首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Polyadenylated [poly(A)+] RNA has been isolated from the halophilic archaebacterium Halobacterium halobium by binding, at 4 degrees C, to oligo(dT)-cellulose. H. halobium contains approximately 12 times more poly(A) per unit of RNA than does the methanogenic archaebacterium Methanococcus vannielii. The 3' poly(A) tracts in poly(A)+ RNA molecules are approximately twice as long (average length of 20 nucleotides) in H. halobium as in M. vannielii. In both archaebacterial species, poly(A)+ RNAs are unstable.  相似文献   

2.
Methylated nucleotides block 5' terminus of HeLa cell messenger RNA.   总被引:28,自引:0,他引:28  
C M Wei  A Gershowitz  B Moss 《Cell》1975,4(4):379-386
Polyadenylylated [poly(A)+] mRNA from HeLa cells that were labeled with [3H-methyl]-methionine and 14C-uridine was isolated by poly(U)-Sepharose chromatography. The presence of approximately two methyl groups per 1000 nucleotides of poly(A)+ RNA was calculated from the 3H/14C ratios and known degrees of methylation of 18S and 28S ribosomal RNAs. All four 2'-O-methylribonucleosides, but only two base-methylated derivatives, 7-methylguanosine (7MeG) and 6-methyladenosine (6MeA), were identified. 6MeA was the major component accounting for approximately 50% of the total methyl-labeled ribonucleosides. 7MeG, comprising about 10% of the total, was present exclusively at the 5' terminus of the poly(A)+ RNA and could be removed by periodate oxidation and beta elimination. Evidence for a 5' to 5' linkage of 7MeG to adjacent 2'-O-methylribonucleosides through at least two and probably three phosphates to give structures of the type 7MeG5'ppp5pNMep- and 7MeG5'ppp5'NMepNmep- was presented. The previous finding of similar sequences of methylated nucleotides in mRNA synthesized in vitro by enzymes associated with virus cores indicates that blocked 5' termini may be a characteristic feature of mRNAs that function in eucaryotic cells.  相似文献   

3.
Poly(A)+ protamine mRNA (pmRNA) components were isolated after separation on denaturing preparative polyacrylamide gels. The four size classes of protamine mRNA described previously were found to contain poly(A) tracts of different lengths. The pmRNA1 was found to be associated with (A)110, pmRNA2 with (A)90, pmRNA3 with (A)85, and pmRNA4 with (A)69. Following deadenylation with RNase H after duplex formation with oligo-dT, the isolated mRNAs were found to be still heterogeneous, although highly enriched in certain of the deadenylated components. DNA complementary to the isolated mRNAs (cDNA) was synthesized in vitro. Following depurination, the oligopyrimidine maps indicated that C7T4, corresponding to an Arg-Arg-Gly-Gly sequence in protamine and originally thought to be characteristic of all mRNA components, is present in only one or possibly tow of the components. Cross-hybridizations between the cDNAs and the four poly(A)+ pmRNAs indicated that a basic polynucleotide unit of substantial length is common to all four mRNAs and that the existing nucleotide sequence variations probably originate from one or both of the non-coding portions of the mRNA molecules.  相似文献   

4.
poly(A)+ RNA was isolated from maize by affinity chromatography on columns of oligo(dT)-cellulose. A modified nucleotide ('X') was detected in ribonuclease T2 digests of the RNA as part of a resistant dinucleotide. The dinucleotide was detected by means of the polynucleotide kinase-mediated transfer of a radioactive phosphate atom from adenosine triphosphate to the 5'-OH position of the dinucleotide. Intact poly(A) tracts were released from poly(A)+ RNA by digestion with ribonuclease T1 and A in a high salt buffer and were isolated by oligo(dT)-cellulose chromatography. The poly(A) preparation was found to consist of a series of polyadenylate fragments which varied in chain length from approximately 17 to greater than 70. The modified nucleotide was shown to occupy an internal position in these poly(A) tracts.  相似文献   

