HCMV-infected cells, US28 may function either as a chemokine receptor, a phospholipase C activator, or a proapoptotic factor, depending on expression levels of HCMV and/or cellular antiapoptotic proteins.  相似文献   

4.
The activation of NF-kappaB inhibits apoptosis via a mechanism involving upregulation of various antiapoptotic genes, such as cellular FLICE-inhibitory protein (c-FLIP), Bcl-xL, A1/Bfl-1, and X chromosome-liked inhibitor of apoptosis (XIAP). In contrast, the activation of c-Jun N-terminal kinase (JNK) promotes apoptosis in a manner that is dependent on the cell type and the context of the stimulus. Recent studies have indicated that one of the antiapoptotic functions of NF-kappaB is to downregulate JNK activation. Further studies have also revealed that NF-kappaB inhibits JNK activation by suppressing accumulation of reactive oxygen species (ROS). In this review, we will focus on the signaling crosstalk between the NF-kappaB and JNK cascades via ROS.  相似文献   

5.
Recent studies have detected significant elevations of interleukin (IL)-5 mRNA in the liver parenchyma of patients with both primary biliary cirrhosis and acute rejection after liver transplantation. In both of these disorders, intrahepatic biliary epithelial cells (BECs) are the targets of injury. We hypothesized that BECs may themselves express IL-5 receptors that may modulate key biliary functions. RNAs coding for IL-5alpha and -beta receptors were amplified by RT/PCR from a biliary cell line derived from a human cholangiocarcinoma (Mz-ChA-1) and verified by DNA sequencing. IL-5 receptor distribution was detected immunocytochemically on Mz-ChA-1 cells, immortalized murine BEC, bile duct-ligated rat liver, and isolated cholangiocytes. Patch-clamp studies on Mz-ChA-1 cells showed that IL-5 inhibits 5'-N-ethylcarboxamidoadenosine-stimulated chloride currents. Additional functional studies showed that IL-5 inhibits secretin-induced bile flow. We conclude that BECs express IL-5 receptors and that IL-5 modulates BEC chloride currents and fluid secretion. Since IL-5 has previously been associated with cholestatic liver disease, we speculate that IL-5 may contribute to liver injury through its effects on biliary secretion.  相似文献   

6.
Tumor necrosis factor α-related apoptosis-inducing ligand (TRAIL) is considered a promising cancer therapeutic agent due to its ability to induce apoptosis in a variety of cancer cells, while sparing normal cells. However, many human tumors including acute myeloid leukemia (AML) are partially or completely resistant to monotherapy with TRAIL, limiting its therapeutic utility. Therefore, identification of factors that contribute to TRAIL resistance may facilitate future development of more effective TRAIL-based cancer therapies. Here, we report a previously unknown role for WT1 in mediating TRAIL resistance in leukemia. Knockdown of WT1 with shRNA rendered TRAIL-resistant myeloid leukemia cells sensitive to TRAIL-induced cell death, and re-expression of shRNA-resistant WT1 restored TRAIL resistance. Notably, TRAIL-mediated apoptosis in WT1-silenced cells was largely due to down-regulation of the antiapoptotic protein Bcl-xL. Moreover, WT1 expression strongly correlated with overexpression of Bcl-xL in AML cell lines and blasts from AML patients. Furthermore, we found that WT1 transactivates Bcl-xL by directly binding to its promoter. We previously showed that WT1 is a novel client protein of heat shock protein 90 (Hsp90). Consistent with this, pharmacological inhibition of Hsp90 resulted in reduced WT1 and Bcl-xL expression leading to increased sensitivity of leukemia cells to TRAIL-mediated apoptosis. Collectively, our results suggest that WT1-dependent Bcl-xL overexpression contributes to TRAIL resistance in myeloid leukemias.  相似文献   

