首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PA-binding domain of LF (LFn) or PA-binding domain of EF (EFn) is the anthrax protective antigen (PA) binding domain of anthrax lethal factor (LF) or edema factor (EF). Here we show the development of a novel anthrax toxin inhibitor, fusion protein of N-terminal 27 amino acids deletion of LFn (Δ27LFn) and EFn. In a cell model of intoxication, fusion protein of Δ27LFn and EFn (Δ27LFn-EFn) was a 62-fold more potent toxin inhibitor than LFn or EFn, and this increased activity corresponded to a 39-fold higher PA-binding affinity by Biacore analysis. More importantly, Δ27LFn-EFn could protect the highly susceptible Fischer 344 rats from anthrax lethal toxin challenge. This work suggested that Δ27LFn-EFn has the potential as a candidate therapeutic agent against anthrax.

Structured summary

MINT-7014735, MINT-7014747, MINT-7014761: PA63 (uniprotkb:P13423) and LF (uniprotkb:P15917) bind (MI:0407) by surface plasmon resonance (MI:0107)  相似文献   

2.
PA63, a proteolytically activated 63-kDa form of anthrax protective antigen (PA), forms heptameric oligomers and has the ability to bind and translocate the catalytic moieties, lethal factor (LF), and edema factor (EF) into the cytosol of mammalian cells. Acidic pH triggers oligomerization and membrane insertion by PA63. A disordered amphipathic loop in domain II of PA (2beta2-2beta3 loop) is involved in membrane insertion by PA63. Because conditions required for membrane insertion coincide with those for oligomerization of PA63 in mammalian cells, residues constituting the 2beta2-2beta3 loop were replaced with the residues of the amphipathic membrane-inserting loop of its homologue iota-b toxin secreted by Clostridium perfringens. It was hypothesized that such a molecule might assemble into hetero-heptameric structures with wild-type PA ultimately leading to the inhibition of cellular intoxication. The mutation blocked the ability of PA to mediate membrane insertion and translocation of LF into the cytosol but had no effect on proteolytic activation, oligomerization, or binding LF. Moreover, an equimolar mixture of purified mutant PA (PA-I) and wild-type PA showed complete inhibition of toxin activity both in vitro on J774A.1 cells and in vivo in Fischer 344 rats thereby exhibiting a dominant negative effect. In addition, PA-I inhibited the channel-forming ability of wild-type PA on the plasma membrane of CHO-K1 cells thereby indicating protein-protein interactions between the two proteins resulting in the formation of mixed oligomers with defective functional activity. Our findings provide a basis for understanding the mechanism of translocation and exploring the possibility of the use of this PA molecule as a therapeutic agent against anthrax toxin action in vivo.  相似文献   

3.
Delivery of nucleic acid into mammalian cells by anthrax toxin   总被引:1,自引:0,他引:1  
Gene delivery vehicles based on receptor-mediated endocytosis offer an attractive long-term solution as they might overcome the limitations of toxicity and cargo capacity inherent to many viral gene delivery systems. The protective antigen component of anthrax toxin bind to specific receptors and deliver lethal factor or edema factor into the cytosol of mammalian cells. The N-terminal 254 amino acids of LF (LF(1-254)) binds to PA and, when fused to heterologous proteins, delivers such proteins into the cytosol. However, so far no attempt has been made to use the anthrax toxin system for the intracellular delivery of DNA. In the present study, LF(1-254) of anthrax toxin was fused to the DNA-binding domain of GAL4 protein. The fusion protein (LF(254)-GAL4DBD) showed both PA binding as well as DNA-binding activity in solution. The complex of fusion protein with plasmid DNA containing a reporter gene (luciferase or green fluorescent protein) along with PA delivered plasmid DNA into the cytosol of COS-1 cells. These results suggest that anthrax toxin components can be used as a non-viral system for the efficient delivery of DNA into the cytosol of mammalian cells.  相似文献   

