首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well known that soleus muscle of rat atrophies following spaceflight or hindlimb suspension (Ohira et al., 1992). It is, further, reported that the electromyogram (EMG) of soleus muscle disappears immediately in response to unloading by exposure to actual micro-g environment (Kawano et al., 2002; Leterme and Falempin, 1998) and by hindlimb suspension of rats (Alford et al., 1987; Ohira et al., 2000). However, the EMG level is increased gradually to the control level following 7-10 days of continuous hindlimb suspension (Alford et al., 1987; Ohira, 2000), while muscle atrophy is progressing (Winiarski et al., 1987). We previously reported that reduction of the EMG level of rat soleus in response to actual micro-g environment, created by a parabolic flight of a jet airplane, was closely associated with a decrease of the afferent input recorded at the L5 segmental level of spinal cord (Kawano et al., 2002). However, it is still unclear how the EMG level of soleus muscle adapts to unloading condition. The current study was performed to investigate the responses of soleus EMG and both afferent and efferent neurogram at the L5 segmental level of spinal cord to acute (20 seconds) and chronic (14 days) unloading.  相似文献   

2.
Roles of gravitational loading, sarcomere length, and/or tension development on the electromyogram (EMG) of soleus and afferent neurogram recorded at the L5 segmental level of spinal cord were investigated during parabolic flight of a jet airplane or hindlimb suspension in conscious rats. Both EMG and neurogram levels were increased when the gravity levels were elevated from 1-G to 2-G during the parabolic flight. They were decreased when the hindlimbs were unloaded by exposure to actual microgravity or by suspension. These phenomena were related to passive shortening of muscle fibers and/or sarcomeres. Unloading-related decrease in sarcomere length was greater at the central rather than the proximal and distal regions of fibers. These activities and tension development were not detected when the mean sarcomere length was less than 2.03 micrometers. It is suggested that load-dependent regulation of neuromuscular system is related to the tension development which is influenced by sarcomere length.  相似文献   

3.
We reported that the levels of electromyogram in soleus muscle and the afferent neurogram recorded at L5 segmental level of the spinal cord were instantly decreased in response to exposure to microgravity (micro-G) environment created during a parabolic flight, although these activities were constantly presented at 1-G. It was also observed that the soleus muscle length was passively shortened in micro-G due to the plantarflexion of ankle joint. Similar phenomena were also induced by acute hindlimb suspension at 1-G. Further, the soleus muscle atrophied, if the dorsal root at L5 was transected. These results suggested that the unloading-related effects on muscle are closely associated with the inhibition of the afferent input. However, effects of gravity on most of the cells in the whole body can not be removed, although hindlimb suspension can inhibit the antigravity activity of rat hindlimb muscles. And parabolic flight can create micro-G only for a short period of time. Further, effects of hypergravity before and after micro-G are unavoidable. Therefore, further experiments utilizing space environment are essential.  相似文献   

4.
Effects of hindlimb suspension, tenotomy, denervation, and/or the combination of these models on plantar-flexors were studied in adult rats. Suspension-induced atrophy was not promoted by addition of tenotomy. But the magnitude of the atrophy was advanced if denervation or both denervation and tenotomy were combined with 5-day hindlimb suspension. Similar effects were noted in the cross-sectional area of single muscle fibers, especially of slow-twitch fibers. A shift of muscle fiber type from slow- to fast-twitch type was also induced mainly in soleus. The atrophy and fiber transformation were closely associated with a passive shortening of muscle due to the plantar-flexion of ankle and/or tenotomy and a disappeared electrical activity caused by denervation. The fiber atrophy, but not the shift of fiber type, was further advanced by the combination of tenotomy and denervation. It is suggested that muscle atrophy is caused by the decreased fiber size and protein content. The water content was also reduced proportionally.  相似文献   

