首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNase MRP is a eukaryotic endoribonuclease involved in nucleolar and mitochondrial RNA processing events. RNase MRP is a ribonucleoprotein particle, which is structurally related to RNase P, an endoribonuclease involved in pre-tRNA processing. Most of the protein components of RNase MRP have been reported to be associated with RNase P as well. In this study we determined the association of these protein subunits with the human RNase MRP and RNase P particles by glycerol gradient sedimentation and coimmunoprecipitation. In agreement with previous studies, RNase MRP sedimented at 12S and 60-80S. In contrast, only a single major peak was observed for RNase P at 12S. The analysis of individual protein subunits revealed that hPop4 (also known as Rpp29), Rpp21, Rpp20, and Rpp25 only sedimented in 12S fractions, whereas hPop1, Rpp40, Rpp38, and Rpp30 were also found in 60-80S fractions. In agreement with their cosedimentation with RNase P RNA in the 12S peak, coimmunoprecipitation with VSV-epitope-tagged protein subunits revealed that hPop4, Rpp21, and in addition Rpp14 preferentially associate with RNase P. These data show that hPop4, Rpp21, and Rpp14 may not be associated with RNase MRP. Furthermore, Rpp20 and Rpp25 appear to be associated with only a subset of RNase MRP particles, in contrast to hPop1, Rpp40, Rpp38, and Rpp30 (and possibly also hPop5), which are probably associated with all RNase MRP complexes. Our data are consistent with a transient association of Rpp20 and Rpp25 with RNase MRP, which may be inversely correlated to its involvement in pre-rRNA processing.  相似文献   

2.
Abstract— An RNase inhibitor has been purified from pig cerebral cortex by DEAE-cellulose and hydroxylapatite chromatography and Sephadex G-100 gel filtration. The purified RNase inhibitor could be resolved into a major band (about 80–85 per cent of total protein) and several minor components by polyacrylamide gel electrophoresis.
The ultraviolet absorption curve of the purified RNase inhibitor indicated a typical protein spectrum. The inhibitor was inactivated by digestion with trypsin or prozyme, and by heating at 70ºC for 5 min. The inhibitor was also inactivated by an SH reagent such as p -chloromercuribenzoate. The inhibitor did not affect RNase T1. It has been suggested that the inhibitor is an acidic protein and also a SH-protein. The molecular weight of the RNase inhibitor was estimated to be about 60,000.  相似文献   

3.
The RNase MRP and RNase P particles both function as endoribonucleases. RNase MRP has been implicated in the processing of precursor-rRNA, whereas RNase P has been shown to function in the processing of pre-tRNA. Both ribonucleoprotein particles have an RNA component that can be folded into a similar secondary structure and share several protein components. We have identified human, rat, mouse, cow, and Drosophila homologues of the Pop5p protein subunit of the yeast RNase MRP and RNase P complexes. The human Pop5 cDNA encodes a protein of 163 amino acids with a predicted molecular mass of 18.8 kDa. Polyclonal antibodies raised against recombinant hPop5 identified a 19-kDa polypeptide in HeLa cells and showed that hPop5 is associated with both RNase MRP and RNase P. Using affinity-purified anti-hPop5 antibodies, we demonstrated that the endogenous hPop5 protein is localized in the nucleus and accumulates in the nucleolus, which is consistent with its association with RNase MRP and RNase P. Catalytically active RNase P was partially purified from HeLa cells, and hPop5 was shown to be associated with it. Finally, the evolutionarily conserved acidic C-terminal tail of hPop5 appeared to be required neither for complex formation nor for RNase P activity.  相似文献   