4.
Protective antigen (PA) from Bacillus anthracis binds to cellular receptors, combines with lethal factor (LF) forming lethal toxin (LeTx), and facilitates the translocation of LF into the cytosol. LeTx is cytotoxic for J774A.1 cells, a murine macrophage cell line, and causes death of Fisher 344 rats when injected intravenously. PA is also the major protective component in anthrax vaccines. Antibody-dependent enhancement has been reported for several viral diseases, a bacterial infection, and for B. anthracis LeTx in vitro cytotoxicity. Further screening of our 73 PA monoclonal antibodies (mAbs) identified a total of 17 PA mAbs that enhanced in vitro cytotoxicity at suboptimal concentrations of LeTx. A competitive binding enzyme-linked immunosorbent assay showed that these 17 PA mAbs identified eight different antigenic regions on PA. Eight of the 17 PA mAbs that enhanced LeTx in vitro cytoxicity were examined for their activity in vivo. Of the eight mAbs that were injected intravenously with a sublethal concentration of LeTx into male Fisher 344 rats, four mAbs enhanced the lethality of LeTx and resulted in the death of animals, whereas control animals did not succumb to intoxication. This is the first demonstration that PA mAbs can enhance LeTx intoxication in vivo.  相似文献   

5.
A new generation anthrax vaccine is expected to target not only the anthrax protective antigen (PA) protein, but also other virulent factors of Bacillus anthracis. It is also expected to be amenable for rapid mass immunization of a large number of people. This study aimed to address these needs by designing a prototypic triantigen nasal anthrax vaccine candidate that contained a truncated PA (rPA63), the anthrax lethal factor (LF), and the capsular poly-gamma-D-glutamic acid (gammaDPGA) as the antigens and a synthetic double-stranded RNA (dsRNA), polyriboinosinic-polyribocytodylic acid (poly(I:C)) as the adjuvant. This study identified the optimal dose of nasal poly(I:C) in mice, demonstrated that nasal immunization of mice with the LF was capable of inducing functional anti-LF antibodies (Abs), and showed that nasal immunization of mice with the prototypic triantigen vaccine candidate induced strong immune responses against all three antigens. The immune responses protected macrophages against an anthrax lethal toxin challenge in vitro and enabled the immunized mice to survive a lethal dose of anthrax lethal toxin challenge in vivo. The anti-PGA Abs were shown to have complement-mediated bacteriolytic activity. After further optimization, this triantigen nasal vaccine candidate is expected to become one of the newer generation anthrax vaccines.  相似文献   

6.
Bacillus anthracis, the causative agent of anthrax, produces a tripartite toxin composed of two enzymatically active subunits, lethal factor (LF) and edema factor (EF), which, when associated with a cell-binding component, protective antigen (PA), form lethal toxin and edema toxin, respectively. In this preliminary study, we characterized the toxin-specific antibody responses observed in 17 individuals infected with cutaneous anthrax. The majority of the toxin-specific antibody responses observed following infection were directed against LF, with immunoglobulin G (IgG) detected as early as 4 days after the onset of symptoms in contrast to the later and lower EF- and PA-specific IgG responses. Unlike the case with infection, the predominant toxin-specific antibody response of those immunized with the US anthrax vaccine absorbed and UK anthrax vaccine precipitated licensed anthrax vaccines was directed against PA. We observed that the LF-specific human antibodies were, like anti-PA antibodies, able to neutralize toxin activity, suggesting the possibility that they may contribute to protection. We conclude that an antibody response to LF might be a more sensitive diagnostic marker of anthrax than to PA. The ability of human LF-specific antibodies to neutralize toxin activity supports the possible inclusion of LF in future anthrax vaccines.  相似文献   

7.
To investigate the cell entry and intracellular trafficking of anthrax oedema factor (EF) and lethal factor (LF), they were C‐terminally fused to the enhanced green fluorescent protein (EGFP) and monomeric Cherry (mCherry) fluorescent proteins. Both chimeras bound to the surface of BHK cells treated with protective antigen (PA) in a patchy mode. Binding was followed by rapid internalization, and the two anthrax factors were found to traffic along the same endocytic route and with identical kinetics, indicating that their intracellular path is essentially dictated by PA. Colocalization studies indicated that anthrax toxins enter caveolin‐1 containing compartments and then endosomes marked by phoshatidylinositol 3‐phoshate and Rab5, but not by early endosome antigen 1 and transferrin. After 40 min, both EF and LF chimeras were observed to localize within late compartments. Eventually, LF and EF appeared in the cytosol with a time‐course consistent with translocation from late endosomes. Only the EGFP derivatives reached the cytosol because they are translocated by the PA channel, while the mCherry derivatives are not. This difference is attributed to a higher resistance of mCherry to unfolding. After translocation, LF disperses in the cytosol, while EF localizes on the cytosolic face of late endosomes.  相似文献   