5.
In vitro RNA synthesis by purified virions of a stock of tsG16(I) was aberrant compared with that of wild-type (wt) vesicular stomatitis virus. RNA made in vitro by tsG16(I) contained a larger proportion of A residues in polyadenylic acid [poly(A)] tracts than did RNA synthesized by wt virus, tsG13(I), tsG21(II) or tsG41(IV). Experiments to determine whether the aberrant polyadenylation was correlated with the known thermolability of the tsG16(I) L protein were inconclusive. Total product RNA made by tsG16(I) was methylated to almost the same extent as wt RNA, contained the same major methylated 5' cap structure as wt RNA, and was translated as well in a reticulocyte cell-free system, yielding the same molecular weight proteins in similar ratios. Most polyadenylated [poly(A)+] RNA made by tsG16(I) was considerably larger than wt poly(A)+ RNA and richer in AMP:UMP residues; however, the protein-coding capacities of mutant and wt poly(A)+ RNAs were similar. This suggested that most mRNAs made in vitro by tsG16(I) might possess very long poly(A)+ tracts, and digestion of RNA by T1 RNase supported this. It appeared, therefore, that a virally coded component of vesicular stomatitis virus could affect polyadenylation. This could be the poly(A) polymerase itself, a protein involved in control of polyadenylation, or a protein which affects an event spatially and temporally connected with polyadenylation (such as initiation of the subsequent mRNA).  相似文献   

6.
Total cellular RNA extracted from Rhodospirillum rubrum cultured in butyrate-containing medium under strict photosynthetic conditions to the stationary phase of growth has been fractionated on an oligodeoxythymidylic acid-cellulose column into polyadenylated [poly(A)+] RNA and poly(A)- RNA fractions. The poly(A)+ fraction was 9 to 10% of the total bulk RNA isolated. Analysis of the poly(A)+ RNA on a denaturing urea-polyacrylamide gel revealed four sharp bands of RNA distributed in heterodisperse fashion between 16S and 9S. Similar fractionation of the poly(A)- RNA resulted in the separation of 23, 16, and 5S rRNAs and 4S tRNA. Poly(A)+ fragments isolated after combined digestion with pancreatic A and T1 RNases and analysis by denaturing gel electrophoresis demonstrated two major components of 80 and 100 residues. Alkaline hydrolysis of the nuclease-resistant, purified residues showed AMP-rich nucleotides. Through the use of snake venom phosphodiesterase, poly(A) tracts were placed at the 3' end of poly(A)+ RNA. Stimulation of [3H]leucine incorporation into hot trichloroacetic acid-precipitable polypeptides in a cell-free system from wheat germ primed by the poly(A)+ RNA mixture was found to be 220-fold higher than that for poly(A)- RNAs (on a unit mass basis), a finding which demonstrated that poly(A)+ RNAs in R. rubrum are mRNAs. Gel electrophoretic analysis of the translation mixture revealed numerous 3H-labeled products including a major band (Mr, 52,000). The parent protein was precipitated by antibodies to ribulose bisphosphate carboxylase-oxygenase and comprised 6.5% of the total translation products.  相似文献   

7.
The high-molecular-weight subunit RNA of feline leukemia virus (Rickard strain) (FeLV-R) was analyzed for the presence of methyl groups. After purification of native 50-60S FeLV-R RNA on nondenaturing aqueous sucrose density gradients. FeLV-R 28S subunit RNA, doubly labeled with [14C]uridine and [methyl-3H]methionine, was isolated by centrifugation through denaturing sucrose density gradients in dimethyl sulfoxide. As calculated from their respective 3H/14C ratios. FeLV-R 28S RNA was methylated to the same degree as host cell poly(A)+ mRNA. When the 28S FeLV-R RNA was hydrolyzed to completion with RNase T2 or alkali, all of the methyl-3H chromatographed with mononucleotides on Pellionex-WAX, a weak anion exchanger. The methyl-labeled material co-chromatographed with 6-methyladenosine if the mononucleotide fraction obtained by Pellionex-WAX chromatography was hydrolyzed to nucleosides by bacterial alkaline phosphatase or with 6-methyladenine if purine bases were released from the mononucleotides by acid hydrolysis. In another experiment in which FeLV-R 28S RNA uniformly labeled with 32P was hydrolyzed and then analyzed by Pellionex-WAX chromatography, all of the 32P label again co-chromatographed with mononucleotides. Thus FeLV-R 28S RNA does not appear to contain a 5' structure, either methylated or nonmethylated similar to those recently reported for cellular and some animal virus mRNA's.  相似文献   