4.
The eukaryotic endonucleases RNase P and RNase MRP require both RNA and protein subunits for function. Even though the human RNase P and MRP RNAs were previously characterized, the protein composition of the particles remains unknown. We have identified a human a Caenorhabditis elegans sequence showing homology to yPop1, a protein subunit of the yeast RNase P and MRP particles. A cDNA containing the complete coding sequence for the human protein, hPop1, was cloned. Sequence analysis identifies three novel sequence motifs, conserved between the human, C. elegans and yeast proteins. Affinity-purified anti-hPop1 antibodies recognize a single 115 kDa protein in HeLa cell nuclear extracts. Immunoprecipitations with different anti-hPop1 antibodies demonstrate an association of hPop1 with the vast majority of the RNase P and MRP RNAs in HeLa cell nuclear extracts. Additionally, anti-hPop1 immunoprecipitates possess RNase P enzymatic activity. These results establish hPop1 as the first identified RNase P and MRP protein subunit from humans. Anti-hPop1 antibodies generate a strong nucleolar and a weaker homogeneous nuclear staining in HeLa cells. A certain class of autoimmune patient serum precipitates in vitro-translated hPop1. hPop1 is therefore an autoantigen in patients suffering from connective tissue diseases.  相似文献   

5.
Eukaryotic mRNAs exist in vivo as ribonucleoprotein particles (mRNPs). The protein components of mRNPs have important functions in mRNA metabolism, including effects on subcellular localization, translational efficiency and mRNA half-life. There is accumulating evidence that pre-mRNA splicing can alter mRNP structure and thereby affect downstream mRNA metabolism. Here, we report that the spliceosome stably deposits several proteins on mRNAs, probably as a single complex of approximately 335 kDa. This complex protects 8 nucleotides of mRNA from complete RNase digestion at a conserved position 20-24 nucleotides upstream of exon-exon junctions. Splicing-dependent RNase protection of this region was observed in both HeLa cell nuclear extracts and Xenopus laevis oocyte nuclei. Immunoprecipitations revealed that five components of the complex are the splicing-associated factors SRm160, DEK and RNPS1, the mRNA-associated shuttling protein Y14 and the mRNA export factor REF. Possible functions for this complex in nucleocytoplasmic transport of spliced mRNA, as well as the nonsense-mediated mRNA decay pathway, are discussed.  相似文献   

6.
In the past decade, important advances have been made in our knowledge of the composition of human RNase MRP and RNase P complexes. Both ribonucleoprotein particles function as endonucleases and contain RNA components that are structurally related. RNase MRP has been suggested to be involved in the processing of precursor rRNA; RNase P, in the maturation of tRNA. Here we give an overview of current data on the structure and function of human RNase MRP and RNase P particles, with emphasis on their molecular composition. At present, seven protein subunits, probably all associated with both ribonucleoprotein particles, have been isolated and their corresponding cDNAs cloned. Although no known structural motifs can be identified in the amino acid sequences of these proteins, the majority is clearly rich in basic residues. For two protein subunits, a cluster of basic amino acids have been shown to be involved in nucleolar accumulation, whereas another protein, which lacks such a region, probably enters the nucleolus by way of a piggyback mechanism. The binding regions for several of the protein subunits on the RNA have been identified, and the data have been used to create a putative structural model for the RNase MRP particle. The rather obscure situation concerning the association of the autoantigenic Th-40 protein and its possible relationship with one of the subunits, Rpp38, is discussed.  相似文献   

7.
We have isolated suppressors of the temperature-sensitive rRNA processing mutation rrp2-2 in Saccharomyces cerevisiae. A class of extragenic suppressors was mapped to the YBR257w reading frame in the right arm of Chromosome II. Characterization of this gene, renamed POP4, shows that the gene product is necessary both for normal 5.8S rRNA processing and for processing of tRNA. Immunoprecipitation studies indicate that Pop4p is associated with both RNase MRP and RNase P. The protein is also required for accumulation of RNA from each of the two ribonucleoprotein particles.  相似文献   