8.
The anthrax toxin consists of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA mediates the entry of LF and EF to the cytosol where they exert their effects. Although PA is the major component of the vaccines against anthrax, LF has also been found to play an important role in enhancing protective immunity. We have developed an osmolyte-inducible LF expression system. The protein expression system contributed no additional amino acids to the recombinant LF making it suitable for the human vaccine trials.  相似文献   

9.
The edema factor (EF) and lethal factor (LF) components of anthrax toxin require anthrax protective antigen (PA) for binding and entry into mammalian cells. After internalization by receptor-mediated endocytosis, PA facilitates the translocation of EF and LF across the membrane of an acidic intracellular compartment. To characterize the translocation process, we generated chimeric proteins composed of the PA recognition domain of LF (LFN; residues 1–255) fused to either the amino-terminus or the carboxy-terminus of the catalytic chain of diphtheria toxin (DTA). The purified fusion proteins retained ADP-ribosyltransferase activity and reacted with anti-sera against LF and diphtheria toxin. Both fusion proteins strongly inhibited protein synthesis in CHO-K1 cells in the presence of PA, but not in its absence, and they showed similar levels of activity. This activity could be inhibited by adding LF or the LFN fragment (which blocked the interaction of the fusion proteins with PA), by adding inhibitors of endo-some acidification known to block entry of EF and LF into cells, or by introducing mutations that attenuated the ADP-ribosylation activity of the DTA moiety. The results demonstrate that LFN fused to either the amino-terminus or the carboxy-terminus of a heterologous protein retains its ability to complement PA in mediating translocation of the protein to the cytoplasm. Besides its importance in understanding translocation, this finding provides the basis for constructing a translocation vector that mediates entry of a variety of heterologous proteins, which may require a free amino- or carboxy-terminus for biological activity, into the cytoplasm of mammalian cells.  相似文献   

10.
Wei D  Bu Z  Yu A  Li F 《BMB reports》2011,44(12):811-815
Inhalational anthrax is caused by B. anthracis, a virulent sporeforming bacterium which secretes anthrax toxins consisting of protective antigen (PA), lethal factor (LF) and edema factor (EF). LF is a Zn-dependent metalloprotease and is the main determinant in the pathogenesis of anthrax. Here we report the identification of a lead small-molecule inhibitor of anthrax lethal factor by screening an available synthetic small-molecule inhibitor library using fluorescence-based high-throughput screening (HTS) approach. Seven small molecules were found to have inhibitory effect against LF activity, among which SM157 had the highest inhibitory activity. All theses small molecule inhibitors inhibited LF in a noncompetitive inhibition mode. SM157 and SM167 are from the same family, both having an identical group complex, which is predicted to insert into S1' pocket of LF. More potent small-molecule inhibitors could be developed by modifying SM157 based on this identical group complex.  相似文献   

11.
炭疽毒素及其细胞受体的研究进展   总被引:1,自引:0,他引:1  
炭疽毒素由 3种蛋白组成 :保护性抗原 (protectiveantigen ,PA)、致死因子 (lethalfactor,LF)和水肿因子 (edemafactor ,EF) .综述炭疽毒素研究的最新进展 .主要介绍炭疽毒素的关键致病因子———LF的结构与功能 ,炭疽毒素膜转运成分PA的结构及其受体 (anthraxtoxinreceptor ,ATR)和其cDNA克隆的结构 ,并讨论了在炭疽的治疗、预防和毒素在肿瘤治疗中的可能应用 .  相似文献   