5.
Effects of 9-week hindlimb suspension and 8-week recovery on locomotor performance and electromyogram (EMG) activities of soleus (Sol), plantaris (Pl), lateral gastrocnemius (LG), and tibialis anterior (TA), were studied in adult rats. Hyperextension of knee and ankle joints, noted after nine weeks of suspension, did not recover during 8-week ambulation. Growth of Sol was fully inhibited by suspension and did not recover completely within 8 weeks of ambulation. The EMG levels in Sol, Pl, and LG 1 day after suspension were 52-76% less than the pre-suspension level (resting on the floor). These activities were recovered to or near the pre-suspension level around 1 week, but decreased again to 10-29% of controls from 7 to 9 weeks. The integrated EMG of TA was elevated during the first week of suspension but then gradually declined to control levels within four weeks. At the end of suspension, the Sol and Pl, not the LG, EMGs remained reduced and the TA EMG remained hyperactive. Co-activation of dorsi- and plantar- flexors occurred often during quadripedal walking following suspension. Such a phenomenon was not observed in the control rats. These phenomena were recovered within 1 week. It is suggested that the unloading-related alterations of neuromuscular activities and/or locomotion, but not the hyperextension of knee and ankle joints, in rats are reversible.  相似文献   

6.
The direct data concerning effects of unloading on dystrophic muscle were received in study of mdx mice, a model for Duchenne muscular dystrophy, muscles before and after hindlimb suspension. Experiments were performed on softer skinned soleus muscle fibers isolated from wild-type (C57black) as a control and mdx mice aged 2 weeks. Animals of two experimental groups were tail suspended during 21 days. In both groups of hindlimb suspended mice isolated soleus fibers were thinner than in the control groups. But there was a greater 37% significant decrease in fiber diameter in wild-type (CHS) suspended mice vs. 24% in mdx (MHS) suspended group. Values of absolute peak tension in CHS were less than in the control group by 33%, and in MHS mice suspended--by 39%. 21 days of hindlimb suspension resulted in reduction of mean peak specific tension by 28% in MHS and significantly less drop (15%) in CHS groups. We observed a similar rightward shift of the tension pCa curve in both mice strains.  相似文献   

7.
We present a technique to combine muscle shortening and lengthening velocity information with electromyographic (EMG) profiles during gait. A biomechanical model was developed so that each muscle's length could be readily calculated over time as a function of angles of the joints it crossed. The velocity of shortening and lengthening of the muscle fiber was then calculated, and with computer graphics this information was overlaid on the EMG profiles. Thus, researchers and clinicians were not only able to interpret the processed EMG signal as level of activity (tension) but also to gain insight as to the muscles' role as generators (muscle shortening) or absorbers (muscle lengthening) of energy. Six common muscles are documented, using database profiles; soleus (SOL), medial gastrocnemius (MG), tibialis anterior (TA), vastus lateralis (VL), rectus femoris (RF), and semitendinosus (ST). The protocol thus demonstrates a relatively simple technique for calculating muscle fiber velocity and for combining that velocity information with EMG activity profiles.  相似文献   

8.
The properties of the contractile elements interacting to develop force in atrophied rat soleus muscle were studied by using single skinned fibers, which permitted direct access to the contractile apparatus. Muscle atrophy was induced by 15 days of hindlimb suspension. Suspension resulted in a decrease of maximal tension relative to an important decline in fiber diameter. Ca affinity of the contractile proteins was not changed insofar as the tension-pCa relationship was not shifted along the pCa axis. However, after hindlimb suspension 1) the value of the Hill coefficient from the tension-pCa curve was found to be higher, 2) a higher Ca threshold for activation was reported, and 3) a significant increase in contraction kinetics was described. All these results suggested that after suspension the mechanical properties of the slow-twitch soleus appeared to resemble more closely those of a fast-twitch muscle. Our results were in complete agreement with published histochemical data.  相似文献   

9.
Cross-sectional areas and succinate dehydrogenase (SDH) activities of soleus muscle fibers and their spinal motoneurons in male Wistar Hannover rats were determined after 16 days of hindlimb suspension. A decreased percentage of type I fibers and an increased percentage of type I+II fibers were observed after hindlimb suspension. Cross-sectional areas of all types of fibers were smaller in the hindlimb suspended than control rats. SDH activities of all types of fibers did not change after hindlimb suspension. Numbers, cross-sectional areas, or SDH activities of spinal motoneurons did not change after hindlimb suspension. It is suggested that spinal motoneurons innervating the rat soleus muscle are not affected by decreased neuromuscular activity on Earth and that gravity itself is important for maintaining of spinal motoneuron metabolic properties.  相似文献   