8.
Derivatives of ribonuclease A (RNase A) with modifications in positions 1 and/or 7 were prepared by subtilisin-catalyzed semisynthesis starting from synthetic RNase 1-20 peptides and S-protein (RNase 21-124). The lysyl residue at position 1 was replaced by alanine, whereas Lys-7 was replaced by cysteine that was specifically modified prior to semisynthesis. The enzymes obtained were characterized by protein chemical methods and were active toward uridylyl-3',5'-adenosine and yeast RNA. When Lys-7 was replaced by S-methyl-cysteine or S-carboxamido-contrast, the catalytic properties were only slightly altered. The dissociation constant for the RNase A-RI complex increased from 74 fM (RNase A) to 4.5 pM (Lys-1, Cys-7-methyl RNase), corresponding to a decrease in binding energy of 10 kJ mol-1. Modifications that introduced a positive charge in position 7 (S-aminoethyl- or S-ethylpyridyl-cysteine) led to much smaller losses. The replacement of Lys-1 resulted in a 4-kJ mol-1 loss in binding energy. S-protein bound to RI with Ki = 63.4 pM, 800-fold weaker than RNase A. This corresponded to a 16-kJ mol-1 difference in binding energy. The results show that the N-terminal portion of RNase A contributes significantly to binding of ribonuclease inhibitor and that ionic interactions of Lys-7 and to a smaller extent of Lys-1 provide most of the binding energy.  相似文献   

9.
The 2'-5' oligoadenylate (2-5A)/RNase L pathway is one of the enzymatic pathways induced by interferon. RNase L is a latent endoribonuclease which is activated by 2-5A and inhibited by a specific protein known as RLI (RNase L inhibitor). This system has an important role in regulating viral infection. Additionally, variations in RNase L activity have been observed during cell growth and differentiation but the significance of the 2-5A/RNase L/RLI pathway in these latter processes is not known. To determine the roles of RNase L and RLI in muscle differentiation, C2 mouse myoblasts were transfected with sense and antisense RLI cDNA constructs. Importantly, the overexpression of RLI in C2 cells was associated with diminished RNase L activity, an increased level of MyoD mRNA, and accelerated kinetics of muscle differentiation. Inversely, transfection of the RLI antisense construct was associated with increased RNase L activity, a diminished level of MyoD mRNA, and delayed differentiation. In agreement with these data, MyoD mRNA levels were also decreased in C2 cells transfected with an inducible RNase L construct. The effect of RNase L activity on MyoD mRNA levels was relatively specific because expression of several other mRNAs was not altered in C2 transfectants. Therefore, RNase L is directly involved in myoblast differentiation, probably through its role in regulating MyoD stability. This is the first identification of a potential mRNA target for RNase L.  相似文献   

10.
Pyrimidine-specific ribonucleases are a superfamily of structurally related enzymes with distinct catalytic and biological properties. We used a combination of enzymatic and non-enzymatic assays to investigate the release of such enzymes by isolated cells in serum-free and serum-containing media. We found that human endothelial cells typically expressed large amounts of a pancreatic-type RNase that is related to, if not identical to, human pancreatic RNase. This enzyme exhibits pyrimidine-specific catalytic activity, with a marked preference for poly(C) substrate over poly(U) substrate. It was potently inhibited by placental RNase inhibitor, the selective pancreatic-type RNase inhibitor Inhibit-Ace, and a polyclonal antibody against human pancreatic RNase. The enzyme isolated from medium conditioned by immortalized umbilical vein endothelial cells (EA.hy926) possesses an amino-terminal sequence identical to that of pancreatic RNase, and shows molecular heterogeneity (molecular weights 18,000-26,000) due to different degrees of N-glycosylation. Endothelial cells from arteries, veins, and capillaries secreted up to 100 ng of this RNase daily per million cells, whereas levels were low or undetectable in media conditioned by other cell types examined. The corresponding messenger RNA was detected by RT-PCR in most cell types tested so far, and level of its expression was in keeping with the amounts of protein. The selective strong release of pancreatic-type RNase by endothelial cells suggests that it is endowed with non-digestive functions and involved in vascular homeostasis.  相似文献   

