首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rp-cAMPS, the Rp-diastereomer of adenosine 3',5'-phosphorothioate, is often referred to as a cAMP antagonist, since it binds to the regulatory subunit of cAMP-dependent protein kinase without dissociation of free catalytic subunits. To evaluate the role of cAMP-dependent protein kinase in amylase exocytosis, we examined the effect of Rp-cAMPS on amylase release from rat parotid acini. Rp-cAMPS did not stimulate amylase release from saponin-permeabilized parotid acini, whereas its Sp-isomer strongly evoked amylase release. Rp-cAMPS dose-dependently inhibited amylase release stimulated by Sp-cAMPS. In the presence of Rp-cAMPS, the dose-response curve of Sp-cAMPS was shifted to the right. The inhibitory effect of Rp-cAMPS on isoproterenol-induced amylase release was not detected in intact acini, but was clearly observed in the permeabilized ones. Rp-cAMPS markedly inhibited protein phosphorylation evoked by Sp-cAMPS, indicating that Rp-cAMPS prevents the dissociation of cAMP-dependent protein kinase. These results, taken together with synergistic increase in amylase release by the combination of site-selective cAMP analogues [T. Takuma (1990) J. Biochem. 108, 99-102], suggest that cAMP-dependent protein kinase is involved in the exocytosis of amylase from parotid acini.  相似文献   

2.
Cyclic AMP has been generally recognised as activator of cAMP-dependent protein kinases. However, there is little evidence about role of cAMP-dependent protein kinase (PKA), in particular izoenzymes PKA-I and PKA-II, in glomeruli contractility. We measured changes of glomerular inulin space (GIS) as a marker of its contractility in the presence of phosphodiesterase resistance cAMP analogues; activators and inhibitors of PKA. Activator of PKA i.e. (Sp) 8-Cl-cAMPS (0.1-100 microM) decreased GIS. (Rp) 8-Cl-cAMPS (0.1-100 microM), inhibitor of PKA, was ineffective but shifted concentration-response curve of (Sp) 8-Cl-cAMPS to right at 50 microM. Specific A site activation by N6-benzoyl-cAMP decreased GIS with maximum at 0.1 microM. Activation of B site by 8-aminobutyloamino-cAMP (0.1-100 microM) had no effect. However, specific activation of both sites on PKA-I or PKA-II by site-selective analogue pairs e.g. 8-aminobutyloamino-cAMP plus 8-piperidino-cAMP or N6-benzoyl-cAMP plus 8-piperidino-cAMP respectively, significantly increased sensitivity of glomeruli to analogues. Our data suggest that activation of PKA-I or PKA-II might have an important role in the regulation of glomerular contractility.  相似文献   

3.
Amylase release from the rat parotid gland is mainly mediated in a cAMP-dependent protein kinase (PKA)-dependent manner. In the present study, amylase release mediated in cAMP-dependent and PKA-independent manners was investigated with a cAMP-regulated guanine nucleotide exchange factor (cAMP-GEF: Epac)-selective cAMP analogue, 8CPT-2Me-cAMP. The Epac was localized in the intracellular and the plasma membrane fractions. PKA activation by 8CPT-2Me-cAMP was 100-fold lower than that by cAMP. The amylase release (% of the total) from the intact parotid acinar cells was 16 and 3.6% by isoproterenol (1microM) and 8CPT-2Me-cAMP (200microM), respectively, and that from the saponin-permeabilized cells was 15 and 3% by cAMP (100microM) and 8CTP-2Me-cAMP (10microM), respectively. H-89 inhibited cAMP-induced amylase release, but did not inhibit 8CPT-2Me-cAMP-induced amylase release. These results indicated that amylase release by beta-adrenergic stimulation is mediated through both the cAMP/PKA and cAMP/Epac signal pathways.  相似文献   