7.
Members of the protein kinase C (PKC) family of serine-threonine kinases are important regulators of immune cell survival. Ingenol 3-angelate (PEP005) activates a broad range of PKC isoforms and induces apoptosis in acute myeloid leukemia cells by activating the PKC isoform PKCδ. We show here that, in contrast to its effect on leukemic cells, PEP005 provides a strong survival signal to resting and activated human T cells. The antiapoptotic effect depends upon the activation of PKCθ. This PKC isoform is expressed in T cells but is absent in myeloid cells. Further studies of the mechanism involved in this process showed that PEP005 inhibited activated CD8+ T cell apoptosis through the activation of NFκB downstream of PKCθ, leading to increased expression of the antiapoptotic proteins Mcl-1 and Bcl-xL. Transfection of CD8+ T cells with dominant-negative PKCθ diminished the prosurvival effect of PEP005 significantly. Ectopic expression of PKCθ in the acute myeloid leukemia cell line NB4 turned their response to PEP005 from an increased to decreased rate of apoptosis. Therefore, in contrast to myeloid leukemia cells, PEP005 provides a strong survival signal to T cells, and the expression of functional PKCθ influences whether PKC activation leads to an anti- or proapoptotic outcome in the cell types tested.  相似文献   

8.
Apoptosis plays an important role in liver ischemia and reperfusion (I/R) injury. However, the molecular basis of apoptosis in I/R injury is poorly understood. The aims of this study were to ascertain when and how apoptotic signal transduction occurs in I/R injury. The apoptotic pathway in rats undergoing 90 min of warm ischemia with reperfusion was compared with that of rats undergoing prolonged ischemia alone. During ischemia, mitochondrial cytochrome c was released into the cytosol in a time-dependent manner in hepatocytes and sinusoidal endothelial cells, and caspase-3 and an inhibitor of caspase-activated DNase were cleaved. However, apoptotic manifestation and DNA fragmentation were not observed. After reperfusion, nuclear condensation, cells positive for terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling, and DNA fragmentation were observed and caspase-8 and Bid cleavage occurred. In contrast, prolonged ischemia alone induced necrosis rather than apoptosis. In summary, our results show that release of mitochondrial cytochrome c and caspase activation proceed during ischemia, although apoptosis is manifested after reperfusion.  相似文献   

9.
Our group has previously identified elevated levels of nonapoptotic active caspase 3 (CASP3) accompanied by increased prosurvival, antiapoptotic signaling in the pregnant mouse uterus during late gestation. We speculated that increased antiapoptotic signaling desensitized the pregnant uterine myocyte to the apoptotic action of uterine CASP3. This current study examines the mechanism by which the pregnant myocyte gains resistance to the apoptotic effects of increased uterine CASP3. Using both primary human pregnant fundal myometrial cultures and the telomerase-immortalized human uterine myocyte cell line (hTERT) as our model systems, uterine myocytes were exposed to UV irradiation and Fas ligand to stimulate both the intrinsic and extrinsic apoptotic pathways. Stimulation of either the intrinsic or extrinsic apoptotic pathways resulted in elevated levels of uterine myocyte CASP3. However, apoptotic cell death was restricted to CASP3 activated by intrinsic stimulation via UV light. In contrast Fas ligand-mediated CASP3 activation was accompanied by increased antiapoptotic signaling mimicking our in vivo observations in the pregnant mouse uterus. Using small interfering RNA to inhibit antiapoptotic signaling, we determined the ability of the human uterine myocyte to resist apoptotic cell death in the absence of the prosurvival, antiapoptotic signaling. Accordingly, suppression of antiapoptotic signaling specifically mediated by myeloid cell leukemia sequence 1 was sufficient to sensitize the uterine myocyte to undergo apoptotic cell death. These data demonstrate that elevated myeloid cell leukemia sequence 1 levels are sufficient to confer apoptotic resistance on the human uterine myocyte despite highly elevated levels of active CASP3.  相似文献   

