首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Barley endosperm begins development as a syncytium where numerous nuclei line the perimeter of a large vacuolated central cell. Between 3 and 6 days after pollination (DAP) the multinucleate syncytium is cellularized by the centripetal synthesis of cell walls at the interfaces of nuclear cytoplasmic domains between individual nuclei. Here we report the temporal and spatial appearance of key polysaccharides in the cell walls of early developing endosperm of barley, prior to aleurone differentiation. Flowering spikes of barley plants grown under controlled glasshouse conditions were hand-pollinated and the developing grains collected from 3 to 8 DAP. Barley endosperm development was followed at the light and electron microscope levels with monoclonal antibodies specific for (1→3)-β-d-glucan (callose), (1→3,1→4)-β-d-glucan, hetero-(1→4)-β-d-mannans, arabino-(1→4)-β-d-xylans, arabinogalactan-proteins (AGPs) and with the enzyme, cellobiohydrolase II, to detect (1→4)-β-d-glucan (cellulose). Callose and cellulose were present in the first formed cell walls between 3 and 4 DAP. However, the presence of callose in the endosperm walls was transient and at 6 DAP was only detected in collars surrounding plasmodesmata. (1→3,1→4)-β-d-Glucan was not deposited in the developing cell walls until approximately 5 DAP and hetero-(1→4)-β-d-mannans followed at 6 DAP. Deposition of AGPs and arabinoxylan in the wall began at 7 and 8 DAP, respectively. For arabinoxylans, there is a possibility that they are deposited earlier in a highly substituted form that is inaccessible to the antibody. Arabinoxylan and heteromannan were also detected in Golgi and associated vesicles in the cytoplasm. In contrast, (1→3,1→4)-β-d-glucan was not detected in the cytoplasm in endosperm cells; similar results were obtained for coleoptile and suspension cultured cells.  相似文献   

2.
A novel transglycosylation reaction from sucrose to l-ascorbic acid by a recombinant sucrose phosphorylase from Bifidobacterium longum was used to produce a stable l-ascorbic acid derivative. The major product was detected by HPLC, and confirmed to be 2-O-α-d-glucopyranosyl-l-ascorbic acid by LC-MS/MS analysis.  相似文献   

3.
α-l-Arabinofuranosidase, α- and β-d-xylosidase, and β-d-glucosidase activity was detected in the soluble fraction (S-F) extracted with water and in the NaCl-released fraction (NaCl-F) extracted with a high-salt concentration buffer from apple callus cultures. The activity was found to be differentially modulated by the addition of various plant growth regulators (PGRs) to calluses that had lost their requirement for specific PGRs (“habituation” phenomenon). α-l-Arabinofuranosidase activity was 93%, 130%, 126% and 186% higher in the NaCl-F from IAA-, IBA-, ABA- and GA3-treated callus than in that extracted from untreated callus while S-F α-l-arabinofuranosidase activity was only 71%, 24%, 55% and 66% higher, respectively. α-d-Xylosidase displayed low activity levels in both S-F and NaCl-F but 2iP-treated callus showed higher α-d-xylosidase activity in both fractions than the control. 2,4-D increased α-d-xylosidase activity by 110% in the NaCl-F but decreased it by 40% in the S-F. β-d-Xylosidase activity increased by 99% in S-F from 2iP-treated callus but slightly decreased in the NaCl-F. In GA3-treated callus, NaCl-F β-d-xylosidase activity increased by 188%. S-F and NaCl-F from Picloram-treated callus showed undetectable or only slightly noticeable α-l-arabinofuranosidase, α-d-xylosidase and β-d-xylosidase activity. Interestingly, β-d-glucosidase activity rose 28-fold in the S-F extracted from Picloram-treated callus. β-d-glucosidase was the only enzyme assayed that greatly increased its NaCl-F activity after 10 subcultures, and the addition of any PGR to the callus culture –except for Picloram and ABA– decreased its activity, suggesting that this enzyme may be associated with certain stress conditions, such as PGR starvation or Picloram addition. This is the first report on glycoside hydrolases from fruit callus as modulated by different PGRs.  相似文献   