4.
T Takuma  T Ichida 《FEBS letters》1991,285(1):124-126
To evaluate the role of protein phosphorylation in amylase exocytosis, we studied the effects of okadaic acid, a potent inhibitor of protein phosphatase types 1 and 2A, on amylase release and protein phosphorylation in rat parotid acini. Although okadaic acid by itself weakly stimulated amylase release, it did not potentiate amylase release stimulated by half-maximum doses of isoproterenol or cAMP, and markedly inhibited their maximum effects. Okadaic acid dose-dependently increased cAMP-independent phosphorylation of some proteins and enhanced cAMP-dependent phosphorylation of 21- and 26-kDa proteins. These results indicate that increase in protein phosphorylation does not necessarily enhance the exocytosis of amylase from parotid acini.  相似文献   

5.
Human T lymphocytes were used as a model system to study the expression and roles of cAMP-dependent protein kinase isozymes (cAKI and cAKII) in cAMP-induced inhibition of cell replication. Human peripheral blood T lymphocytes expressed mRNA for the alpha-subforms (RI alpha and RII alpha) of the regulatory subunits of cAKI and cAKII and for the alpha- and beta-subforms (C alpha and C beta) of the catalytic subunits of cAK. At the protein level, RI alpha represented approximately 75% of the total R subunit activity, whereas RII alpha (phospho and dephospho forms) accounted for the remaining 25%. RII beta was not detected at either the mRNA or the protein level. The RI alpha protein was mainly (greater than 75%) cytosolic, whereas RII alpha was almost exclusively (greater than 90%) particulate associated. Treatment of proliferating T lymphocytes (activated through the CD3 cell surface marker) with 10 different cAMP analogs demonstrated that all inhibited cell replication in a concentration-dependent manner. The potency (as measured by the concentration giving 50% inhibition, IC50) of the cAMP analogs ranged from 30 microM for 8-chlorophenylthio-cAMP to 1100 microM for 8-piperidino-cAMP. A cAMP analog pair directed to activate cAKI (8-aminohexylamino-cAMP and 8-piperidino-cAMP) synergized in the inhibition of T lymphocyte proliferation, whereas a cAKII-directed cAMP analog pair (8-chlorophenylthio-cAMP and N6-benzoyl-cAMP) did not. We conclude that activation of cAKI is sufficient to inhibit T lymphocyte proliferation. The membrane-bound cAKII may mediate cAMP actions not related to cell replication.  相似文献   

6.
U Padel  J Kruppa  R Jahn  H D S?ling 《FEBS letters》1983,159(1-2):112-118
Stimulation of secretion in exocrine cells is associated with the incorporation of up to 3 to 4 phosphates into the ribosomal protein S6. This occurs with secretagogues involving either cAMP or free calcium as second messenger. An analysis of the phosphorylation pattern of S6 from stimulated guinea pig parotid glands reveals 3 phosphopeptides (termed A,B,C). The phosphopeptide pattern was identical for cAMP- or calcium-mediated stimulation, whereas phosphorylation of the S6 protein in vitro with catalytic subunit of cAMP-dependent protein kinase resulted only in the formation of phosphopeptides A and C. Therefore, secretagogue-mediated phosphorylation is not or not exclusively catalyzed by cAMP-dependent protein kinase even when cAMP is the second messenger.  相似文献   

7.
To examine whether or not the activation of cyclic AMP-dependent protein kinase is coupled to the exocytosis of amylase from rat parotid cells, the effect of protein kinase inhibitors on amylase release and protein phosphorylation was studied. A membrane-permeable inhibitor of cyclic AMP-dependent protein kinase, N-[2-(methylamino)ethyl]-5-isoquinolinesulphonamide (H-8), and peptide fragments of the heat-stable protein kinase inhibitor [PKI-(5-24)-peptide and PKI-(14-24)-amide] strongly inhibited cyclic AMP-dependent protein kinase activity in the cell homogenate. However, H-8 had no inhibitory effect on amylase release from either intact or saponin-permeabilized parotid cells stimulated by isoproterenol or cyclic AMP. Moreover, PKI-(5-24)-peptide and PKI-(14-24)-amide did not inhibit cyclic AMP-evoked amylase release from saponin-permeabilized cells, whereas cyclic AMP-dependent phosphorylations of 21 and 26 kDa proteins in intact or permeabilized cells were markedly inhibited by these inhibitors. These results suggest that cyclic AMP-dependent protein phosphorylation is not directly involved in the exocytosis of amylase regulated by cyclic AMP.  相似文献   