10.
11.
Testicular torsion requires emergent release of the twisted spermatic cord. Ischemia/reperfusion (I/R) plays an important role in its pathogenesis, and recent data suggest that germ cells undergo apoptosis during I/R. In a model of torsion/detorsion (i.e., I/R) of the rat testis, involvement of calpain and caspase in necrotic and apoptotic cell death was examined. After 1 h of ischemia followed by 0, 0.5, 1, 6, or 24 h of reperfusion, the germ cells positively stained with in situ TUNEL, and DNA fragmentation, activation of caspase-3, and proteolysis of caspase substrates increased with time of reperfusion, demonstrating apoptosis. In addition, m-calpain activation and proteolysis of alpha-fodrin were increased during reperfusion, and its activation is thought to be involved in the necrosis. A calpain inhibitor, acety-leucyl-leucyl-norleucinal, inhibited the phenomena associated with apoptosis and necrosis induced by I/R, although a caspase inhibitor, Z-Val-Ala-Asp-fluoromethlyketone, only inhibited apoptotic changes. The inhibition of calpain but not caspase ameliorated the injury after 60 days of reperfusion following 1 h of ischemia. The calpain inhibitor injected just before reperfusion effectively suppressed alpha-fodrin proteolysis, suggesting its usefulness in the treatment of testicular torsion.  相似文献   

12.
The tyrosine kinase inhibitor imatinib is successfully used in the treatment of chronic myeloid leukemia, but the occurrence of resistance phenomena can significantly limit therapeutic impact. Imatinib shows synergistic effects with cisplatin, suggesting that the coadministration of different cytostatics might reestablish the efficacy of treatment. We recently demonstrated that cobalt alkyne (or acetylenehexacarbonyldicobalt) complexes induce antiproliferative activity in human leukemia and lymphoma cells. The present study evaluates the effects of cobalt alkyne compounds containing propargylic acid esters on human acute (HL-60) and chronic myeloid (LAMA-84 and CML-T1) leukemia cell lines. The cell growth inhibitory activities (IC(50) values of 9.5 microM and higher) and induction of apoptosis (maximum 5.5-fold increase of single-stranded DNA at a drug concentration of 50 microM) achieved with the single agents were moderate. Interestingly, suboptimal concentrations of the cobalt complexes (10 microM) together with imatinib (0.1 microM), when coadministered, showed an additive or synergistic effect on cellular proliferation inhibition. The most promising results were obtained with complexes containing ligands derived from the nonsteroidal antiinflammatory drugs acetylsalicylic acid and naproxene.  相似文献   

13.
In order to explore whether the apoptosis in ischemia–reperfusion injury could be affected by Ginkgo biloba extract (GBE) and the free radical scavenger GBE could suppress this affection. Rabbits were randomly divided into sham group, ischemia group, ischemia–reperfusion group (1, 6, 24, 48 h), the drug group (1, 6, 24, 48 h). Measure the rate of apoptosis by flow cytometry, the caspase 9 and apoptosis-inducing factor (AIF) in the cytoplasm and serum by ELISA. Compared with the sham group and ischemia group, the reperfusion group increased the rate of apoptosis, the caspase 9 and AIF in serum have a peak at 24 h after reperfusion, in the cytoplasm the peak at 6 h.GBE inhibit performance has the systemic and local aspects. The apoptosis of nerve cells after spinal cord ischemia–reperfusion has the relationship with the mitochondrial caspase-dependent and caspase-independent pathways and both the local and systemic role. GBE inhibits nerve cell apoptosis by these ways.  相似文献   

