首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Analyses were made of the structures and levels of folates and modified folates present in extremely thermophilic bacteria. These procedures involved the chemical analysis of products resulting from the oxidative cleavage of the 6-substituted, folatelike tetrahydropterins present in the cells. Air-oxidized cell extracts of extreme thermophiles from two members of the archaebacterial order Thermococcales, Thermococcus celer and Pyrococcus furiosus, contained only 7-methylpterin, indicating that these cells contain a modified folate with a methylated pterin. Cell extracts also contained 6-acetyl-7-methyl-7,8-dihydropterin, another product derived from the oxidative cleavage of a dimethylated folate, demonstrating that both the C-7 and C-9 carbons of the pterin were methylated. Extracts, however, contained neither p-aminobenzoylpolyglutamates nor methaniline, the oxidative cleavage products of folates and methanopterin, respectively, indicating that they contain a previously undescribed C1 carrier(s). On the basis of the level of the 7-methylpterin isolated, the levels of modified folate were 2 to 10 times higher than those typically found in mesophilic bacteria and 10 to 100 times less than the level of methanopterin found in the methanogenic bacteria. Oxidized cell extracts of Sulfolobus spp. of the archaebacterial order Sulfolobales contained only pterin, and, like members of the order Thermococcales, they contained neither-p-aminobenzoylpolyglutamates nor methaniline. Oxidized cell extracts of the extreme thermophiles Pyrobaculum sp. strain H10 and Pyrodictium occultum, from the archaebacterial orders Thermoproteales and Pyrodictiales, respectively, and Thermotoga maritima from the eubacterial order Thermotogales, contained pterin and p-aminobenzoylpolyglutamates, indicating that these cells contained unmodified folates. The levels of p-aminobenzoylpolyglutamates in these archaebacterial cell extracts indicate that the folates were present in the cells at levels 4 to 10 times higher than generally found in those mesophilic eubacteria which do not folates in energy metabolism. The levels and chain lengths of the of p-aminobenzoylpolyglutamates present in Thermotoga maritima were typical of those found in mesophilic eubacteria.  相似文献   

2.
Streptococcus faecalis 8043 concentrates extracellular [3H]pyridoxal or [3H]pyridoxamine primarily as the corresponding 5'-phosphates. Accumulation of pyridoxamine requires an exogenous energy source and is inhibited by glycolysis inhibitors. A membrane potential is not required for transport of pyridoxamine, and an artificially generated potential does not drive uptake in this organism. Based on this and other evidence, it is concluded that S. faecalis accumulates pyridoxamine by facilitated diffusion in conjunction with trapping by pyridoxal kinase. Pyridoxamine-P is not concentrated, but equilibrates with that provided externally. Lactobacillus casei 7469 concentrates radioactivity only from pyridoxal, which appears internally as pyridoxal-P, suggesting that it too absorbs the vitamin by facilitated diffusion plus trapping. The specificity of the growth requirement of S. faecalis and L. casei for vitamin B6 parallels the specificity of the transport systems for this vitamin in these organisms. Lactobacillus delbrueckii 7469, however, which specifically requires pyridoxamine-P or pyridoxal-P for growth, accumulates both these compounds and pyridoxine-P from the medium, apparently by active transport, but not pyridoxine, pyridoxamine, or pyridoxal. While pyridoxal-P and pyridoxamine-P are interconvertible in this organism, pyridoxine-P is not further metabolized, thus accounting for the specificity of the growth requirement. These and previous results show (a) that different organisms may employ quite different transport machinery in utilization of a given external nutrient, and (b) that the specificity of the growth requirement for a given form of a vitamin frequently arises from the specificity of transport, but that internal metabolism of the compounds also plays a significant role in some organisms.  相似文献   

3.
Kinetics of transport and metabolism of bromosulfophthalein have been studied in isolated liver cells in a dose-dependent manner obtaining the following results. The disposition of bromosulfophthalein in suspensions of isolated liver cells is similar to the turnover in the whole liver. The initial maximal rate of uptake of bromosulfophthalein is 2--3 times faster than intracellular conjugation with glutathione. Conjugation proceeds to an equilibrium between intracellular substrate (bromosulfophthalein) and product (bromosulfophthalein-glutathione conjugate) which are both transiently accumulated in the cell. Formation of bromosulfophthalein-glutathione is accompanied by an equimolar decrease of glutathione. The bromosulfophthalein-glutathione conjugate is slowly released from the cells in an energy-dependent and saturable transport process. The maximal velocity of excretion amounts to only 6% of the maximal velocity of uptake and to 20% of the maximal velocity of conjugation. Excretion, therefore, represents the slowest step in the overall turnover.  相似文献   