8.
Carbachol (CCh), a muscarinic-cholinergic agonist, increased both cytosolic free calcium concentration ([Ca2+]i) and amylase release in rat parotid acinar cells or acini in a dose-dependent manner. Treatment of acinar cells with the intracellular Ca2+ antagonist, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), or the intracellular Ca2+ chelator, 1,2-bis(O-aminophenoxy)ethane-N,N,N'N'-tetraacetic acid (BAPTA), strongly attenuated the increases in [Ca2+]i evoked by CCh, but amylase release from acini was not significantly suppressed by the treatment with TMB-8 or BAPTA. Low concentrations (0.02-0.5 microM) of ionomycin, a Ca2+ ionophore, caused increases in [Ca2+]i comparable to those induced by CCh, but the same concentrations had only a little effect on amylase release. The protein kinase C activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulated amylase release in quantities similar to those induced by CCh, although TPA alone did not cause any change in [Ca2+]i. Combined addition of TPA and ionomycin potentiated only modestly amylase release stimulated by TPA alone. Staurosporine, a protein kinase C-inhibitor, similarly inhibited both the CCh- and TPA-induced amylase release. These results suggest that an increase in [Ca2+]i elicited by CCh does not play an essential role for inducing amylase release in rat parotid acini. Amylase release by muscarinic stimulation may be mediated mainly by activation of protein kinase C.  相似文献   

9.
Intact S49 mouse lymphoma cells were used as a model system to study the effects of cyclic AMP (cAMP) and its analogs on the phosphorylation of regulatory (R) subunit of type I cAMP-dependent protein kinase. Phosphorylation of R subunit was negligible in mutants deficient in adenylate cyclase; low levels of cAMP analogs, however, stimulated R subunit phosphorylation in these cells to rates comparable to those in wild-type cells. In both wild-type and adenylate cyclase-deficient cells, R subunit phosphorylation was inhibited by a variety of N6-substituted derivatives of cAMP; C-8-substituted derivatives were generally poor inhibitors. Two derivatives that were inactive as kinase activators (N6-carbamoylmethyl-5'-AMP and 2'-deoxy-N6-monobutyryl-cAMP) were also ineffective as inhibitors of R subunit phosphorylation. Preferential inhibition by N6-modified cAMP analogs could not be ascribed simply to selectivity for the more aminoterminal (site I) of the two cAMP-binding sites in R subunit: Analog concentrations required for inhibition of R subunit phosphorylation were always higher than those required for activation of endogenous kinase; 8-piperidino-cAMP, a C-8-substituted derivative that is selective for cAMP-binding site I, was relatively ineffective as in inhibitor; and, although thresholds for activation of endogenous kinase by site I-selective analogs could be reduced markedly by coincubation with low levels of site II-selective analogs, no such synergism was observed for the inhibitory effect. The uncoupling of cyclic nucleotide effects on R subunit phosphorylation from activation of endogenous protein kinase suggests that, in intact cells, activation of cAMP-dependent protein kinase requires more than one and fewer than four molecules of cyclic nucleotide.  相似文献   