14.
In the present study, we determined the contribution of myometrial hyperplasia, hypertrophy, and apoptosis to uterine growth during pregnancy. The changes in two endogenous markers of cell replication, proliferating cell nuclear antigen (PCNA) protein expression and bromodeoxyuridine (BrdU) incorporation, were studied. Myocyte hypertrophy was assessed by measuring the protein:DNA ratio. The expression levels of antiapoptotic regulatory proteins (BCL2 and BCL2L1) and enzymes involved in apoptosis (caspases 3, 6, 7, 9, and 10) were assessed by immunoblotting throughout gestation and postpartum. Myometrial cell apoptosis was determined by TUNEL staining and DNA fragmentation assays. Both BrdU incorporation and PCNA labeling were elevated in early pregnant myometrium and decreased dramatically after midgestation, with a simultaneous increase in cellular hypertrophy. Levels of BCL2 were high during early gestation, followed by significantly elevated levels of BCL2L1 at midgestation. The expression of caspase 10 in myometrial samples declined from a high nonpregnant level to a complete loss at early gestation. The cleaved forms of caspases (CC) 3, 6, 7, and 9, as well as poly(ADP-ribose)polymerase-1, were undetectable in the myometrial samples at early or late gestation but were transiently elevated at midgestation. Immunohistochemical staining of CC3 confirmed the activation of the caspase cascade, but TUNEL-positive staining or the increase in DNA fragmentation was not detected. Collectively, two distinct phases of myometrial growth were observed: myocyte hyperplasia associated with an increase in antiapoptotic proteins during the first half of gestation, and cellular hypertrophy during the second part of gestation. The transition between these phases was associated with transient activation of the caspase cascade that triggered the differentiation of uterine smooth muscle.  相似文献   

15.
Hypoxia/reoxygenation causes cellular injury and death associated with a number of pathophysiological conditions, including myocardial ischemia/reperfusion injury and stroke. The cell death pathways induced by hypoxia/reoxygenation and their underlying regulatory mechanisms remain poorly understood. Recent studies have shown that hypoxia/reoxygenation can induce Bax translocation and cytochrome c release. Using murine lung endothelial cells as a model, we found that the induction of apoptosis by hypoxia/reoxygenation involved the activation of both Bax-dependent and death receptor-mediated pathways. We demonstrated the activation of the death-inducing signal complex and Bid pathway after hypoxia/reoxygenation. Hepatocyte growth factor markedly inhibited hypoxia/reoxygenation-induced endothelial cell apoptosis. The cytoprotection afforded by hepatocyte growth factor was mediated in part by the stimulation of FLICE-like inhibiting protein expression, the attenuation of death-inducing signal complex formation, and the inhibition of Bid and Bax activation. Hepatocyte growth factor also prevented cell injury and death by increasing the expression of the antiapoptotic Bcl-XL protein. The inhibition of Bid/Bax-induced cell death by hepatocyte growth factor primarily involved p38 MAPK and in part Akt-dependent pathways but not ERK1/ERK2.  相似文献   

16.
Although ischemia-reperfusion (I/R) can initiate apoptosis, the timing and contribution of the mitochondrial/cytochrome c apoptosis death pathway to I/R injury is unclear. We studied the timing of cytochrome c release during I/R and whether subsequent caspase activation contributes to reperfusion injury in confluent chick cardiomyocytes. One-hour simulated ischemia followed by 3-h reperfusion resulted in significant cell death, with most cell death evident during the reperfusion phase and demonstrating mitochondrial cytochrome c release within 5 min after reperfusion. By contrast, cells exposed to prolonged ischemia for 4 h had only marginally increased cell death and no detectable cytochrome c release into the cytosol. Caspase activation could not be detected after ischemia only, but it significantly increased after reperfusion. Caspase inhibitors benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, Ac-Asp-Gln-Thr-Asp-H, or benzyloxycarbonyl-Leu-Glu (Ome)-His-Asp-(Ome)-fluoromethyl ketone given only at reperfusion significantly attenuated cell death and resulted in return of contraction. Antixoxidants decreased cytochrome c release, nuclear condensation, and cell death. These results suggest that reperfusion oxidants initiate cytochrome c release within minutes, and apoptosis within hours, significant enough to increase cell death and contractile dysfunction.  相似文献   

