首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study was undertaken to quantify the effects of infection cell density, medium condition, and surface aeration on recombinant protein yields in insect cells. In the absence of surface aeration and fresh medium, insect cells generated higher product yields (on a per cell basis) when infected with recombinant baculovirus at low cell densities, LCD (3 x 10(5)-4 x 10(5) cells/mL), than at high cell densities, HCD (>0.9 x 10(6) cells/mL), for two distinct baculovirus types. Surface aeration of a HCD culture infected in spent medium improved beta-glactosidase yields 5-fold over the nonaerated case. Surface aeration and medium replenishment improved beta-galactosidase yields of a HCD culture by 20-fold (compared to a 1.6-fold improvement for a LCD culture), resulting in cultures with productivties that were independent of the cell density at infection.  相似文献   

2.
Human haptoglobin (Hp2) was synthesized in insect cells using the baculovirusAutographa california nuclear polyhedrosis virus (AcNPV) as an expression vector. Viruses carrying the proHp2 cDNA, either fused or non fused to viral polyhedrin DNA sequences, expressed intracellularly low levels of unglycosylated and non maturated haptoglobin. On the contrary, recombinant viruses containing the preoroHp2 cDNA directed the expression of high levels of prohaptoglobin. To a large extent, the uncleaved product was found in the culture medium as a glycosylated molecule. Despite the lack of maturation into subunits, the secreted recombinant prohaptoglobin was able to bind hemoglobin in vitro, although less efficiently than plasma-derived haptoglobin.  相似文献   

3.
A protocol is described for the production of both intracellularly expressed and secreted selenomethionyl-derivatized recombinant proteins in baculovirus-infected insect cells. The method results in the production of recombinant soluble proteins with an SeMet occupancy of approximately 75% and with a recovery of approximately 20% that of native protein expression. The method is independent of the percentage methionine content of the protein and is reliable and consistent. Similar results are obtained using either Spodoptera frugiperda Sf9 or Trichoplusia ni High Five insect cells as the expression host, and when cultures are grown in either shake flasks or in Wave BioReactors.  相似文献   

4.
Aims: To develop an efficient and facile expression system supply of high purity and stable activity of rFip-fve for oral administration, medicinal study and applications. Methods and Results: A recombinant virus that contained the chimera gene, encoding a bombyxin signal peptide sequence fused to a Fip-fve-6His sequence, was constructed. The rFip-fve was purified from the supernatant of the infected Sf21 cells using a nickel-chelated affinity column, and was verified by Western blot and MALDI-MS (matrix-assisted laser desorption ionization mass spectrometry) analyses. Results showed that a glycosylated mature rFip-fve was produced and secreted into the infected cell supernatant. The immunomodulatory activity of rFip-fve was evaluated by measuring the amount of interleukin-2 released from murine splenocytes. Conclusions: A reliable scheme to express and purify active rFip-fve in a baculovirus/insect cell system for medicinal applications and genetic study is a feasible means of solving potential problems related to the production and activity of rFip-fve protein. Significance and Impact of the Study: The rFip-fve expressed in insect cells was processed and modified in a manner more similar to that of its native counterpart than that in bacterial cells. Therefore, the potential applications of rFip-fve that is generated in Sf21 cells can be more effectively evaluated that produced in Escherichia coli.  相似文献   

5.
Summary The glycosylation and subsequent processing of native and recombinant glycoproteins expressed in established insect cell lines and insect larvae were compared. TheSpodoptera frugiperda (Sf21) andTrichoplusia ni (TN-368 and BTI-Tn-5B1-4) cell lines possessed several intrinsic glycoproteins that are modified with both N- and O-linked oligosaccharides. The N-linked oligosaccharides were identified as both the simple (high mannose) and complex (containing sialic acid) types. Similarly, theT. ni larvae also possessed intrinsic glycoproteins that were modified with O-linked and simple and complex N-linked oligosaccharides. Additionally, human placental, secreted alkaline phosphatase (SEAP) produced during replication of a recombinant baculovirus inT. ni larvae was modified with complex oligosaccharide having sialic acid linked α(2–6) to galactose.  相似文献   

6.
To generate hemoglobin-free full-length haptoglobin the cDNA encoding rat haptoglobin alphabeta subunits was cloned into shuttle vector pVT-Bac-His and used to produce a recombinant baculovirus Autographa californica Nuclear Polyhedrosis Virus (AcNPV) as an expression vector, named HpAcNPV. Recombinant virus was used to infect Spodoptera frugiperda (Sf9) insect cells. The 50 kDa protein expressed was mostly secreted into the culture medium at relatively high titer (15 microg/mL) and was found to be rat prohaptoglobin having a vector-derived N-terminal extension of 37 amino acids, containing both a hexahistidine tag and an enterokinase recognition sequence. The protein was successfully purified by a three step procedure including nickel-linked agarose and DEAE-Sepharose chromatography steps. Hemoglobin was not detected in the purified preparations. Purified recombinant rat prohaptoglobin protein was also found to be glycosylated, and to be capable of forming a complex with rat hemoglobin in vitro.  相似文献   