4.
Corynebacterium glutamicum R was metabolically engineered to broaden its sugar utilization range to d-xylose and d-cellobiose contained in lignocellulose hydrolysates. The resultant recombinants expressed Escherichia coli xylA and xylB genes, encoding d-xylose isomerase and xylulokinase, respectively, for d-xylose utilization and expressed C. glutamicum R bglF 317A and bglA genes, encoding phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) β-glucoside-specific enzyme IIBCA component and phospho-β-glucosidase, respectively, for d-cellobiose utilization. The genes were fused to the non-essential genomic regions distributed around the C. glutamicum R chromosome and were under the control of their respective constitutive promoter trc and tac that permitted their expression even in the presence of d-glucose. The enzyme activities of resulting recombinants increased with the increase in the number of respective integrated genes. Maximal sugar utilization was realized with strain X5C1 harboring five xylA–xylB clusters and one bglF 317A bglA cluster. In both d-cellobiose and d-xylose utilization, the sugar consumption rates by genomic DNA-integrated strain were faster than those by plasmid-bearing strain, respectively. In mineral medium containing 40 g l−1 d-glucose, 20 g l−1 d-xylose, and 10 g l−1 d-cellobiose, strain X5C1 simultaneously and completely consumed these sugars within 12 h and produced predominantly lactic and succinic acids under growth-arrested conditions.  相似文献   

5.
An open reading frame encoding a putative bi-functional β-d-xylosidase/α-l-arabinosidase (Sso3032) was identified on the genome sequence of Sulfolobus solfataricus P2, the predicted gene product showing high amino-acid sequence similarity to bacterial and eukaryal individual β-d-xylosidases and α-l-arabinosidases as well as bi-functional enzymes such as the protein from Thermoanaerobacter ethanolicus and barley. The sequence was PCR amplified from genomic DNA of S. solfataricus P2 and heterologous gene expression obtained in Escherichia coli, under optimal conditions for overproduction. Specific assays performed at 75°C revealed the presence in the transformed E. coli cell extracts of this archaeal activity involved in sugar hydrolysis and specific for both substrates. The recombinant protein was purified by thermal precipitation of the host proteins and ethanol fractionation and other properties, such as high thermal activity and thermostability could be determined. The protein showed a homo-tetrameric structure with a subunit of molecular mass of 82.0 kDa which was in perfect agreement with that deduced from the cloned gene. Northern blot analysis of the xarS gene indicates that it is specifically induced by xylan and repressed by monosaccharides like d-glucose and l-arabinose.  相似文献   

6.
Plant Growth Inhibitory Compounds from Aqueous Leachate of Wheat Straw   总被引:3,自引:0,他引:3  
When seedlings of lettuce, cress, rice and wheat were incubated with the leachate of wheat straw, the roots growth of lettuce and garden cress were particularly inhibited. The leachate of wheat straw (100 g eq./l) showed 80.5 and 79.4% inhibition for lettuce and cress roots, respectively. The inhibitory activity was stronger as the concentration of wheat straw leachate was greater. This result indicates that allelochemical(s) inhibiting the roots growth of lettuce and cress are leached from the wheat straw into the water. Two potent compounds were isolated from the leachate of the wheat straw and identified as syringoylglycerol 9-O-β-d-glucopyranoside and l-tryptophan by spectral analyses. Syringoylglycerol 9-O-β-d-glucopyranoside inhibited the roots growth of lettuce and cress at concentrations greater than 0.1 and 10.0 μM, respectively. On the other hand, l-tryptophan inhibited the roots growth of lettuce and cress at concentrations greater than 0.1 and 1.0 μM, respectively. The content of syringoylglycerol 9-O-β-d-glucopyranoside and l-tryptophan in the leachate of wheat straw (100 g eq./l) was 18.4 ± 0.7 and 6.2 ± 0.6 μM, respectively. Syringoylglycerol 9-O-β-d-glucopyranoside (18.4 μM) showed 21.5 and 13.5% inhibition in the lettuce and cress roots assay, respectively. On the other hand, 6.2 μM of l-tryptophan showed 47.5 and 35.0% inhibition in the lettuce and cress roots assay, respectively. These results suggested that l-tryptophan may be a major contributor to the allelopathy in aqueous leachate of wheat straw and syringoylglycerol 9-O-β-d-glucopyranoside may be a minor contributor.  相似文献   