8.
An RNA ligase that catalyzes the formation of a 2'-phosphomonoester-3',5'-phosphodiester bond in the presence of ATP and Mg2+ was purified approximately 6000-fold from raw wheat germ. A 5'-hydroxyl polynucleotide kinase activity copurified with RNA ligase through all chromatographic steps. Both activities cosedimented upon glycerol gradient centrifugation even in the presence of high salt and urea. RNA ligase and kinase activities sedimented as a single peak on glycerol gradients with a sedimentation coefficient of 6.2 S. The purified polynucleotide kinase activity required dithiothreitol and a divalent cation for activity and was inhibited by pyrophosphate and by ADP. The kinase phosphorylated a variety of 5'-hydroxyl-terminated polynucleotide chains including some that were substrates for the RNA ligase (e.g. 2',3'-cyclic phosphate-terminated poly(A)) and others that were not ligase substrates (e.g. DNA or RNA containing 3'-hydroxyl termini). RNA molecules containing either 5'-hydroxyl or 5'-phosphate and 2',3'-cyclic or 2'-phosphate termini were substrates for the purified RNA ligase activity. The rate of ligation of 5'-hydroxyl-terminated RNA chains was greater than that of 5'-phosphate-terminated molecules, suggesting that an interaction between the wheat germ kinase and ligase activities occurs during the course of ligation.  相似文献   

9.
The methylated constituents of early adenovirus 2 mRNA were studied. RNA was isolated from polyribosomes of cells double labeled with [methyl-3H]methionine and 32PO4 from 2 to 7 g postinfection in the presence of cycloheximide. Cycloheximide ensures that methylation and processing are performed by preexisting host cell enzymes. RNA was fractionated into polyadenylic [poly(A)]+ and poly(A)- molecules using poly(U)-Sepharose, and undergraded virus-specific RNA was isolated by hybridization to viral DNA in 50% formamide at 37 degrees C. Viral mRNA was digested with RNase T2 and chromatographed on DEAE-Sephadex in 7 M urea. Two 3H-labeled RNase T2-resistant oligonucleotide fractions with charges between -5 and -6 were obtained, consistent with two classes of 5' terminal methyl "cap" structures, m7G(5')ppp(5')NmpNp (cap 1) and m7G(5')ppp(5')NmNmpNp (cap 2) (Nm is a ribose 2'-O-methylation). The putative cap 1 contains all the methylated constituents of cap 1 plus Cm. The molar ratios of m7G to 2'-O-methylnucleosides is about 1.0 for cap 1 and 0.5 for cap 2, consistent with the proposed cap structures. Most significant, compositional analysis indicates four different cap 1 structures and at least three different cap 2 structures. Thus there is a minimum of seven early viral mRNA species with different cap structures, unless each type of mRNA can have more than one 5' terminus. In addition to methylated caps, early mRNA contains internal base methylations, exclusively as m6A, as shown by analyses of the mononucleotide (-2 charge) fraction. m6A was present in the ratio of 1 mol of m6Ap per 450 nucleotides. Thus viral mRNA molecules contain two to three internal m6A residues per methyl cap, since there is on the average 1 cap per 1,250 nucleotides.  相似文献   

10.
The multifunctional ribonuclease RNase E and the 3'-exonuclease polynucleotide phosphorylase (PNPase) are major components of an Escherichia coli ribonucleolytic "machine" that has been termed the RNA degradosome. Previous work has shown that poly(A) additions to the 3' ends of RNA substrates affect RNA degradation by both of these enzymes. To better understand the mechanism(s) by which poly(A) tails can modulate ribonuclease action, we used selective binding in 1 m salt to identify E. coli proteins that interact at high affinity with poly(A) tracts. We report here that CspE, a member of a family of RNA-binding "cold shock" proteins, and S1, an essential component of the 30 S ribosomal subunit, are poly(A)-binding proteins that interact functionally and physically, respectively, with degradosome ribonucleases. We show that purified CspE impedes poly(A)-mediated 3' to 5' exonucleolytic decay by PNPase by interfering with its digestion through the poly(A) tail and also inhibits both internal cleavage and poly(A) tail removal by RNase E. The ribosomal protein S1, which is known to interact with sequences at the 5' ends of mRNA molecules during the initiation of translation, can bind to both RNase E and PNPase, but in contrast to CspE, did not affect the ribonucleolytic actions of these enzymes. Our findings raise the prospect that E. coli proteins that bind to poly(A) tails may link the functions of degradosomes and ribosomes.  相似文献   