7.
Testican-2 is a member of the testican group of brain extracellular proteoglycans where a 45 kDa modular protein core is composed of a follistatin-like domain, a calcium-binding domain, a thyroglobulin type-1 (Tg1) domain and an acid C-terminal region with glycosaminoglycan attachment sites. The modular structure suggests that it could participate in various interactions. The aim of the present study was to express and characterize a recombinant human testican-2 in quantities sufficient for structural and functional studies. Human cDNA coding for a 422 amino acid testican-2 protein was cloned into the pFastBac1 vector and expressed in the Spodoptera frugiperda (Sf9) insect cell expression system. The protein was purified to homogeneity by three chromatographic steps using the His(6) tag in the first two steps and ion exchange chromatography as last one. The final yield of purified recombinant testican-2 was up to 3.5 mg/L culture medium and its molecular mass determined by SDS-PAGE was approximately 55 kDa. Analysis by enzymatic deglycosylation revealed presence of N-linked sugars with a total mass of 4 kDa. In contrast to the Tg1 domain of testican-1, which acts as an inhibitor of the lysosomal cysteine peptidase cathepsin L, the Tg1 domain of testican-2 did not inhibit cathepsins L, B, K and S. We identified the C1q subcomponent of complement component C1 as a potential interacting partner of testican-2. The C1q subcomponent is a recognition molecule which acts in concert with other C1 subcomponents to activate the classical pathway of complement activation. The reported new interaction could be of importance in various complement-mediated inflammatory and other immune processes.  相似文献   

8.
The insect cell-baculovirus model presented here is capable of simulating cell population dynamics, extracellular virion densities, and heterologous product titers in reasonable agreement with experimental data for a wide rang of multiplicities of infection (MOI) and times of infection. The model accounts for the infection of a single cell by multiple virions and the consequences on the time course of infection. The probability of infection by more than one virion was approximated using the Poisson distribution, which proved to be a refinement over second-order kinetics. The model tracks initiation and duration of important events in the progression of infected cell development (virus replication, recombinant protein synthesis, and cell lysis) for subpopulations delineated by the time and extent of their initial infection. The model suggests infection strategies, weighing the importance of MOI and infection time. Maximum product titers result from infection in the early exponential growth phase with low MOI.  相似文献   

9.
The inability to sialylate recombinant glycoproteins is a critical limitation of the baculovirus-insect cell expression system. This limitation is due, at least in part, to the absence of detectable sialyltransferase activities and CMP-sialic acids in the insect cell lines routinely used as hosts in this system. SfSWT-1 is a transgenic insect cell line encoding five mammalian glycosyltransferases, including sialyltransferases, which can contribute to sialylation of recombinant glycoproteins expressed by baculovirus vectors. However, sialylation of recombinant glycoproteins requires culturing SfSWT-1 cells in the presence of fetal bovine serum or another exogenous source of sialic acid. To eliminate this requirement and extend the utility of SfSWT-1 cells, we have isolated a new baculovirus vector, AcSWT-7B, designed to express two mammalian enzymes that can convert N-acetylmannosamine to CMP-sialic acid during the early phase of infection. AcSWT-7B was also designed to express a model recombinant glycoprotein during the very late phase of infection. Characterization of this new baculovirus vector showed that it induced high levels of intracellular CMP-sialic acid and sialylation of the recombinant N-glycoprotein upon infection of SfSWT-1 cells cultured in serum-free medium supplemented with N-acetylmannosamine. In addition, co-infection of SfSWT-1 cells with AcSWT-7B plus a conventional baculovirus vector encoding human tissue plasminogen activator resulted in sialylation of this recombinant N-glycoprotein under the same culture conditions. These results demonstrate that AcSWT-7B can be used in two different ways to support recombinant N-glycoprotein sialylation by SfSWT-1 cells in serum-free medium. Thus, AcSWT-7B can be used to extend the utility of this previously described transgenic insect cell line for recombinant sialoglycoprotein production.  相似文献   