4.
Folate (pteroylglutamate) and methotrexate rapid (seconds) uptake by the trophoblast was investigated from either the maternal or fetal circulations of the isolated dually-perfused guinea-pig placenta. Tissue uptake was measured by using a single-circulation paired-tracer (3H-test and 14C-extracellular marker) technique. [3H]Folate uptakes were 80 and 52% (mean) in perfusates without unlabelled folate, on maternal and fetal sides, respectively. There was negligible 3H-tracer backflux into the circulation up to 6 min probably due to metabolic sequestration. [3H]Methotrexate uptakes were about 85 and 22% on maternal and fetal sides, respectively; however these uptakes were followed by rapid and complete backflux of the label. Specific transplacental transfer of [3H]folate or [3H]methotrexate in either direction was not detectable within 5-6 min. At the brush-border side (maternal) uptake of [3H]folate was highly inhibited by 100 nM unlabelled folate or its reduced form, methyltetrahydrofolate (the main form in plasma); however, equimolar methotrexate (an antifolate chemotherapeutic agent) failed to produce any inhibition of folate uptake. Our findings demonstrate that on both sides of the placenta a high-affinity transport system exists for trophoblast uptake of folate compounds. For methotrexate, either a separate transport system may exist or methotrexate may have a very low affinity for the folate system. These results are distinct from the findings reported in mouse L1210 leukemia cells.  相似文献   

5.
Folate (pteroylglutamate) and methotrexate rapid (seconds) uptake by the trophoblast was investigated from either the maternal or fetal circulations of the isolated dually-perfused guinea-pig placenta. Tissue uptake was measured by using a single-circulation paired-tracer (3H-test and 14C-extracellular marker) technique. [3H]Folate uptakes were 80 and 52% (mean) in perfusates without unlabelled folate, on maternal and fetal sides, respectively. There was negligible 3H-tracer backflux into the circulation up to 6 min probably due to metabolic sequestration. [3H]Methotrexate uptakes were about 85 and 22% on maternal and fetal sides, respectively; however these uptakes were followed by rapid and complete backflux of the label. Specific transplacental transfer of [3H]folate or [3H]methotrexate in either direction was not detectable within 5–6 min. At the brush-border side (maternal) uptake of [3H]folate was highly inhibited by 100 nM unlabelled folate or its reduced form, methyltetrahydrofolate (the main form in plasma); however, equimolar methotrexate (an antifolate chemotherapeutic agent) failed to produce any inhibition of folate uptake. Our findings demonstrate that on both sides of the placenta a high-affinity transport system exists for trophoblast uptake of folate compounds. For methotrexate, either a separate transport system may exist or methotrexate may have a very low affinity for the folate system. These results are distinct from the findings reported in mouse L1210 leukemia cells.  相似文献   

6.
Alduronic acid metabolism by bacteria   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

7.
Transport and metabolism of citrate by Streptococcus mutans   总被引:3,自引:0,他引:3       下载免费PDF全文
Streptococcus mutans, a normal inhabitant of dental plaque, is considered a primary etiological agent of dental caries. Two virulence determinants of S. mutans are its acidogenicity and aciduricity (the ability to produce acid and the ability to survive and grow at low pH, respectively). Citric acid is ubiquitous in nature; it is a component of fruit juices, bones, and teeth. In lactic acid bacteria citrate transport has been linked to increased survival in acidic conditions. We identified putative citrate transport and metabolism genes in S. mutans, which led us to investigate citrate transport and metabolism. Our goals in this study were to determine the mechanisms of citrate transport and metabolism in S. mutans and to examine whether citrate modulates S. mutans aciduricity. Radiolabeled citrate was used during citrate transport to identify citrate metal ion cofactors, and thin-layer chromatography was used to identify metabolic end products of citrate metabolism. S. mutans was grown in medium MM4 with different citrate concentrations and pH values, and the effects on the growth rate and cell survival were monitored. Intracellular citrate inhibited the growth of the bacteria, especially at low pH. The most effective cofactor for citrate uptake by S. mutans was Fe(3+). The metabolic end product of citrate metabolism was aspartate, and a citrate transporter mutant was more citrate tolerant than the parent.  相似文献   