7.
Summary A cluster of three genes involved in d-xylose catabolism (viz. xylose genes) in Lactobacillus pentosus has been cloned in Escherichia coli and characterized by nucleotide sequence analysis. The deduced gene products show considerable sequence similarity to a repressor protein involved in the regulation of expression of xylose genes in Bacillus subtilis (58%), to E. coli and B. subtilis d-xylose isomerase (68% and 77%, respectively), and to E. coli d-xylulose kinase (58%). The cloned genes represent functional xylose genes since they are able to complement the inability of a L. casei strain to ferment d-xylose. NMR analysis confirmed that 13C-xylose was converted into 13C-acetate in L. casei cells transformed with L. pentosus xylose genes but not in untransformed L. casei cells. Comparison with the aligned amino acid sequences of d-xylose isomerases of different bacteria suggests that L. pentosus d-xylose isomerase belongs to the same similarity group as B. subtilis and E. coli d-xylose isomerase and not to a second similarity group comprising d-xylose isomerases of Streptomyces violaceoniger, Ampullariella sp. and Actinoplanes. The organization of the L. pentosus xylose genes, 5-xylR (1167 bp, repressor) — xylA (1350 bp, D-xylose isomerase) — xylB (1506 bp, d-xylulose kinase) — 3 is similar to that in B. subtilis. In contrast to B. subtilis xylR, L. pentosus xylR is transcribed in the same direction as xylA and xylB.  相似文献   

8.
In groundwater subsurface deposits and a topsoil from five aquifers having 2,6-dichlorobenzamide (BAM) in water, we determined the most-probable-number (MPN) of 2,6-dichlorobenzonitrile (dichlobenil) and metabolite BAM degrading microorganisms. Dichlobenil and BAM were combined nitrogen sources in the MPN tubes, which were scored positive at concentrations <75% after 1 month incubation. Aerobic and anaerobic microbes degrading dichlobenil and BAM were common in samples in low numbers of 3.6–210 MPN g dw−1. Additional degradation occurred in high MPN dilutions of some samples, the microbial numbers being 0.11–120 × 105 MPN g dw−1. The strains were isolated from low and high dilutions of one deposit, and degradation in pure cultures was confirmed by HPLC. According to the 16S rDNA sequencing, strains were from genera Zoogloea, Pseudomonas, Xanthomonas, Rhodococcus, Nocardioides, Sphingomonas, and Ralstonia. Dichlobenil (45.5 ± 18.3%) and BAM (37.6 ± 14%) degradation was low in the MPN tubes. Despite of microbial BAM degradation activity in subsurface deposits, BAM was measured from groundwater.  相似文献   

9.
Clostridium sphenoides was grown on glucose in a phosphate-limited medium. Below 80 M phosphate two new products were formed in addition to ethanol, acetate, H2 and CO2: d(-)-1,2-propanediol and d(-)-lactate. These compounds were apparently synthesized via the methylglyoxal by-pass. The activity of the enzymes involvedmethylglyoxal synthase, methylglyoxal reductase, 1,2-propanediol dehydrogenase and glyoxalase-could be demonstrated in cell extracts of C. sphenoides. The formation of 1,2-propanediol from methylglyoxal proceeded via lactaldehyde. The enzyme methylgloxal synthase was inhibited by phosphate. Clostridium glycolicum, C. nexile, C. cellobioparum, C. oroticum and C. indolis did not produce propanediol under the condition of phosphate limitation. The latter two species, however, formed d(-)-lactate.Dedicated to Prof. Dr. G. Drews on the occasion of his 60th birthday  相似文献   

10.
Oh HJ  Kim HJ  Oh DK 《Biotechnology letters》2006,28(3):145-149
Among single-site mutations of l-arabinose isomerase derived from Geobacillus thermodenitrificans, two mutants were produced having the lowest and highest activities of d-tagatose production. Site-directed mutagenesis at these sites showed that the aromatic ring at amino acid 164 and the size of amino acid 475 were important for d-tagatose production. Among double-site mutations, one mutant converted d-galactose into d-tagatose with a yield of 58% whereas the wild type gave 46% d-tagatose conversion after 300 min at 65 °C. Received 31 August 2005; Revisions requested 27 September 2005; Revisions received 8 November 2005; Accepted 8 November 2005  相似文献   

