首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Affinity chromatography of porcine protease and its zymogen was carried out on immobilized components of specific substrate used for the pepsin determination. For the immobilization of N-acetyl-L-phenylalanine and iodinated derivative of L-tyrosine, divinyl sulfone activated Sepharose was used. Ligands with blocked amino group and free carboxyl one were linked to Sepharose via ethylene diamine spacer using carbodiimide reaction. Conditions of affinity chromatography of porcine pepsin and pepsinogen on the prepared carriers were optimized: the effect of pH, ionic strength and a nature of the buffers used on adsorption of the enzyme and zymogen to an affinity carrier, as well as their elution was studied. The following parameters were taken into consideration: capacity of the prepared affinity matrices, reproducibility of experiments and the enzyme stability. Pepsin was adsorbed to both immobilized ligands at pH 3.5-4.0; for the elution of the enzyme it was necessary to increase ionic strength (up to 0.5 M). For the adsorption of pepsinogen pH 5.2 was found to be optimum, for its desorption, an increase of ionic strength was used.  相似文献   

2.
Concanavalin A was coupled to Sepharose 6B after activation by cyanogen bromide, divinyl sulfone, or glutaraldehyde and its adsorption behavior toward human serum proteins was investigated. The capacity and selectivity of the lectin were influenced markedly by the method used for its immobilization. When coupled to agarose via CNBr, the resulting absorbent showed the highest capacity and the lowest selectivity relative to the other two derivatives. When coupled to agarose via divinyl sulfone, the lectin exhibited high selectivity but its adsorption capacity was significantly reduced. Coupling to agarose via glutaraldehyde gave an absorbent that behaved, in some respects, differently from the other two. The variability in the adsorption behavior of the immobilized concanavalin A is attributed in part to variations in the degree of multipoint attachment of the lectin or its subunits to the agarose matrix. The selectivity increases also with increasing sample load, irrespective of the coupling method used, apparently due to protein-protein displacement.  相似文献   

3.
A micromethod is described for the evaluation of immobilization of sialoglycoconjugates on insoluble supports. Ligands were radioactively labeled in their sialic acid moieties after mild periodate oxidation and borotritide reduction, or in the glycosylamino residue after borotritide reduction of the Schiff's base formed between reducing sialooligosaccharides and β-(p-aminophenyl)-ethylamine. Sephadex G-25, Sepharose 4B, and Cellulose MN 2100 were activated by CNBr or periodate oxidation. The hydrazido derivatives of these supports were prepared using both activation methods, and activated to azido-supports using nitrous acid. Controlled Pore Glass-glycophase activated by periodate oxidation was also studied. The investigation of conditions for the binding of the radioactive ligands was carried out in the microassay using 0.5-ml aliquots of the activated supports. The stability of the bound ligands in dependence on various parameters was investigated using the immobilized radioactive ligands. Multivalent linkages formed between ligand and support gave increased stability to release compared to monovalent attachment, for cyanogen bromide activation. The use of periodate activation yielded ligands with much greater stability even for monovalent linkages.The microassay was used successfully to predict conditions for the batchwise preparation of immobilized ligands.  相似文献   

4.
A beta-D-galactosidase from bovine liver was purified to apparent homogeneity. The major purification step was affinity chromatography on a column of D-galactose attached to a Sepharose support activated with divinyl sulfone. Affinity media prepared by binding ligands to Sepharose activated with cyanogen bromide were unsuitable for purification of the enzyme, even though such media have been used to purify beta-D-galactosidases from other sources. The molecular weight of the denatured enzyme was 67,000. The molecular weight of the native enzyme at pH 7.0 was 68,000, and at pH 4.5 or 5.0, was 141,000. These data suggest that the enzyme has a single, fundamental subunit with a molecular weight of 67,000, and that the enzyme exists as a monomer at pH 7.0, and a dimer at pH 4.5 or 5.0. The Vmax values of the enzyme with p-nitrophenyl beta-D-galactoside, p-nitrophenyl beta-D-fucoside, lactose, and beta-Gal-(1----4)-beta-GlcNAc-1---- OC6H4NO2 -p were 10,204, 11,550, 9,479, and 8,859 nmol/min/mg of protein, respectively, and the Km values for these substrates were 0.08, 14.9, 14.2, and 1.6mM, respectively. D-Galactose, beta-D- galactosylamine , p-aminophenyl 1-thio-beta-D-galactoside, and D- galactono -1,4-lactone were competitive inhibitors of the enzyme, with Ki values of 0.9, 0.6, 0.6, and 0.8mM, respectively. The enzyme catalyzed the transfer of the D-galactosyl group from p-nitrophenyl beta-D-galactoside to D-glucose. The pH optimum of the enzyme was 4.5, and the pI was 4.7.  相似文献   