10.
In the preceding papers, we demonstrated that the endogenous phosphorylation of a 29,000-dalton protein is stimulated in response to secretagogue application to intact cells from the rat exocrine pancreas and parotid and dephosphorylated upon termination of secretagogue action. One- and two-dimensional gel analysis of 32Pi-labeled pancreatic and parotid lobules as well as their respective subcellular fractions revealed that the same protein was covalently modified in both tissues and was localized to the ribosomal fraction. To identify the intracellular second messengers which may mediate or modulate the phosphorylation of the 29,000-dalton protein in intact cells, the effects of Ca2+, cAMP, and cGMP on the endogenous phosphorylation of this protein were assessed in subcellular fractions from the rat pancreas and parotid. Our results demonstrate that the phosphorylation of the 29,000-dalton polypeptide may be regulated by both Ca2+ and cAMP in the pancreas and in the parotid. No cGMP-dependent protein phosphorylation was found in either tissue. As in the in situ phosphorylation studies, the Ca2+- and cAMP-dependent phosphorylation of this same protein was localized to the ribosomal fraction. The cAMP-dependent protein kinase activity was found primarily in the postmicrosomal supernatant in contrast to the Ca2+-dependent protein kinase that appeared to be tightly associated with the substrate in addition to being present in the postmicrosomal supernatant. The data suggest that, in cells from the exocrine pancreas and parotid, secretagogues may regulate the phosphorylation of the 29,000-dalton protein through Ca2+ and/or cAMP.  相似文献   

11.
The mechanism of the cAMP involvement in regulation of cellular functions was studied here using a novel functional assay (antigen receptor-triggered exocytosis of granules) of cloned cytotoxic T lymphocytes (CTL). We suggest that cAMP-dependent protein kinase, protein kinase A, counteracts the protein kinase C and Ca2+-mediated stimulatory T-cell antigen receptor (TcR)-triggered biochemical pathway. This suggestion is supported by experimental results which satisfy criteria for protein kinase A involvement in cellular functions. Pretreatment of CTL with cholera toxin induces cAMP accumulation in CTL, partially inhibits TcR-triggered "lethal hit" delivery to the target cell, and almost completely blocks TcR-triggered exocytosis of granules from CTL. Other agents that raise the intracellular level of cAMP, including forskolin and isobutylmethylxanthine (IBMX) also inhibit TcR-triggered CTL activation. Involvement of cAMP-dependent protein kinase in an inhibitory pathway is suggested by the synergistic effects of cyclic nucleotide analogs 8-bromo-cAMP and N6-benzoyl-cAMP in inhibition of TcR-triggered exocytosis. Forskolin and IBMX inhibited TcR-triggered phosphoinositide turnover in CTL, suggesting that cAMP affected very early events in signal transduction that follow TcR cross-linking by a ligand. The ability of IBMX to inhibit CTL activation when the TcR cross-linking step was by-passed by the combination of phorbol myristate acetate and ionophore A23187 suggests that the locus of inhibitory effect of cAMP is at both the early and late stages of the TcR-triggered transmembrane signaling pathway.  相似文献   

12.
1. Substrates for cAMP-dependent protein kinase were investigated in anterior, intermediate, and neural lobes of the rat pituitary gland. In a cell-free assay system, cAMP increased phosphorylation of 17 K, 33 K, and 60 K macromolecules of the anterior lobe, 17 K, 33 K, 60 K, and 80 K macromolecules of the intermediate lobe, and 60 K, 80 K, and 85 K macromolecules of the neural lobe. 2. Other nucleotides were tested in the intermediate lobe; 8 Br-cAMP mimicked cAMP, cGMP was much less effective than cAMP or 8 Br-cAMP, and 5'-AMP showed no significant effect. The purified catalytic subunit of cAMP-dependent protein kinase evoked the same phosphorylation pattern as the endogenous kinase. 3. Maximum cAMP-dependent phosphorylation occurred at between 1 and 2 min of incubation; after 20 min, phosphorylation was reduced by 80%. This suggests the presence of phosphatase activity in the intermediate lobe. 4. When tested upon dispersed intermediate lobe cells permeabilized by high-voltage electrical discharges, cAMP increased phosphorylation of the 17 K and 33 K macromolecules.  相似文献   