11.
RNase MRP cleaves the yeast pre-rRNA at a site in internal transcribed spacer 1 (ITS1) and this cleavage can be reproducedin vitro by the highly purified enzyme. Two protein components (Pop1p and Pop2p) have been identified which are common to yeast RNase MRP and RNase P. Moreover, purified RNase P can also cleave the pre-rRNA substratein vitro, underlining the similarities between these particles. Genetic evidence suggests that RNase MRP functionally interacts with the snoRNPs which are required for other pre-rRNA processing reactions.Abbreviations pre-rRNA ribosomal RNA precursor - snoRNA small nucleolar RNA - snoRNP small nucleolar ribonucleoprotein particle  相似文献   

12.
RNase MRP is a ribonucleoprotein particle involved in the processing of pre-rRNA. The RNase MRP particle is structurally highly related to the RNase P particle, which is involved in pre-tRNA processing. Their RNA components fold into a similar secondary structure and they share several protein subunits. We have identified and characterised human and mouse cDNAs that encode proteins homologous to yPop4p, a protein subunit of both the yeast RNase MRP and RNase P complexes. The human Pop4 cDNA encodes a highly basic protein of 220 amino acids. Transfection experiments with epitope-tagged hPop4 protein indicated that hPop4 is localised in the nucleus and accumulates in the nucleolus. Immunoprecipitation assays using extracts from transfected cells expressing epitope-tagged hPop4 revealed that this protein is associated with both the human RNase MRP and RNase P particles. Polyclonal rabbit antibodies raised against recombinant hPop4 recognised a 30 kDa protein in total HeLa cell extracts and specifically co-immunoprecipitated the RNA components of the RNase MRP and RNase P complexes. Finally we showed that anti-hPop4 immunoprecipitates possess RNase P enzymatic activity. Taken together, these data show that we have identified a protein that represents the human counterpart of the yeast Pop4p protein.  相似文献   

13.
Members of the Argonaute (Ago) protein family associate with small RNAs and have important roles in RNA silencing. Here, we analysed Ago1- and Ago2-containing protein complexes in human cells. Separation of Ago-associated messenger ribonucleoproteins (mRNPs) showed that Ago1 and Ago2 reside in three complexes with distinct Dicer and RNA-induced silencing complex activities. A comprehensive proteomic analysis of Ago-containing mRNPs identified a large number of proteins involved in RNA metabolism. By using co-immunoprecipitation experiments followed by RNase treatment, we biochemically mapped interactions within Ago mRNPs. Using reporter assays and knockdown experiments, we showed that the putative RNA-binding protein RBM4 is required for microRNA-guided gene regulation.  相似文献   

14.
There have been some attempts to develop immunotoxins utilizing human RNase as a cytotoxic domain of antitumor agents. We have recently shown that only human RNase 3 (eosinophil cationic protein, ECP) among five human pancreatic-type RNases excels in binding to the cell surface and has a growth inhibition effect on several cancer cell lines, even though the RNase activity of RNase 3 is completely inhibited by the ubiquitously expressed cytosolic RNase inhibitor. This phenomenon may be explained by that RNase 3 is very stable against proteolytic degradation because RNase 3 internalized through endocytosis could have a longer life time in the cytosol, resulting in the accumulation of enough of it to exceed the concentration of RNase inhibitor, which allows the degradation of cytosolic RNA molecules. Thus, we compared the stabilities of human pancreatic-type RNases (RNases 1-5) and bovine RNase A by means of guanidium chloride-induced denaturation experiments based on the assumption of a two-state transition for unfolding. It was demonstrated that RNase 3 is extraordinarily stabler than either RNase A or the other human RNases (by more than 25 kJ/mol). Thus, our data suggest that in addition to its specific affinity for certain cancer cell lines, the stability of RNase 3 contributes to its unique cytotoxic effect and that it is important to stabilize a human RNase moiety through protein engineering for the design of human RNase-based immunotoxins.  相似文献   