10.
Recombinant equine luteinizing hormone/chorionic gonadotropin (eLH/CG) was expressed in Mimic insect cells, that are commercial stably transformed Spodoptera frugiperda (Sf9) cells expressing five mammalian genes encoding glycosyltransferases involved in the synthesis of complex-type monosialylated N-glycans. We previously showed that it exhibited no in vivo bioactivity although expressing full in vitro bioactivity, and it was suspected that this was because of insufficient sialylation of eLH/CG N-glycans. Lectin binding analyses were performed with recombinant dimeric eLH/CG or its alpha subunit, secreted in the serum-containing supernatant of infected Sf9 and Mimic cells. Two types of specific lectin affinity assays (blot analyses and enzyme-linked immunosorbent assay) were used to compare the ability or inability of natural and recombinant gonadotropins to bind to various lectins. In natural equine chorionic gonadotropin (eCG), complex-type N-glycans terminating with both Siaalpha2,3Gal (based on Maackia amurensis agglutinin [MAA] binding) and Siaalpha2,6Gal (based on Sambucus nigra agglutinin [SNA] binding) were found, but in the alpha subunit dissociated from natural eCG, we only detected Siaalpha2-6Gal. In eLH/CG and its alpha subunit produced by Sf9 cells, N-glycans were found to be terminated by mannosyl residues (based on Galanthus nivalis agglutinin [GNA] binding), whereas those produced in Mimic cells were terminated by galactoses (based on binding to Ricinus communis agglutinin I [RCA I] , but not to SNA or MAA). This is in agreement with the fact that the nucleotide donor substrate of sialic acid is not naturally synthesized in insect cells. On the basis of binding to Arachis Hypogaea agglutinin [PNA], O-glycans exhibited the Galbeta1-3GalNAc structure in recombinant-free alpha and eLH/CG from both Sf9 and Mimic cell lines. Both N- and O-linked carbohydrate side chains synthesized in Mimic cells should thus be amenable to further acellular sialylation.  相似文献   

11.
Summary The processing of the N-linked oligosaccharide modifying a secreted alkaline phosphatase glycoprotein (SEAP) expressed with a recombinantAutographa californica nuclear polyhedrosis virus was evaluated in insect cell lines established fromSpodoptera frugiperda, Trichoplusia ni, andMamestra brassicae. Studies with Endoglycosidase H (Endo H), which removes high-mannose oligosaccharides, revealed that 79% of the intracellular SEAP produced in theM. brassicae-derived MB0503 cell line was Endo H resistant. The commonly usedS. frugiperda Sf21 and Sf9 cell lines produced 44 and 21% Endo H-resistant intracellular SEAP, respectively. Detection of oligosaccharide moieties with lectins, which selectively recognize terminal sugars, identified only mannose residues on SEAP expressed in the six insect cell lines. However, the oligosaccharide moiety of SEAP expressed in a Chinese hamster ovary cell line contained sialic acid. Therefore, when expressed in mammalian cells, the oligosaccharide present on SEAP is processed into complex oligosaccharide, but in insect cells it is of the high-mannose type. Studies with inhibitors of the initial oligosaccharide processing steps demonstrated that all six cell lines possessed glycosidase I/II and mannosidase I activity and that glycosylation was required for secretion.  相似文献   

12.
The baculovirus-insect cell system is reliable in expressing a variety of recombinant proteins. A recombinant baculovirus encoding the full length human CD4 has been used to infect Spodoptera frugiperda 9 cells in 6-L-airlift fermentors. The procedured described in this report permitted a 6.5-fold enhancement of rCD4 expression as compared to standard procedures previously published. The increase of rCD4 expression on the cell surface was achieved by using the following steps: (1) Optimal seeding density of 0.8 x 10(6) cells/mL used to multiply cells at a maximum exponential growth of 4.5 x 10(6); (2) high multiplicity of infection (MOI) of 580 PFU/cell; (3) addition of medium at time of infection. In addition to full-length rCD4, a "short" rCD4 with largely deleted cytoplasmic sequence (last 31 C-terminal amino acids) was also efficiently expressed.  相似文献   

13.
14.
Structural insights into Class II G protein-coupled receptors have been limited by the absence of a plentiful and highly enrichable source such as rhodopsin in the Class I family. With structural differences predicted to exist between these families, and with the key importance of an intact, disulfide-bonded amino-terminal domain for the Class II receptors, an overproduction and purification scheme is critically important. In this work, we have established and characterized a baculoviral expression and purification system for the secretin receptor. Hemagglutinin epitope-tagged wild-type rat secretin receptor construct was expressed using the recombinant baculovirus/Sf9 insect cell-based system, achieving a level of expression substantially higher than that previously achieved in Chinese hamster ovary (CHO-SecR) cells. Receptor expressed in Sf9 cells had similar affinity for secretin (Ki=1.4+/-0.2 nM) and similar potency to stimulate intracellular cAMP in response to this hormone (EC50=194+/-45 pM) as did wild-type receptor expressed in CHO cells. Receptors from Sf9 cells were also affinity labeled saturably and specifically by a photolabile secretin analogue. The receptors were purified to homogeneity by solubilization with sodium deoxycholate, selective ammonium sulfate precipitation, gel filtration and immunoaffinity purification. This expression system should facilitate the structural characterization of this receptor and its important amino-terminal domain.  相似文献   