13.
Treatment of PC12h cells with nerve growth factor (NGF) induced a transient increase in the phosphorylation of a 35,000-dalton protein. This transient increase was observed also when extracts of NGF-treated cells were incubated with [gamma-32P]ATP. In the intact-cell phosphorylation system, treatment with N,2'-dibutyryladenosine 3',5'-cyclic monophosphate (dBcAMP) or 12-O-tetradecanoylphorbol 13-acetate (TPA) also induced a transient increase in the phosphorylation of the 35,000-dalton protein, but the effect was less than that of NGF. An effect comparable to that of NGF was obtained by the combination of dBcAMP and TPA. Pretreatment of PC12h cells with dBcAMP plus TPA for 3 days, which deprived the cells of their ability to respond to a rechallenge with dBcAMP, TPA, or dBcAMP plus TPA by increasing the rate of 35,000-dalton protein phosphorylation, caused only a slight attenuation of the NGF effect, directly indicating a minimal role of cyclic AMP (cAMP)-dependent protein kinase and protein kinase C in the mechanism of the NGF action. Pretreatment of the cells with K-252a, a protein kinase inhibitor, at a concentration of 300 nM almost completely blocked the action of NGF, but scarcely affected the action of dBcAMP, TPA, or dBcAMP plus TPA in intact-cell phosphorylation experiments. This NGF-sensitive 35,000-dalton protein was a ribosomal protein and identified as ribosomal protein S6. The results lead us to conclude that NGF activates some NGF-sensitive component(s), probably some specific protein kinase(s) other than cAMP-dependent protein kinase or protein kinase C, which is suppressed by K-252a and directly or indirectly activates a 35,000-dalton protein kinase(s) [S6 kinase(s)] to increase the rate of phosphorylation of the 35,000-dalton ribosomal protein (S6).  相似文献   

14.
Little is known about the relative role of cAMP-dependent protein kinase (cAPK) and guanine exchange factor directly activated by cAMP (Epac) as mediators of cAMP action. We tested cAMP analogs for ability to selectively activate Epac1 or cAPK and discriminate between the binding sites of Epac and of cAPKI and cAPKII. We found that commonly used cAMP analogs, like 8-Br-cAMP and 8-pCPT-cAMP, activate Epac and cAPK equally as well as cAMP, i.e. were full agonists. In contrast, 6-modified cAMP analogs, like N6-benzoyl-cAMP, were inefficient Epac activators and full cAPK activators. Analogs modified in the 2'-position of the ribose induced stronger Epac1 activation than cAMP but were only partial agonists for cAPK. 2'-O-Alkyl substitution of cAMP improved Epac/cAPK binding selectivity 10-100-fold. Phenylthio substituents in position 8, particularly with MeO- or Cl- in p-position, enhanced the Epac/cAPK selectivity even more. The combination of 8-pCPT- and 2'-O-methyl substitutions improved the Epac/cAPK binding selectivity about three orders of magnitude. The cAPK selectivity of 6-substituted cAMP analogs, the preferential inhibition of cAPK by moderate concentrations of Rp-cAMPS analogs, and the Epac selectivity of 8-pCPT-2'-O-methyl-cAMP was also demonstrated in intact cells. Using these compounds to selectively modulate Epac and cAPK in PC-12 cells, we observed that analogs selectively activating Epac synergized strongly with cAPK specific analogs to induce neurite outgrowth. We therefore conclude that cAMP-induced neurite outgrowth is mediated by both Epac and cAPK.  相似文献   