15.
Angiogenin is a 14.4-kDa human plasma protein with 65% homology to RNase A that retains the key active site residues and three of the four RNase A disulfide bonds. We demonstrate that recombinant angiogenin functions as a cytotoxic tRNA-specific RNase in cell-free lysates and when injected into Xenopus oocytes. Inhibition of protein synthesis by angiogenin correlates with degradation of endogenous oocyte tRNA. Exogenous, radiolabeled tRNA is also hydrolyzed by angiogenin, whereas oocyte rRNA and mRNA are not detectably degraded by angiogenin. Protein synthesis was restored to angiogenin-injected oocytes by injecting the RNase inhibitor RNasin plus total Xenopus or calf liver tRNAs, thereby demonstrating that the tRNA degradation induced by angiogenin was the sole cause of cytotoxicity. A similar tRNA-reversible inhibition of protein synthesis was seen in rabbit reticulocyte lysates. Angiogenin therefore appears to be a specific cellular tRNase, whereas five homologues in the RNase A superfamily lack angiogenin's specificity for tRNA. One of these homologues purified from human eosinophils, eosinophil-derived neurotoxin, nonspecifically degrades oocyte RNA similar to RNase A and is also cytotoxic at very low concentrations.  相似文献   

16.
Purification and analysis of murine 2-5A-dependent RNase   总被引:6,自引:0,他引:6  
2-5A-dependent RNase (RNase L, RNase F) is an enzyme which mediates effects of 2-5A (px(A2'p)nA; x = 2 or 3, n greater than or equal to 2) in cells. 2-5A binding activity present in mouse liver extracts was measured using a 32P-labeled 2-5A derivative. Analysis of Scatchard plots was consistent with a single noninteracting 2-5A binding site with a Ka of 2.5 X 10(10) M-1. Similarly, affinity labeling of proteins with a 32P-labeled 2-5A derivative revealed a single, high-affinity 2-5A-binding protein of Mr 80,000. This 2-5A-binding protein was the only mouse liver protein specifically and consistently eluted by 2-5A from an affinity resin consisting of core(2-5A) covalently attached to cellulose. The 2-5A-eluted protein could degrade polyuridylic acid but not polycytidylic acid. Furthermore, when the 2-5A-eluted protein was electrophoresed into a polyuridylic acid-containing, nondenaturing gel, a band of degraded polyuridylic acid was demonstrated after incubation with 2-5A. There was no band of degraded polyuridylic acid when the elution was performed either in the absence of oligonucleotide or in the presence of low amounts of a closely related analog of 2-5A, p3I2'pA2'pA. Therefore, the Mr 80,000 2-5A-binding protein and the 2-5A-dependent RNase were almost certainly the same protein. Finally, the Mr 80,000 2-5A-binding protein was purified to homogeneity by electroelution from a polyacrylamide gel.  相似文献   

17.
A novel protein family, designated hereafter as RNase kappa (kappa) family, has been recently introduced with the characterization of the specific Cc RNase, isolated from the insect Ceratitis capitata. The human ortholog of this family consists of 98 amino acids and shares > 98% identity with its mammalian counterparts. This RNase is encoded by a single-copy gene found to be expressed in a wide spectrum of normal and cancer tissues. The cDNA of the human ribonuclease has been isolated and subcloned into a variety of prokaryotic expression vectors, but most efforts to express it caused a severe toxic effect. On the other hand, the expression of the human RNase by the use of the methylotrophic yeast Pichia pastoris system resulted in the production of a highly active recombinant enzyme. Using a 30-mer 5'-end-labeled RNA probe as substrate, the purified enzyme seems to preferentially cleave ApU and ApG phosphodiester bonds, while it hydrolyzes UpU bonds at a lower rate. Based on amino acid sequence alignment and substrate specificity data, as well as the complete resistance of the recombinant protein to the placental ribonuclease inhibitor, we concluded that the human RNase kappa is a novel endoribonuclease distinct from other known ribonucleases.  相似文献   