11.
Summary A fluorometric procedure for measuring DNA was used to study growth and metabolic responses of eight cell strains of human foreskin fibroblasts. In preliminary studies this procedure gave more precise specific activity changes inN-acetyl-β-d-glucosaminidase (NAG) than did a protein activity basis, when changes in this enzyme's specific activity were investigated as a function of experimental cell manipulation. When fibroblast growth in eight cell strains was compared in 134 mM d-fructose vs. 13.4 mM glucose-supplemented minimum essential media, a significant increase in cellular DNA (50%) and protein (45%) occurred over an 11-d period. No significant differences in media pH change, lactate production, or carbohydrate uptake occurred on a DNA basis when cell metabolism was compared over the last 24 h of culture in the two media. Cells grown in fructose-containing media tended to show a reduction in NAG specific activity when compared with those grown in glucose-containing media.  相似文献   

12.
Primary neuronal cultures were made from eight-day-old embryonic chick telencephalon. Ten-day-old cultures were used to study the release ofd-[3H]aspartate andl-[3H]glutamate. Thed-[3H]aspartate release was stimulated by increasing potassium concentrations, but it was not calcium dependent. In contrast, the potassium dependentl-[3H]glutamate release was calcium dependent, and furthermorel-[3H]glutamate release was optimal at potassium concentrations<30 mM. The inhibitors of glutamate uptake, dihydrokainate and 1-aminocyclobutane-trans-1,3-dicarboxylic acid (CACB), also referred to as cis-1-aminocyclobutane-1,3-dicarboxylate, were used in the release experiments. Dihydrokainate had no effect on aspartate release, whereas CACB increased both the basal efflux ofd-[3H]aspartate and the potassium evoked release. CACB had no effect on the potassium stimulatedl-glutamate release. We believe thatl-glutamate is released mainly by a vesicular mechanism from the presumably glutamatergic neurons present in our culture.d-aspartate release observed by us, could be mediated by a transporter protein. The cellular origin of this release remains to be assessed.  相似文献   

13.
In this study, we evaluated the levels of airborne biological agents, such as bacteria, fungi, endotoxin, and (1→3)-β-d-glucan in university fish toxicity laboratory every month for one year and assessed the associated environmental factors. A single-stage viable cascade impactor connected with a pump was used for culturable bacteria and fungi. An analysis of airborne endotoxin and (1→3)-β-d-glucan was performed using kinetic Limulus amebocyte lysate assays. Levels of culturable bacteria and fungi were the highest in summer, whereas levels of endotoxin and (1→3)-β-d-glucan were the highest in winter and spring, respectively. Human activity was correlated with culturable bacteria and fungi, and culturable fungi were also associated with culturable bacteria. Although additional studies based on advanced analyzing technology are required, simultaneous sampling with biomarkers of bacteria is required to further elucidate the characteristics of biological agents.  相似文献   

14.
Modulation of different antioxidants, total phenolics, lipid peroxidation, and protease activity as a result of mannose treatment (1%) was studied in leaves of etiolated wheat seedlings. Changes in these biochemicals were monitored up to 96 h after treatment at 24-h intervals. Mannose treatment induced a significant increase in protease activity throughout the scanning period, coupled with a gradual decrease in leaf protein content. Membrane lipid peroxidation (MDA content) was higher at 24 and 72 h after treatment. MDA content remained higher for a longer period due to mannose treatment. During the initial 24 h of mannose treatment, only catalase and total phenolic contents were increased. Catalase activity was down regulated with increasing duration of treatment. On the other hand, peroxidase (POD, APX) activities were initially unaffected but increased with increasing treatment duration. The decreased level of lipid peroxidation at 96 h may be due to detoxification of H2O2 by peroxidases. Superoxide dismutase activity was not affected by mannose treatment. In conclusion, evidence is provided that mannose can modulate the expression of the enzymatic antioxidant defense system in wheat leaves.  相似文献   

15.
16.
Regional levels of cerebral inositol-1-phosphate (Ins1P), an intermediate in phosphoinositide (PI) cycle, were readily detected with a new gas chromatographic (GC) method. GC analysis of trimethylsilyated Ins1P and myo-inositol-2-phosphate with a fused silica capillary SE-30 column and flame ionization detection was linear at picomolar range (pmol/l) with a sensitivity to a level of 2 pmol. Also, inositol monophosphates and glucose-6-phosphate are separated in unstimulated brain tissue. The mean recovery of the method is 98±5.2%. Ins 1P levels were higher in frontal than in caudal regions in control brains. Lithium treatment increased the levels of Ins1P throughout the brain but mostly in frontal brain regions and in the hippocampus. The present GC assay to measure the accumulation of Ins1P, an index for the activity of PI signalling, may be suitable for exploring regional differences in cerebral receptor-coupled PI signalling in vivo.  相似文献   