5.
The present report describes the preparation of modified polysaccharides matrices useful for the synthesis of affinity adsorbents and immobilized proteins. Hydrazido-matrices were synthesized by condensing an excess of the bifunctional reagent, adipic acid dihydrazide, with periodate oxidized cellulose paper, Sephadex, or Sepharose matrices. Ribonucleotide dialdehyde cofactors, glyceraldehyde 3-phosphate, pyridoxal 5'-phosphate and oxidized DNAase B were separately bound to the hydrazido-polymers. Azido-matrices obtained by modification of the hydrazido-derivatives were coupled to specific amino ligands such as amino acids and proteins. Several adsorbents were prepared and used as models for affinity chromatography.  相似文献   

6.
The present report describes the preparation of modified polysaccharides matrices useful for the synthesis of affinity adsorbents and immobilized proteins. Hydrazido-matrices were synthesized by condensing an excess of the bifunctional reagent, adipic acid dihydrazide, with periodate oxidized cellulose paper, Sephadex, or Sepharose matrices. Ribonucleotide dialdehyde cofactors, glyceraldehyde 3-phosphate, pyridoxal 5′-phosphate and oxidized DNAase B were separately bound to the hydrazido-polymers. Azido-matrices obtained by modification of the hydrazido-derivatives were coupled to specific amino ligands such as amino acids and proteins. Several adsorbents were prepared and used as models for affinity chromatography.  相似文献   

7.
Two simple and generally applicable methods of preparation of affinity gels for affinity electrophoresis in agarose and polyacrylamide gels are described. In the first method, amino ligands are coupled to periodate-oxidized agarose gel beads (Sepharose 4B), and homogeneous affinity gels are obtained after mixing the melted substituted beads with either melted agarose solution or with the polymerization mixture used for the preparation of polyacrylamide gels. This type of affinity gel was used for affinity electrophoresis of lectins (immobilized p-aminophenyl glycosides), ribonuclease (immobilized uridine 3′,5′-diphosphate 5′-p-aminophenyl ester), trypsin (immobilized p-aminobenzamidine), and double-stranded phage DNA fragments (immobilized acriflavine). Alternatively, heterogeneous affinity gels are prepared from the suspension of ligand-substituted agarose, dextran, or polyacrylamide gel beads in the polymerization solution normally used for preparation of polyacrylamide electrophoretic gels. This technique was used for affinity electrophoresis of lectins, ribonuclease, and trypsin on affinity gels containing appropriate ligands coupled to the gel beads “activated” by various methods. Applicability of affinity gels prepared by the two methods described above for affinity isoelectric focusing is demonstrated.  相似文献   

8.
The preparation of an affinity sorbent containing immobilized L-glyceryl phosphorylcholine for affinity chromatography of phosphorylcholine-binding proteins from seminal plasma is described. The ligand was coupled either after its maleinylation to poly(acrylamide-allyl amine) copolymer or directly to divinyl sulfone-activated Sepharose. The prepared phosphorylcholine derivative coupled to Sepharose was used for affinity chromatography of phosphorylcholine-binding proteins from bull and boar seminal plasma. Adsorbed proteins were specifically eluted with phosphorylcholine solution. Isolated phosphorylcholine-binding proteins were characterized by SDS electrophoresis and HPLC with reversed phase. Composition of the boar phosphorylcholine-binding fraction obtained by affinity chromatography on immobilized L-glyceryl phosphorylcholine was compared with that eluted from immobilized heparin by the phosphorylcholine solution. No phosphorylcholine-binding proteins were found in human seminal plasma.  相似文献   