11.
12.
Foot and mouth disease virus RNA has been treated with RNase H in the presence of oligo (dG) specifically to digest the poly(C) tract which lies near the 5' end of the molecule (10). The short (S) fragment containing the 5' end of the RNA was separated from the remainder of the RNA (L fragment) by gel electrophoresis. RNA ligase mediated labelling of the 3' end of S fragment showed that the RNase H digestion gave rise to molecules that differed only in the number of cytidylic acid residues remaining at their 3' ends and did not leave the unique 3' end necessary for fast sequence analysis. As the 5' end of S fragment prepared form virus RNA is blocked by VPg, S fragment was prepared from virus specific messenger RNA which does not contain this protein. This RNA was labelled at the 5' end using polynucleotide kinase and the sequence of 70 nucleotides at the 5' end determined by partial enzyme digestion sequencing on polyacrylamide gels. Some of this sequence was confirmed from an analysis of the oligonucleotides derived by RNase T1 digestion of S fragment. The sequence obtained indicates that there is a stable hairpin loop at the 5' terminus of the RNA before an initiation codon 33 nucleotides from the 5' end. In addition, the RNase T1 analysis suggests that there are short repeated sequences in S fragment and that an eleven nucleotide inverted complementary repeat of a sequence near the 3' end of the RNA is present at the junction of S fragment and the poly(C) tract.  相似文献   

13.
14.
15.
16.
Up to about 50% of the total radioactivity in pulse-labeled RNA in Bacillus brevis 47-5, a high-protein-producing bacterium, was found in the polyadenylated fraction [termed poly(A)-RNA] isolated by adsorption to oligodeoxythymidylic acid-cellulose. Labeled RNA was bound to the cellulose regardless of whether the radioactive precursor was [3H]adenosine or [3H]uridine, showing that the adsorbed material was poly(A)-RNA rather than free poly(A). Poly(A) tracts, isolated after digestion of pulse-labeled RNA with pancreatic and T1 RNases, were homogeneous, with a length of about 95 nucleotides. Susceptibility of the isolated poly(A) tracts to degradation by snake venom phosphodiesterase and polynucleotide phosphorylase indicated that the poly(A) sequences were located directly at the 3'-terminal of the RNA molecules. Comparison of the poly(A)-RNA content in high-protein-producing and nonprotein-producing cells of B. brevis 47 showed much higher levels in the former. Electrophoretic analysis in both denaturing and denaturing polyacrylamide gels of the poly(A)-RNAs showed a heterogeneous population of molecules ranging in size from 23S to 4S. Comparison of the molecular-weight distribution patterns revealed that a significantly greater amount of high-molecular-weight poly(A)-RNA (comigrating with 23S RNA) was present under conditions in which extracellular protein production was high. The possibility that a substantial fraction of the poly(A)-RNA might be involved in the synthesis of extracellular proteins in B. brevis 47 is discussed.  相似文献   

17.
The use of nuclease P1 in sequence analysis of end group labeled RNA.   总被引:61,自引:41,他引:20       下载免费PDF全文
A method is described for the direct sequence analysis of 20-25 nucleotides from the termini of 5'- or 3'-end-group [32P] labeled RNA. The method involves partial endonucleolytic digestion of the labeled RNA with nuclease P1 (from Penicillium citrinum) followed by separation of the partial digestion products by two-dimensional homochromatography, the nucleotide sequence being determined by mobility shift analysis. This procedure has been applied to the sequence analysis of the terminal regions of tRNAs and of high molecular weight RNA, such as messenger RNA or viral RNA. A further application involves its use in conjunction with snake venom phosphodiesterase to determine the sequence of 5'-end group labeled oligonucleotides, containing modified bases, derived from T1 or pancreatic RNase digestion of tRNA.  相似文献   

18.
19.
20.
RNase R is a processive, 3' to 5' hydrolytic exoribonuclease that together with polynucleotide phosphorylase plays an important role in the degradation of structured RNAs. However, RNase R differs from other exoribonucleases in that it can by itself degrade RNAs with extensive secondary structure provided that a single-stranded 3' overhang is present. Using a variety of specifically designed substrates, we show here that a 3' overhang of at least 7 nucleotides is required for tight binding and activity, whereas optimum binding and activity are achieved when the overhang is 10 or more nucleotides in length. In contrast, duplex RNAs with no overhang or with a 4-nucleotide overhang bind extremely poorly to RNase R and are inactive as substrates. A duplex RNA with a 10-nucleotide 5' overhang also is not a substrate. Interestingly, this molecule is bound only weakly, indicating that RNase R does not simply recognize single-stranded RNA, but the RNA must thread into the enzyme with 3' to 5' polarity. We also show that ribose moieties are required for recognition of the substrate as a whole since RNase R is unable to bind or degrade single-stranded DNA. However, RNA molecules with deoxyribose or dideoxyribose residues at their 3' termini can be bound and degraded. Based on these data and a homology model of RNase R, derived from the structure of the closely related enzyme, RNase II, we present a model for how RNase R interacts with its substrates and degrades RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号