12.
This article reports the design of a bivalent protein ligand with dual use in therapy and diagnosis of anthrax caused by Bacillus anthracis. The ligand specifically binds to PA and thereby blocks the intracellular delivery of LF and EF toxins that, respectively, cause cell lysis and edema. The ligand is a chimeric scaffold with two PA-binding domains (called VWA) linked to an IgG-Fc frame. Molecular modeling and binding measurements reveal that the VWA-Fc dimer binds to PA with high affinity (K (D) = 0.2 nM). An in vitro bio-luminescence assay shows that VWA-Fc (at nanomolar concentration) protects mouse macrophages from lysis by PA/LF. In vivo studies demonstrate that VWA-Fc at low doses ( approximately 50 mug/animal) are able to rescue animals from lethal doses of PA/LF and B. anthracis spores. Finally, VWA-Fc is utilized as the capture molecule in the sensitive (down to 30 picomolar) detection of PA using surface plasmon resonance.  相似文献   

13.
Several different human vaccines are available to protect against anthrax. We compared the human adaptive immune responses generated by three different anthrax vaccines or by previous exposure to cutaneous anthrax. Adaptive immunity was measured by ELISPOT to count cells that produce interferon (IFN)-γ in response to restimulation ex vivo with the anthrax toxin components PA, LF and EF and by measuring circulating IgG specific to these antigens. Neutralising activity of antisera against anthrax toxin was also assayed. We found that the different exposures to anthrax antigens promoted varying immune responses. Cutaneous anthrax promoted strong IFN-γ responses to all three antigens and antibody responses to PA and LF. The American AVA and Russian LAAV vaccines induced antibody responses to PA only. The British AVP vaccine produced IFN-γ responses to EF and antibody responses to all three antigens. Anti-PA (in AVA and LAAV vaccinees) or anti-LF (in AVP vaccinees) antibody titres correlated with toxin neutralisation activities. Our study is the first to compare all three vaccines in humans and show the diversity of responses against anthrax antigens.  相似文献   

14.
Internalization and traffic to acidic endosomes of anthrax lethal factor (LF) and protective antigen (PA), bound to the anthrax toxin receptor (ATR), is required for LF translocation into the cytosol, where it can elicit its toxic effects. Dynamin is required for clathrin-mediated endocytosis, and long-term disruption of dynamin function blocks internalization of PA. We have used LFn-DTA, a surrogate of LF consisting of the N-terminal domain of LF fused to the catalytic subunit of diphtheria toxin, to differentiate the effects of acute and long-term block of dynamin function on LFn-DTA toxicity. Both forms of interference reduce LFn-DTA toxicity only partially, consistent with alternative routes for LFn-DTA endocytosis. In contrast, a long-term block of dynamin activity results in a further interference with LFn-DTA toxicity that is consistent with an altered endosomal environment, probably an increase in endosomal pH.  相似文献   

15.
Groups of Fischer 344 rats were injected intravenously with Bacillus anthracis culture supernatant containing crude anthrax toxin. Times to death of rats given identical toxin preparations varied directly with the weights of the rats (P = 0.0001). In contrast to previous reports, the data indicate that rat weight must be taken into account during in vivo assays of anthrax lethal toxin activity.  相似文献   

16.
Anthrax toxin produced by Bacillus anthracis is a tripartite toxin comprising of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA is the receptor-binding component, which facilitates the entry of LF or EF into the cytosol. EF is a calmodulin-dependent adenylate cyclase that causes edema whereas LF is a zinc metalloprotease and leads to necrosis of macrophages. It is also important to note that the exact mechanism of LF action is still unclear. With this view in mind, in the present study, we investigated a proteome wide effect of anthrax lethal toxin (LT) on mouse macrophage cells (J774A.1). Proteome analysis of LT-treated and control macrophages revealed 41 differentially expressed protein spots, among which phosphoglycerate kinase I, enolase I, ATP synthase (beta subunit), tubulin beta2, gamma-actin, Hsp70, 14-3-3 zeta protein and tyrosine/tryptophan-3-monooxygenase were found to be down-regulated, while T-complex protein-1, vimentin, ERp29 and GRP78 were found to be up-regulated in the LT-treated macrophages. Analysis of up- and down-regulated proteins revealed that primarily the stress response and energy generation proteins play an important role in the LT-mediated macrophage cell death.  相似文献   

17.
Groups of Fischer 344 rats were injected intravenously with Bacillus anthracis culture supernatant containing crude anthrax toxin. Times to death of rats given identical toxin preparations varied directly with the weights of the rats (P = 0.0001). In contrast to previous reports, the data indicate that rat weight must be taken into account during in vivo assays of anthrax lethal toxin activity.  相似文献   