8.
Folate is a B-group vitamin that cannot be synthesized by humans and must be obtained exogenously. Although some species of lactic acid bacteria (LAB) can produce folates, little is known about the production of this vitamin by yogurt starter cultures. Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were isolated from artisanal Argentinean yogurts and were grown in folate-free culture medium (FACM) and nonfat milk after which intracellular and extracellular folate production were evaluated. From the initial 92 isolated LAB strains, 4 L. delbrueckii subsp. bulgaricus and 32 S. thermophilus were able to grow in the absence of folate. Lactobacillus delbrueckii subsp. bulgaricus CRL 863 and S.?thermophilus CRL 415 and CRL 803 produced the highest extracellular folate levels (from 22.3 to 135?μg/L) in FACM. In nonfat milk, these strains were able to increase the initial folate concentrations by almost 190%. This is the first report where native strains of L. delbrueckii subsp. bulgaricus were shown to produce natural folate. The LAB strains identified in this study could be used in developing novel fermented products bio-enriched in natural folates that could in turn be used as an alternative to fortification with the controversial synthetic chemical folic acid.  相似文献   

9.
1. Metabolism of folate was studied in six ewes in an advanced state of vitamin B(12) deficiency as judged by voluntary food intake and in their pair-fed controls receiving vitamin B(12). A group of four animals that were maintained throughout the experiment at pasture was also studied. 2. After 34-40 weeks on the cobalt-deficient diet urinary excretion of formiminoglutamate by four deficient animals was about 3.2mmol/day and this was not significantly decreased by injection of three of them with about 4.5mug of [2-(14)C]folate/kg body weight per day for 5 days. Three days after the last injection retention of [2-(14)C]folate by the livers of the deficient animals (5.5% of the dose) was lower than that of their pair-fed controls (26% of the dose) but there was no evidence of net retention of injected folate in the livers of either group. Urinary excretion of (14)C indicated that renal clearance of folate may have been impaired in very severe vitamin B(12) deficiency. 3. As estimated by microbiological assays total folates in the livers of animals at pasture (12.9mug/g) included about 24% of 5-methyltetrahydrofolate as compared with about 72% of a total of 12.5mug/g in three further ewes fed on a stock diet of wheaten hay-chaff and lucerne-chaff. Liver folates of vitamin B(12)-deficient animals (0.5mug/g) included about 88% of 5-methyltetrahydrofolate as compared with about 51% of a total of 5.2mug/g in pair-fed animals treated with vitamin B(12). 4. Chromatography of liver folates of the pair-fed animals permitted quantitative estimates of the pteroylglutamates present. The results showed that the vitamin B(12)-deficient livers were more severely depleted of tetrahydrofolates and formyltetrahydrofolates than of methyltetrahydrofolates and that as the deficiency developed they were more severely depleted of the higher polyglutamates than of the monoglutamate within each of these classes. Results from animals injected with [2-(14)C]folate indicated an impairment of the exchange between pteroylmonoglutamates and pteroylpolyglutamates in the livers of deficient animals. 5. In vitamin B(12)-deficient animals with food intakes below 200g/day some of the liver folates were not completely reduced and some degradation of pteroylpolyglutamates was detected. The latter condition may have been associated with fatty liver. 6. The results are discussed in relation to current theories of vitamin B(12)-folate interactions.  相似文献   

10.
Biosynthesis and metabolism of arginine in bacteria.   总被引:62,自引:4,他引:58       下载免费PDF全文
  相似文献   

11.
12.
2-Deoxy-D-glucose transport by Rhodotorula glutinis is an active process. The intracellular concentration of free deoxyglucose after 15 min incubation of Rhodotorula cells with this sugar was 230 times the extracellular concentration. Although cell extracts at this time contained more 2-deoxy-D-glucose 6-phosphate than deoxyglucose, pulse-labelling experiments demonstrated that deoxyglucose is transported as the free sugar and subsequently phosphorylated. After transport, Rhodotorula cells metabolize deoxyglucose. The major metabolites during 30-90 min incubations were determined to be 2-deoxy-D-glucose 6-phosphate, 2-deoxy-D-glucitol, 2-deoxy-D-gluconate and 2,2'-dideoxy-alpha, alpha'-trehalose. Rhodotorula glutinis also degrades deoxyglucose to CO2. The concentrations of intermediates in this pathway were too low to detect and resolve in extracts of control cells. In 2,4-dinitrophenol-poisoned cells, however, it appears that deoxyglucose degradation is restricted largely to loss of C-1 as CO2 and it was possible to identify 1-deoxy-D-ribulose 5-phosphate as an intermediate presumably arising from metabolism of deoxyglucose by the oxidative portion of the hexose monophosphate pathway.  相似文献   