17.
A β-d-glucan obtained from Aureobasidium pullulans (AP-FBG) exhibits various biological activities: it exhibits antitumour and antiosteoporotic effects and prevents food allergies. An unambiguous structural characterisation of AP-FBG is still awaited. The biological effects of β-d-glucan are known to depend on its primary structures, conformation, and molecular weight. Here, we elucidate the primary structure of AP-FBG by NMR spectroscopy, and evaluate its biological activities. Its structure was shown to comprise a mixture of a 1-3-β-d-glucan backbone with single 1-6-β-d-glucopyranosyl side-branching units every two residues (major structure) and a 1-3-β-d-glucan backbone with single 1-6-β-d-glucopyranosyl side-branching units every three residues (minor structure). Furthermore, this β-d-glucan exhibited immunostimulatory effects such as the accumulation of immune cells and priming effects against enterobacterium. To our knowledge, 1-3-β-glucans like AP-FBG with such a high number of 1-6-β-glucopyranosyl side branching have a unique structure; nevertheless, many 1-3-β-glucans were isolated from various sources, e.g. fungi, bacteria, and plants.  相似文献   

18.
Summary The phosphorylation activities of glucose and levoglucosan (1,6-anhydro-β-d-glucopyranose, LG) were studied in 26 types of LG-assimilating microorganisms isolated from four types of soil in China. The results showed that activities of LG kinase production in most of the yeasts were lower than those of filamentous fungi, and that the highest filamentous fungal activities (0.61 U/mg protein) was approximately twice that of yeast. The filamentous fungi and yeast with highest LG kinase production activity were identified by DNA sequence analysis of 18S or 26S rRNA gene fragments respectively. The identities of them were Alternaria alternata, Eupenicillium javanicum, Aspergillus niger, Penicillium herquei, Cryptococcus laurentii, Cryptococcus flavescens, Cryptococcus luteolus and Rhodotorula aurantiaca, respectively. In addition, the LG kinases from both types of organisms were purified. The effects of temperature and pH on LG kinase activity were also studied. There was very little change in activity between pH 7 to 10 and at temperatures below 30 °C. The apparent K m values for ATP were also similar in different microorganisms, but K m values for LG ranged from 48 to 102 mM.  相似文献   

19.
Somatic embryos were produced in seven cultivars of Exacum affine Balf. using flower buds and peduncles as explants. Flowering plants were produced from five of the cultivars, and no visible mutations were detected. The best medium for callus induction and growth was MS supplemented with 9.0 M 2,4-dichlorophenoxyacetic acid and either zero or 0.089 M BA. Callus suspensions were made by passing the callus through a 100 m sieve. The best embryo regeneration was achieved on growth regulator-free medium. Callus and embryos could be grown in liquid medium.Abbreviations 2,4-d 2,4-dichlorophenoxyacetic acid - BA 6-benzyladenine - SD standard deviation  相似文献   

20.
Summary A d-hydantoinase was expressed in the soluble form by a recombinant E. coli strain, pE-HDT/E. coli BL21 in LB medium. The enzymatic activity of cultured cells reached 5.2–6.5 IU/ml culture at a cell turbidity of 10 at 600 nm. The expressed enzyme was efficiently purified by three steps, ammonium sulfate fractionation, Phenyl-Sepharose hydrophobic interaction chromatography and Sephacryl S-200 size-exclusion chromatography. With the above purification process, the enzyme was purified to more than 95% purity as estimated by SDS-PAGE. The overall recovery of enzymatic activity was 54.4% and the specific activity for substrate dl-hydantoin achieved 48 U/mg. The purified enzyme appeared as a dimer with a molecular mass of 103 kDa, as measured by size-exclusion chromatography. The enzyme was stable from pH 6 to 12 with an optimum pH at 9.5 The optimum temperature of the enzyme was 45 °C and it activity was rapidly lost over 55 °C. Divalent metal ions, including Co2+, Mn2+ and Ni 2+ ions obviously enhanced the enzymatic activity, while Zn2+ ion had a slight inhibitory effect. In addition, the dissociation of purified enzyme into its subunits occurred in the presence of 1 mM Zn2+ ion. The effect of different metal ions on the d-hydantoinase activation/attenuation was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号