15.
We have used a recently developed cell-free system (cell lysate) derived from turkey erythrocytes to explore the potential role of cAMP-activated and other protein kinase systems in desensitizing the adenylate cyclase-coupled beta-adrenergic receptor. Desensitization by the agonist isoproterenol required more than simple occupancy of the receptor by the agonist since under conditions where adenylate cyclase was not activated, no desensitization occurred. As in whole cells, addition of cyclic nucleotides to the cell lysate produced only approximately 50% of the maximal isoproterenol-induced desensitization obtainable. Addition of the purified cAMP-dependent protein kinase holoenzyme plus isoproterenol to isolated turkey erythrocyte plasma membranes mimicked the submaximal desensitization induced in lysates by cAMP. This effect was entirely blocked by the specific inhibitor of the cAMP-dependent protein kinase. By contrast, maximal desensitization induced in lysates by isoproterenol was only approximately 50% attenuated by the protein kinase inhibitor. In the lysate preparations, isoproterenol was also shown to induce, in a stereospecific fashion, phosphorylation of the beta-adrenergic receptor. Phosphorylation promoted by isoproterenol was attenuated by cAMP-dependent protein kinase inhibitor to the same extent as desensitization (i.e. approximately 50%). Phorbol diesters also promoted receptor desensitization and phosphorylation in cell lysates. The desensitization was mimicked by incubation of isolated turkey erythrocyte membranes with partially purified preparations of protein kinase C plus phorbol diesters. In the cell lysate, calmodulin also promoted receptor phosphorylation and desensitization which was blocked by EGTA. Desensitization of adenylate cyclase by isoproterenol, phorbol diesters, and calmodulin was not observed to be additive. These findings suggest that: (a) multiple protein kinase systems, including cAMP-dependent, protein kinase C-dependent, and Ca2+/calmodulin-dependent kinases, are capable of regulating beta-adrenergic receptor function via phosphorylation reactions and that (b) cAMP may not be the sole mediator of isoproterenol-induced phosphorylation and desensitization in these cells.  相似文献   

16.
The ribosomal protein S6 in exocrine cells is phosphorylated during stimulation of exocytosis by cAMP-dependent or calcium-dependent agonists. Under both conditions the same tryptic S6 phosphopeptides (termed A, B, and C) were found [Padel, Kruppa, Jahn & S?ling (1983) FEBS Lett. 159, 112-118]. Studies have now been made of the phosphorylation pattern of protein S6 from purified guinea pig parotid ribosomes following in vitro phosphorylation with calmodulin-dependent, phospholipid-dependent, and cAMP-dependent protein kinases. Only the phospholipid-dependent enzyme led to the phosphorylation of peptides A, B, and C, while the cAMP-dependent enzyme phosphorylated only peptides A and C, and the calmodulin-dependent enzyme did not phosphorylate any of the phosphopeptides found in S6 from unstimulated or stimulated intact cells. Guinea pig parotid microsomes contain substantial phospholipid-dependent protein kinase activity. Stimulation of intact parotid glands with tetradecanoylphorbol acetate led to a significant phosphorylation of S6 and a similar tryptic S6 phosphopeptide pattern as seen with carbamoylcholine. It is concluded that activation of phospholipid-dependent protein kinase is responsible for the phosphorylation of protein S6 during stimulation with calcium-dependent and cAMP-dependent secretagogues.  相似文献   

17.
The mitochondria, the microsomes and the cystosol have been described as possible sites of cAMP-dependent phosphorylation. However, there has been no direct demonstration of a cAMP-dependent kinase associated with the activation of the side-chain cleavage of cholesterol. We have investigated the site of action of the cAMP-dependent kinase using a sensitive cell-free assay. Cytosol derived from cells stimulated with ACTH or cAMP was capable of increasing progesterone synthesis in isolated mitochondria when combined with the microsomal fraction. Cytosol derived from cyclase or kinase of negative mutant cells did not. Cyclic AMP and cAMP-dependent protein kinase stimulated in vitro a cytosol derived from unstimulated adrenal cells. This cytosol was capable of stimulating progesterone synthesis in isolated mitochondria. Inhibitor of cAMP-dependent protein kinase abolished the effect of the cAMP. ACTH stimulation of cytosol factors is a rapid process observable with a half maximal stimulation at about 3 pM ACTH. The effect was also abolished by inhibitor of arachidonic acid release. The function of cytosolic phosphorylation is still unclear. The effect of inhibitors of arachidonic acid release, and the necessity for the microsomal compartment in order to stimulate mitochondrial steroidogenesis, suggest that the factor in the cytosol may play a role in arachidonic acid release.  相似文献   