15.
Understanding the three-dimensional structure of G protein-coupled receptors (GPCRs) has been limited by the technical challenges associated with expression, purification, and crystallization of membrane proteins, and their low abundance in native tissue. In the first large-scale comparative study of GPCR protein production using recombinant baculovirus, we report the characterization of 16 human receptors. The GPCRs were produced in three insect cell lines and functional protein levels monitored over 72 h using radioligand binding assays. Different GPCRs exhibited widely different expression levels, ranging from less than 1 pmol receptor/mg protein to more than 250 pmol/mg. No single set of conditions was suitable for all GPCRs, and large differences were seen for the expression of individual GPCRs in different cell lines. Closely related GPCRs did not share similar expression profiles; however, high expression (greater than 20 pmol/mg) was achieved for over half the GPCRs in our study. Overall, the levels of protein production compared favourably to other published systems.  相似文献   

16.
Jäger V 《Cytotechnology》1996,20(1-3):191-198
Conclusion High density perfusion culture of insect cells for the production of recombinant proteins has proved to be an attractive alternative to batch and fed-batch processes. A comparison of the different production processes is summarized in Table 3. Internal membrane perfusion has a limited scale-up potential but appears to the method of choice in smaller lab-scale production systems. External membrane perfusion results in increased shear stress generated by pumping of cells and passing through microfiltration modules at high velocity. However, using optimized perfusion strategies this shear stress can be minimized such that it is tolerated by the cells. In these cases, perfusion culture has proven to be superior to batch production with respect to product yields and cell specific productivity. Although insect cells could be successfully cultivated by immobilization and perfusion in stationary bed bioreactors, this method has not yet been used in continuous processes. In fluidized bed bioreactors with continuous medium exchange cells showed reduced growth and protein production rates.For the cultivation of insect cells in batch and fedbatch processes numerous efforts have been made to optimize the culture medium in order to allow growth and production at higher cell densities. These improved media could be used in combination with a perfusion process, thus allowing substantially increased cell densities without raising the medium exchange rate. However, sufficient oxygen supply has to be guaranteed during fermentation in order to ensure optimal productivity.  相似文献   

17.
溶栓剂DSPAα1正处于治疗急性缺血性中风的III期临床研究,临床结果显示DSPAα1具有良好的药理学和安全特性。将DSPAα1基因序列按照毕赤酵母偏好密码子进行优化,并在毕赤酵母菌株GS115和KM71中进行表达,同时利用定点突变对糖基化侧链进行缺失,考察糖基侧链对毕赤酵母表达DSPAα1的影响。结果表明,野生型DSPAα1在GS115和KM71中均获得高表达,在摇瓶发酵条件下,表达量分别为70mg/L和105mg/L;利用SDS-PAGE对DSPAα1三种突变体(N117Q、N362Q和N117Q/N362Q)进行分析,与野生型蛋白质相比较,3种突变体的表达水平显著下降,同时纤溶平板测活数据显示,纯化后的突变体N117Q和N362Q比活性均低于野生型蛋白质的25%。这表明,N-型糖链(N117和N362)对毕赤酵母表达的DSPAα1分泌和酶活性具有重要作用。  相似文献   

18.
Recombinant baculoviruses were constructed to express cDNAs encoding two distinct subtypes of human cAMP-specific phosphodiesterase (hPDE4A and hPDE4B). Infection of Spodoptera frugiperda insect cells with the appropriate recombinant baculoviruses resulted in high level production of biologically-active protein as measured by enzymatic activity and immunoblotting using subtype-specific anti-hPDE4 antisera. Both recombinant proteins showed catalytic activity with a low Km (~ 3 μM) for cAMP (with no cGMP hydrolyzing activity) and were inhibited by R-rolipram with apparent Kis of 0.38 and 0.25 μM, respectively. The recombinant enzymes also contained saturable, stereoselective and high-affinity rolipram-binding sites (Kd ~ 2 nM). Thus, insect cell-derived hPDE4s possess kinetic properties analogous to native enzymes as well as to recombinant enzymes produced in yeast.  相似文献   

19.
20.
Hu YC  Wang MY  Bentley WE 《Cytotechnology》1997,24(2):143-152
A continuous process of insect cell (S f9) growth and baculovirus infection is tested with the sequential combination of a CSTR and a tubular reactor. A tubular infection reactor enables continuous introduction of baculovirus and therefore avoids the ‘passage effect’ observed in two-stage CSTR systems. Moreover, a tubular reactor can be used to test cell infection kinetics and the subsequent metabolism of infected insect cells. Unlike batch and CSTR culture, cells in a horizontally positioned tubular reactor settle due to poor mixing. We have overcome this problem by alternately introducing air bubbles and media and by maintaining a linear velocity sufficient to keep cells suspended. This article addresses the development of the tubular reactor and demonstrates its use as an infection system that complements the two-stage CSTR. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号