10.
11.
It is unclear if skeletal muscles act mechanically as independent actuators. The purpose of the present study was to investigate force transmission from soleus (SO) muscle for physiological lengths as well as relative positions in the intact cat hindlimb. We hypothesized that force transmission from SO fibers will be affected by length changes of its two-joint synergists. Ankle plantar flexor moment on excitation of the SO was measured for various knee angles (70-140 degrees ). This involved substantial length changes of gastrocnemius and plantaris muscles. Ankle angle was kept constant (80 degrees -90 degrees ). However, SO ankle moment was not significantly affected by changes in knee angle; neither were half-relaxation time and the maximal rate of relaxation (P > 0.05). Following tenotomy, SO ankle moment decreased substantially (55 +/- 16%) but did not reach zero, indicating force transmission via connective tissues to the Achilles tendon (i.e., epimuscular myofascial force transmission). During contraction SO muscle shortened to a much greater extent than in the intact case (16.0 +/- 0.6 vs. 1.0 +/- 0.1 mm), which resulted in a major position shift relative to its synergists. If the SO was moved back to its position corresponding to the intact condition, SO ankle moment approached zero, and most muscle force was exerted at the distal SO tendon. Our results also suggested that in vivo the lumped intact tissues linking SO to its synergists are slack or are operating on the toe region of the stress-strain curve. Thus, within the experimental conditions of the present study, the intact cat soleus muscle appears to act mechanically as an independent actuator.  相似文献   

12.
Compensatory hypertrophy was induced in the rat soleus muscle by sectioning the tendon of the ipsilateral gastrocnemius and plantaris muscle. Seven days after tenotomy of synergistic muscles, when soleus hypertrophy attains about 40%, the number of satellite cells (expressed as percentage of all muscle nuclei found in the same cross-sections) as revealed by electron microscopy, was increased from 5.8+/-0.06% in the normal soleus muscle to 16.6+/-1.26%. After four days' denervation of the soleus muscle the percentage of satellite cells was increased to 7.2+/-0.62%. In experiments where hypertrophy of the soleus muscle was combined with denervation three days after tenotomy of synergists, and examined after another four days (during which time it loses, as has previously been shown, over 40% of its predenervation weight), the number of satellite cells was greatly increased to 29.9+/-3.42%. This increase is apparently due to two independent processes which take place during the first postoperative period: a) mitotic division of satellite cells during the early stages of compensatory hypertrophy and b) pinching off of muscle nuclei from rapidly atrophying muscle fibres due to subsequent denervation. Activation of satellite cells was mainly manifested by expansion of smooth and especially of rough endoplasmic reticulum, a rich Golgi complex, high pinocytotic activity, increased number of ribosomes and by nuclear changes. Concomitantly with the increased number of satellite cells, proliferation of fibroblasts, macrophages and mast cells could be observed.  相似文献   

13.
The effects of torbafylline on the prevention of and the recovery from 5 weeks of hindlimb suspension induced atrophy were analyzed in rat soleus and extensor digitorum longus muscles. Muscle alterations were investigated by determining a suite of electrophysiological, histochemical, and muscle ultrastructural characteristics. Administration of torbafylline during the suspension period was ineffective in preventing any of the observed muscle atrophic changes. Application of torbafylline during the recovery period resulted in a faster recovery of some soleus muscle structural and functional properties. Mitochondrial volume densities and capillary to fiber ratios returned towards baseline values earlier in the recovery process with torbafylline. Furthermore, the drug significantly improved soleus muscle fatigue resistance 4 weeks after cessation of hindlimb suspension.  相似文献   

14.
The role of satellite cells and DNA unit size in determining muscle size was examined by inhibiting postnatal skeletal muscle development by using hindlimb suspension. Satellite cell mitotic activity and DNA unit size were determined in the soleus muscles from hindlimb-suspended and age-matched weight-bearing rats before the initiation of hindlimb suspension, at the conclusion of a 28-day hindlimb-suspension period, 2 wk after reloading, and 9 wk after reloading. The body weights of hindlimb-suspended rats were significantly (P < 0.05) less than those of weight-bearing rats at the conclusion of hindlimb suspension, but they were the same (P > 0. 05) as those of weight-bearing rats 9 wk after reloading. The soleus muscle weight, soleus muscle weight-to-body weight ratio, myofiber diameter, nuclei per millimeter, and DNA unit size for the hindlimb-suspended rats were significantly (P < 0.05) smaller than for the weight-bearing rats at all recovery times. Satellite cell mitotic activity was significantly (P < 0.05) higher in the soleus muscles from hindlimb-suspended rats 2 wk after reloading, but it was the same (P > 0.05) as in weight-bearing rats 9 wk after reloading. Juvenile soleus muscles failed to achieve normal muscle size 9 wk after reloading because there was incomplete compensation for the hindlimb-suspension-induced interruptions in myonuclear accretion and DNA unit size expansion.  相似文献   