18.
Glucose-induced inactivation of the gluconeogenetic enzymes fructose-1,6-biphosphatase, cytoplasmic malate dehydrogenase and phosphoenolpyruvate carboxykinase was tested in yeast mutants defective in adenylate cyclase (cyr1 mutation) and in the cAMP-binding subunit of cAMP-dependent protein kinase (bcy 1 mutation). In the mutant AM7-11D (cyr1 mutation), glucose-induced cAMP overshoot was absent, and no significant inactivation of the gluconeogenetic enzymes was detected, thus supporting the role of cAMP in the process. Moreover, in the mutant AM9-8B (bcy1 mutation), no cAMP-dependent protein kinase activity was evidenced, and, in addition, a normal inactivation pattern was observed, thus indicating that other mechanisms evoked by glucose might be required in the process. In the double mutant AM7-11DR-4 (cyr1 bcy1 mutations), no inactivating effect was triggered by the sugar: this suggests that cAMP exerts some additional effect on the process, besides the activation of cAMP-dependent protein kinase. Furthermore, in AM7-11D, extracellular cAMP triggered about 50% of inactivation of fructose-1,6-bisphosphatase; this effect was largely reversed in acetate medium plus cycloheximide even after 150 min of incubation. However, an extensive and essentially irreversible inactivation was evidenced in the presence of glucose plus cAMP, whereas glucose alone was only slightly effective. Therefore, the reversible effect of cAMP, which probably corresponds to enzyme phosphorylation, seems to be required for the irreversible, probably proteolytic, glucose-stimulated inactivation of this enzyme. Cytoplasmic malate dehydrogenase and phosphoenolpyruvate carboxykinase in AM7-11D were also inactivated by cAMP, and much more by glucose plus cAMP, whereas glucose was practically ineffective. However, reversibility of the effect was not detected, and, in addition, no phosphorylation of phosphoenolpyruvate carboxykinase could be evidenced. Therefore, the sugar quite probably stimulates proteolysis of these enzymes, but the mechanism of cAMP in their degradation has still to be defined.  相似文献   

19.
The role of sodium ions in amylase secretion from rat parotid cells was studied using various Na+-free media and monensin. In a sucrose medium, amylase secretion was not stimulated by isoproterenol but was significantly stimulated by dibutyryl cAMP. In choline chloride and LiCl media, both isoproterenol and dibutyryl cAMP clearly evoked amylase release. Monensin itself elicited amylase secretion slightly, but significantly inhibited the secretion stimulated by isoproterenol or dibutyryl cAMP. The inhibitory effect of monensin was detectable even in choline chloride, LiCl and KCl media. These results indicate that sodium ions are not essential for amylase secretion from rat parotid cells and that the inhibitory effect of monensin is independent of influx of sodium ions or efflux of potassium ions.  相似文献   

20.
Both dibutyryl cAMP and carbachol stimulated amylase released from rat parotid cells incubated in Ca2+-free medium containing 1 mM EGTA. Cells preincubated with 10 microM carbachol in Ca2+-free, 1 mM EGTA medium for 15 min lost responsiveness to carbachol, but maintained responsiveness to dibutyryl cAMP. Dibutyryl cAMP still evoked amylase release from cells preincubated with 1 microM ionophore A23187 and 1 mM EGTA for 20 min. Although carbachol stimulated net efflux of 45Ca from cells preequilibrated with 45Ca for 30 min, dibutyryl cAMP did not elicit any apparent changes in the cellular 45Ca level. Inositol trisphosphate, but not cAMP, evoked 45Ca release from saponin-permeabilized cells. These results suggest that cAMP does not mobilize calcium for amylase release from rat parotid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号