17.
Oxidative stress induces JNK activation, which leads to apoptosis through mitochondria-dependent caspase activation. However, little is known about the mechanism by which JNK alters mitochondrial function. In this study, we investigated the role of phosphorylation of myeloid cell leukemia 1 (Mcl-1), an anti-apoptotic member of the Bcl-2 family, in oxidative stress-induced apoptosis. We found that JNK phosphorylated Ser-121 and Thr-163 of Mcl-1 in response to stimulation with H(2)O(2) and that transfection of unphosphorylatable Mcl-1 resulted in an enhanced anti-apoptotic activity in response to stimulation with H(2)O(2). JNK-dependent phosphorylation and thus inactivation of Mcl-1 may be one of the mechanisms through which oxidative stress induces cellular damage.  相似文献   

18.
We recently demonstrated that reperfusion rapidly induces the mitochondrial pathway of apoptosis in chick cardiomyocytes after 1 h of simulated ischemia. Here we tested whether ischemia-reperfusion (I/R)-induced apoptosis could be initiated by caspase-dependent cytochrome c release in this model of cardiomyocyte injury. Fluorometric assays of caspase activity showed little, if any, activation of caspases above baseline levels induced by 1 h of ischemia alone. However, these assays revealed rapid activation of caspase-2, yielding a 2.95 +/- 0.52-fold increase (over ischemia only) within the 1st h of reperfusion, whereas activities of caspases-3, -8, and -9 increased only slightly from their baseline levels. The rapid and prominent activation of caspase-2 suggested that it could be an important initiator caspase in this model, and using specific caspase inhibitors given only at the point of reperfusion, we tested this hypothesis. The caspase-2 inhibitor benzyloxycarbonyl-Val-Asp(Ome)-Val-Ala-Asp(Ome)-CH(2)F was the only caspase inhibitor that significantly inhibited cytochrome c release from mitochondria. This inhibitor also completely blocked activation of caspases-3, -8, and -9. The caspase-3/7 inhibitor transiently and only partially blocked caspase-2 activity and was less effective in blocking the activities of caspases-8 and -9. The caspase-8 inhibitor failed to significantly block caspase-2 or -3, and the caspase-9 inhibitor blocked only caspase-9. Furthermore, the caspase-2 inhibitor protected against I/R-induced cell death, but the caspase-8 inhibitor failed to do so. These data suggest that active caspase-2 initiates cytochrome c release after reperfusion and that it is critical for the I/R-induced apoptosis in this model.  相似文献   

19.
20.
Chronic myeloid leukemia (CML) is a clonal disorder of hematopoietic stem/progenitor cells that is caused by the Bcr-Abl oncoprotein. Clinical resistance to the Bcr-Abl inhibitor imatinib is a critical problem in treating CML. This study investigated the antitumor effect and mechanism of MPT0B169, a new antitubulin agent, in K562 CML cells and their derived imatinib-resistant cells, IMR2 and IMR3. IMR2 and IMR3 cells showed complete resistance to imatinib-induced growth inhibition and apoptosis. Resistance involved ERK1/2 overactivation and MDR1 overexpression. MPT0B169 inhibited the growth of K562, IMR2, and IMR3 cells in a dose- and time-dependent manner. MPT0B169 substantially inhibited the mRNA and protein levels of Bcr-Abl, followed by its downstream pathways including Akt, ERK1/2, and STAT3 in these cells. MPT0B169 treatment resulted in a decrease in the polymer form of tubulin according to Western blot analysis. It triggered cell cycle arrest at the G2/M phase before apoptosis, which was related to the upregulation of the mitotic marker MPM2 and the cyclin B1 level, and a change in the phosphorylation of Cdk1. MPT0B169 induced apoptosis in nonresistant and imatinib-resistant cells via a mitochondrion-mediated caspase pathway. Further study showed that the agent led to a decrease in the antiapoptotic proteins Bcl-2, Bcl-xL, and Mcl-1 and an increase in the apoptotic protein Bax. Taken together, our results suggest that MPT0B169 might be a promising agent for overcoming imatinib resistance in CML cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号