15.
Models of disuse: a comparison of hindlimb suspension and immobilization   总被引:3,自引:0,他引:3  
The effects of 1 and 2 wk of hindlimb suspension (HS) on rat skeletal muscle function were determined and the results compared with those obtained previously with hindlimb immobilization (HI). Both models of disuse (HS and HI) primarily affected slow-twitch muscle. Each decreased the isometric twitch duration in the slow-twitch soleus; however, the HS-mediated effect was entirely a result of a shortened contraction time (CT), whereas HI reduced one-half relaxation time (1/2 RT) as well as CT. Soleus muscle mass and peak tetanic tension (Po) declined with disuse. The HS effect on muscle mass and Po was variable, however, for all experiments HS produced atrophy equal to or greater than HI. A major difference existed in the effects of HS and HI on the maximal speed of soleus muscle shortening (Vmax). One and 2 wk of HS produced increases in Vmax to 4.45 +/- 0.34 and 6.83 +/- 0.74 fiber lengths/s, respectively, compared with control velocities of 3.05 +/- 0.08. By contrast over a similar time period, HI had no significant effect on soleus Vmax. The increase in Vmax at 14 days of HS was associated with, and perhaps caused by, the increased expression of a second faster migrating isozyme of myosin. The new native isozyme comigrated with fast myosin, but its light chain subunits contained only LC1s and LC2s. The mechanism responsible for the increase is unknown. One plausible explanation is that the apparent HS-mediated modification in muscle fiber type is dependent on the elimination of loadbearing or isometric contractions, a condition that does not exist during HI.  相似文献   

16.
The relationship of “awareness of muscle tension” to depth of relaxation was explored. In one experiment, accuracy of forearm flexor control was assessed using the psychophysical method of magnitude production, and depth of flexor relaxation was measured using the integrated EMG before and after EMG biofeedback training. No consistent relationship between motor-control accuracy and depth of relaxation was found. A second, similar experiment with frontalis showed increased accuracy of frontalis control with deeper relaxation. Accuracy of passive, verbal judgments of spontaneous frontalis tension fluctuation exhibited no clear relationship with depth of relaxation. It was concluded that forearm flexor and frontalis may be under the control of distinct mechanisms, and that afferent information probably contributes to the control of neither muscle. Three structural theories of the control mechanisms were considered, and one depending on the central monitoring of efferent outflow(rather than afferent inflow) seemed most compatible with the frontalis data. Both flexor and frontalis data could be accounted for by a two-phase scheme combining central outflow monitoring with the monitoring of mental contents for arousal value at very low muscle tension levels.  相似文献   

17.
Structural and functional changes in Mongolian gerbil soleus fibers were analyzed after a 31-day hindlimb suspension. Contractile properties of muscle fibers were studied by means of tensometry; the transversal stiffness of different parts of the contractile apparatus was measured by atomic force microscopy, resting calcium level was estimated by fluorescence microscopy by using Fluo-4-AM; cytoskeletal protein content was determined by western blotting. It was shown that after gravitational unloading the maximal force of contraction and specific tension of fiber were significantly reduced, as well as calcium sensitivity actually lowered. At the same time, the transversal stiffness of Z-disk in the relaxed and activated state was decreased significantly compared to the control group. Desmin content was at the control level, but alpha-actinin-2, main structural protein of Z-disk, became considerably less after a 31-day hindlimb suspension. Besides, resting calcium level remained at control values during the simulated gravitational unloading. The data suggest that Z-disk destruction, as a result of alpha-actinin-2 content reduction, leads to changes in the lattice spacing and decreases contractile properties.  相似文献   