18.
Fertilization of sea urchin eggs results in a large increase in the rate of protein synthesis which is mediated by the translation of stored maternal mRNA. The masked message hypothesis suggests that messenger ribonucleoprotein particles (mRNPs) from unfertilized eggs are translationally inactive and that fertilization results in alterations of the mRNPs such that they become translationally active. Previous workers have isolated egg mRNPs by sucrose gradient centrifugation and have assayed their translational activity in heterologous cell-free systems. The conflicting results they obtained are probably due to the sensitivity of mRNPs to artifactual activation and inactivation. Previously, we demonstrated that unfractionated mRNPs in a sea urchin cell-free translation system were translationally inactive. Now, using large-pore gel filtration chromatography, we partially purified egg mRNPs while retaining their translationally repressed state. Polysomal mRNPs from fertilized eggs isolated under the same conditions were translationally active. The changes in the pattern of proteins synthesized by fractionated unfertilized and fertilized mRNPs in vitro were similar to those changes observed in vivo. Treatment of egg mRNPs with buffers containing high salt and EDTA, followed by rechromatography, resulted in the activation of the mRNPs and the release of an inhibitor of translation from the mRNPs. Analysis of the inhibitory fraction on one-dimensional sodium dodecyl sulfate gels indicated that this fraction contains a complex set of proteins, several of which were released from high-salt-EDTA-activated mRNPs and not from inactive low-salt control mRNPs. One of the released proteins may be responsible for the repression of egg mRNPs in vitro and be involved in the unmasking of mRNPs at fertilization.  相似文献   

19.
RNase S is a unique protein comprising the non-covalent association of two components, the S-peptide and the S-protein. An RNA-recognition segment derived from the human immunodeficiency virus (HIV)-1 Rev protein was conjugated with the S-peptide to form a complex with the S-protein. The resulting RNase S bearing the RNA-recognition segment preferentially hydrolyzed a single position of the RNA stem-loop derived from the specific binding site for the Rev protein.  相似文献   

20.
Specific RNase isoenzymes in the human central nervous system   总被引:2,自引:0,他引:2  
After inactivation of RNase inhibitor by parachloromercuribenzoate, total alkaline RNase activity was found to be two fold higher in white matter as in grey matter extracts from human brain tissue. This activity was lower in human purified myelin. Two human cerebrospinal fluid (CSF) RNase isoenzymes of group 3 (a minor one, RNase 3.1, and a major one, RNase 3.2) were found to be present in human grey and white matter extracts and in purified myelin, but absent in human serum, peripheral nerve, liver, and spleen extracts. A RNase isoenzyme similar to central nervous system (CNS) RNase 3.2 was present in human kidney extracts but it differed in its carbohydrate structure. RNase isoenzymes 3.1 and 3.2 were not found in mouse, rat, and bovine brains. Thus, RNases 3.1 and 3.2 seem specific to human CNS. RNases of group 3 are the predominant RNase isoenzymes in CSF and one of the two predominant RNase groups in brain tissue. However, the proportion of RNases of group 3 is different in CSF and in brain extracts: RNases 3.1-3.2 are the major constituents of group 3 RNases in brain tissue, while another RNase isoenzyme of group 3, RNase 3.0, which is more glycosylated than RNases 3.1-3.2, is only a minor part of RNase of group 3 in brain extracts. Conversely, RNases 3.1-3.2 are lower or equivalent to RNase 3.0 in control CSF since the ratio of RNases 3.1-3.2 to RNase 3.0 did not exceed 1.0. This ratio decreased in pathological CSF including multiple sclerosis or infectious CNS diseases that were free of transudation phenomena. In conclusion, CSF RNases 3.1-3.2 seem to originate in brain tissue and could be markers of RNA catabolism from brain cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号