13.
14.
Transport and metabolism of pantothenic acid by rat kidney   总被引:1,自引:0,他引:1  
Transport of [14C]pantothenic acid was studied using brush-border membrane vesicles prepared from rat kidney. In the presence of a Na+ gradient an accumulation of pantothenic acid 3-fold above equilibrium was observed. The Km and Vmax found were 7.30 microM and 23.8 pmol/mg protein per min, respectively. Isolated perfused rat kidneys were employed to study excretion of pantothenic acid at various concentrations in the perfusate. At physiological plasma concentrations, the filtered pantothenic acid was largely reabsorbed by the active process observed in the vesicles. At higher concentrations, pantothenic acid was found to undergo tubular secretion. Penicillin inhibited this secretory process indicating that both compounds share a secretory mechanism. Live animal studies indicated that the only compound excreted after injection of [14C]pantothenic acid was free pantothenic acid. After 1 week only 38% of the administered dose was excreted in the urine, indicating that effective conservation was taking place in the whole animal.  相似文献   

15.
Inorganic nitrogen metabolism in bacteria.   总被引:6,自引:0,他引:6  
Enzymatic reactions involving inorganic nitrogen species provide a rich variety of systems with which to study biological chemistry. In many cases, catalysis involves redox chemistry and takes place at metal centres. Recent structures and new spectroscopic data have rapidly advanced our knowledge of nitrogen cycle enzymology, particularly in the areas of nitrogen fixation, hydroxylamine oxidation and nitrite reduction. In the case of the nitrate reductases and nitric oxide reductase, models for structure and catalysis can be designed, based on new structural information that is now available for closely related enzymes. The past two years have also seen significant progress in our understanding of the enzymology of some 'new' reactions of the nitrogen cycle, for example anaerobic ammona oxidation and heterotrophic nitrification.  相似文献   

16.
Hilbi H 《Cellular microbiology》2006,8(11):1697-1706
Phosphoinositide metabolism plays a pivotal role in the regulation of receptor-mediated signal transduction, actin remodelling and membrane dynamics. Phosphoinositides co-ordinate these processes by recruiting protein effectors to distinct cellular membranes in a time- and organelle-dependent manner. Intracellular bacterial pathogens interfere with phosphoinositide metabolism to direct their entry into eukaryotic cells, form replication-permissive vacuoles, modulate apoptosis, or trigger fluid secretion. Gram-negative pathogens such as Legionella pneumophila, Shigella flexneri, or Salmonella enterica employ secretion systems to invade host cells by 'pathogen-triggered phagocytosis' and thereby bypass a requirement for phosphatidylinositol 3-kinases [PI(3)Ks]. Contrarily, 'receptor-mediated phagocytosis' of Yersinia spp., Listeria monocytogenes and other pathogenic bacteria depends on PI(3)Ks. Secreted effector proteins have been found to directly bind to and modify host cell phosphoinositides, thus modulating phagocytosis and intracellular survival of the pathogens. These effectors include L. pneumophila proteins that specifically attach to phosphatidylinositol 4-phosphate [PI(4)P] on the Legionella-containing vacuole, and phosphoinositide phosphatases produced by S. flexneri, S. enterica or Mycobacterium tuberculosis. This review covers current knowledge about subversion of host cell phosphoinositide metabolism by intracellular bacterial pathogens with an emphasis on recently identified secreted effector proteins directly engaging phosphoinositides.  相似文献   

17.
18.
The metabolism of naphthalene by soil bacteria   总被引:13,自引:0,他引:13  
  相似文献   

19.
Three strains of denitrifying bacteria were anaerobically enriched and isolated from oxic or anoxic habitats with cyclohexanol or cyclohexanone as sole electron donor and carbon source and with nitrate as electron acceptor. The bacteria were facultatively anaerobic, Gramnegative and metabolism was strictly oxidative with molecular oxygen, nitrate, or nitrite as terminal electron acceptor. Cyclohexanol and cyclohexanone were degraded both anaerobically and aerobically. Aromatic compounds were oxidized in the presence of molecular oxygen only. One of the bacterial strains was further characterized. During anaerobic cyclohexanol degradation approximately 40% of the substrate was oxidized to phenol, which accumulated as dead-endproduct in the growth medium; 60% of cyclohexanol was completely oxidized to CO2 and assimilated, respectively. In addition to phenol formation, transient accumulation of cyclohexanone, 2-cyclohexenone and 1,3-cyclohexanedione was observed. Based on these findings we propose a pathway for anaerobic cyclohexanol degradation involving these intermediates.  相似文献   

20.
Transport and metabolism of vitamins   总被引:1,自引:0,他引:1  
Although the biochemical roles of most vitamins in the body are reasonably well understood, our knowledge of how the body transports and metabolizes the vitamins is incomplete. This paper summarizes the information available on riboflavin, vitamin B-6, biotin, vitamin D, vitamin C, and pantothenic acid. As might be expected on the basis of the diverse chemistry and biology of these substrates, the body has quite unique mechanisms for handling each of them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号