18.
The aim of this study was to elucidate the effects of 14- day hindlimb suspension (HS) and subsqquent reloading (3 or 7 days) on the m. soleus mass, muscle fiber cross-sectional area (CSA), soleus fiber properties and serum IGF-1 in rats. Rats were hindlimb suspended for 14 days or kept as controls (C, n = 7). Soleus muscles were isolated after HS (HS, n = 7) or after reambulation for either three (R3, n = 5) or seven days (R7, n = 6). Frozen serial sections of m. soleus were stained by primary monoclonal antibodies against MHCI. For measurement of concentration IGF-1 in the blood serum, test-system for IFA DSL-10-2800 Non-Extraction IGF-1 ELISA was used. Muscle mass was significantly reduced in HS (-35 %) but subsequently increased with reloading in R3 (-10 % to C) and was recovered to control values in R7 (+5 % to C). Fiber CSA was significantly reduced (-43 %) in HS and was greater in R7 than in HS and slightly greater than in R3. 14 days of HS resulted in a mean maximal tension reduced by 35 %. After 7 days of subsequent reloading the mean maximal specific tension was still low (-33 % to C) and didn't differ from HS level. The level in blood IGF-1 has obviously decreased during 14-day unloading by 48 %, remained at the same level in R3, and increased 10 fold in R7.  相似文献   

19.
Biomechanical unloading of the rat soleus by hindlimb unweighting is known to induce atrophy and a slow- to fast-twitch transition of skeletal muscle contractile properties, particularly in slow-twitch muscles such as the soleus. The purpose of this study was to determine whether the expression of the dihydropyridine (DHP) receptor gene is upregulated in unloaded slow-twitch soleus muscles. A rat DHP receptor cDNA was isolated by screening a random-primed cDNA lambda gt10 library from denervated rat skeletal muscle with oligonucleotide probes complementary to the coding region of the rabbit DHP receptor cDNA. Muscle mass and DHP receptor mRNA expression were assessed 1, 4, 7, 14, and 28 days after hindlimb unweighting in rats by tail suspension. Isometric twitch contraction times of soleus muscles were measured at 28 days of unweighting. Northern blot analysis showed that tissue distribution of DHP receptor mRNA was specific for skeletal muscle and expression was 200% greater in control fast-twitch extensor digitorum longus (EDL) than in control soleus muscles. A significant stimulation (80%) in receptor message of the soleus was induced as early as 24 h of unloading without changes in muscle mass. Unloading for 28 days induced marked atrophy (control = 133 +/- 3 vs. unweighted = 62.4 +/- 1.8 mg), and expression of the DHP receptor mRNA in the soleus was indistinguishable from levels normally expressed in EDL muscles. These changes in mRNA expression are in the same direction as the 37% reduction in time to peak tension and 28% decrease in half-relaxation time 28 days after unweighting. Our results suggest that muscle loading necessary for weight support modulates the expression of the DHP receptor gene in the soleus muscle.  相似文献   

20.
Single skinned fibers from soleus and adductor longus (AL) muscles of weight-bearing control rats and rats after 14-day hindlimb suspension unloading (HSU) were studied physiologically and ultrastructurally to investigate how slow fibers increase shortening velocity (V0) without fast myosin. We hypothesized that unloading and shortening of soleus during HSU reduces densities of thin filaments, generating wider myofilament separations that increase V0 and decrease specific tension (kN/m2). During HSU, plantarflexion shortened soleus working length 23%. AL length was unchanged. Both muscles atrophied as shown by reductions in fiber cross-sectional area. For AL, the 60% atrophy accounted fully for the 58% decrease in absolute tension (mN). In the soleus, the 67% decline in absolute tension resulted from 58% atrophy plus a 17% reduction in specific tension. Soleus fibers exhibited a 25% reduction in thin filaments, whereas there was no change in AL thin filament density. Loss of thin filaments is consistent with reduced cross bridge formation, explaining the fall in specific tension. V0 increased 27% in soleus but was unchanged in AL. The V0 of control and HSU fibers was inversely correlated (R = –0.83) with thin filament density and directly correlated (R = 0.78) with thick-to-thin filament spacing distance in a nonlinear fashion. These data indicate that reduction in thin filament density contributes to an increased V0 in slow fibers. Osmotically compacting myofilaments with 5% dextran returned density, spacing, and specific tension and slowed V0 to near-control levels and provided evidence for myofilament spacing modulating tension and V0. rat; soleus; adductor longus; fiber length; electron microscopy; hindlimb suspension unloading  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号