18.
炭疽是由炭疽芽孢杆菌引起的严重威胁人类健康的传染病。炭疽毒素包括3种蛋白质成分:保护性抗原(PA)、致死因子(LF)和水肿因子(EF)。PA与LF形成致死毒素(LT),与EF形成水肿毒素(ET)。由于致死毒素(LT)在感染者损伤及死亡中发挥主要作用,因此在炭疽感染晚期单纯使用抗生素治疗难以发挥疗效,治疗性中和抗体成为目前最有效的炭疽治疗药物。目前国外获得的炭疽毒素抗体多为炭疽PA抗体,美国FDA已批准瑞西巴库(人源PA单抗)用于吸入性炭疽的治疗。一旦炭疽芽孢杆菌被人为改构或PA中和表位发生突变,针对PA单一表位的抗体将可能失效,因此针对LF的抗体将成为炭疽治疗的有效补充。目前国外已有的LF抗体多为鼠源抗体和嵌合抗体,而全人源抗体可以避免鼠源抗体免疫原性高等缺点。本研究首先用LF抗原免疫人抗体转基因小鼠,利用流式细胞仪从小鼠脾淋巴细胞中分选抗原特异的记忆B细胞,通过单细胞PCR方法快速获得两株具有结合活性的抗LF单抗1D7和2B9。瞬时转染Expi 293F细胞制备抗体,通过毒素中和实验(TNA)发现1D7和2B9在细胞模型中均显示较好的中和活性,并且与PA单抗联合使用时,表现出较好的协同作用。总之,本文利用转基因小鼠、流式分选技术和单细胞PCR技术的优势,快速筛选到全人源LF抗体,为快速筛选全人源单克隆抗体开辟了新的思路与方法。  相似文献   

19.
The protective antigen (PA) of the anthrax toxin binds to a cell surface receptor and thereby allows lethal factor (LF) to be taken up and exert its toxic effect in the cytoplasm. Here, we report that clustering of the anthrax toxin receptor (ATR) with heptameric PA or with an antibody sandwich causes its association to specialized cholesterol and glycosphingolipid-rich microdomains of the plasma membrane (lipid rafts). We find that although endocytosis of ATR is slow, clustering it into rafts either via PA heptamerization or using an antibody sandwich is necessary and sufficient to trigger efficient internalization and allow delivery of LF to the cytoplasm. Importantly, altering raft integrity using drugs prevented LF delivery and cleavage of cytosolic MAPK kinases, suggesting that lipid rafts could be therapeutic targets for drugs against anthrax. Moreover, we show that internalization of PA is dynamin and Eps15 dependent, indicating that the clathrin-dependent pathway is the major route of anthrax toxin entry into the cell. The present work illustrates that although the physiological role of the ATR is unknown, its trafficking properties, i.e., slow endocytosis as a monomer and rapid clathrin-mediated uptake on clustering, make it an ideal anthrax toxin receptor.  相似文献   

20.
Linker insertion mutagenesis was employed to create structural disruptions of the lethal factor (LF) protein of anthrax toxin to map functional domains. A dodecameric linker was inserted at 17 blunt end restriction enzyme sites throughout the gene. Paired MluI restriction sites within the linker allowed the inserts to be reduced from four to two amino acids. Shuttle vectors containing the mutated genes were transformed into the avirulent Bacillus anthracis UM23C1-1 for expression and secretion of the gene products. Mutations at five sites in the central one-third of the sequence made the protein unstable, and purified protein could not be obtained. Mutated LF proteins with insertions at the other sites were purified and assessed for toxic activity in a macrophage lysis assay and for their ability to bind to the protective antigen (PA) component of anthrax toxin, the receptor binding moiety. Most insertions located in the NH2-terminal one-third of the LF protein eliminated both toxicity and binding to PA, while all four insertions in the COOH-terminal one-third of the protein eliminated toxicity without affecting binding to PA. These data support the hypothesis that the NH2-terminal domain contains the structures required for binding to PA and the COOH-terminal domain contains the putative catalytic domain of LF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号