9.
Affinity chromatography provides a powerful tool for isolation of carbohydrate-binding proteins. However, the choice of the ligand and spacer has an important impact on effectiveness. The influence of several different ligands on qualitative and quantitative aspects of the purification of two beta-galactoside-specific lectins has been evaluated. Sepharose was modified by coupling four types of neoglycoproteins (galactosylated or lactosylated bovine serum albumin with increasing sugar content) and two naturally occurring asialoglycoproteins at similar densities. Carbohydrate ligands at essentially equal density were made accessible to the lectins by seven commonly used methods. The yield of mistletoe lectin was high when lactosylated neoglycoproteins were used for separation. For these resins the sugar incorporation exceeded 10 sugar groups per protein carrier molecule. The yield was similarly high with the asialoglycoproteins and with lactose; the sugar was coupled to the resin as a p-aminophenyl derivative or by means of divinyl sulfone activation. An epoxy group in linkages of galactose or lactose decreased the binding capacity. A quantitatively similar degree of protein yields was obtained for the beta-galactoside-binding protein of bovine heart, although different proteins were obtained when neoglycoproteins were used as ligand. The nature of the affinity ligand in lectin purification can increase the yield and may also influence the profile of the carbohydrate-binding proteins.  相似文献   

10.
Here we describe a simple affinity purification method for Shiga toxin 2e (Stx2e), a major causative factor of edema disease in swine. Escherichia coli strain MV1184 transformed with the expression plasmid pBSK-Stx2e produced Stx2e when cultivated in CAYE broth containing lincomycin. Stx2e bound to commercial D-galactose gel, containing α-D-galactose immobilized on agarose resin via a divinyl sulfone linker, and was eluted with phosphate-buffered saline containing 4.5 M MgCl2. A small amount of Stx2e bound to another commercial α-galactose-immobilized agarose resin, but not to β-galactose-immobilized resin. In addition, Stx2e bound to thiophilic adsorbent resin containing β-mercaptoethanol immobilized on agarose resin via a divinyl sulfone, and was purified in the same manner as from D-galactose gel, but the Stx2e sample contained some contamination. These results indicate that Stx2e bound to D-galactose gel mainly through the divinyl sulfone group on the resin and to a lesser extent through α-D-galactose. With these methods, the yields of Stx2e and attenuated mutant Stx2e (mStx2e) from 1 L of culture were approximately 36 mg and 27.7 mg, respectively, and the binding capacity of the D-galactose gel and thiophilic adsorbent resin for Stx2e was at least 20 mg per 1 ml of resin. In addition, using chimeric toxins with prototype Stx2 which did not bind to thiophilic adsorbent resin and some types of mutant Stx2e and Stx2 which contained inserted mutations in the B subunits, we found that, at the least, asparagine (amino acid 17 of the B subunits) was associated with Stx2e binding to the divinyl sulfone group. The mStx2e that was isolated exhibited vaccine effects in ICR mice, indicating that these methods are beneficial for large-scale preparation of Stx2e toxoid, which protects swine from edema disease.  相似文献   

11.
A rapid and effective method to specifically isolate the antibodies from human serum was presented based on the fast magnetic separation and specific adsorption of the novel thiophilic magnetic polymer nanospheres, which were synthesized by using miniemulsion copolymerization. After the thiophilic heterocyclic ligands of 2‐mercaptonicotinic acid were first activated via divinyl sulfone, they were immobilized on the surface of these magnetic nanospheres, through which the strong specificity to immunoglobulin G was evidently expressed in the isolation of antibodies from human serum. The mild conditions used in the process, including the physiological pH range, low temperature, and low ion strength, were so favorable for keeping the biological activity of antibodies, which resulted in their bioactivity purity to exceed 99%. The efficient isolation, simplicity process, mild conditions, and the conventional equipments required make this technology so attractive to purify antibodies from human serum. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

12.
Cyclodextrin glucanotransferase is a non-Leloir glycosyltransferase that directly employs the free energy of cleavage of starch to produce cyclodextrins. In presence of appropriate acceptors, this enzyme synthesizes oligosaccharides containing alpha(1-->4) bonds. We have investigated the covalent immobilization of CGTase onto different activated supports. Silica was aminated and further activated with glutaraldehyde. The maximum amount of bound protein was about 4 mg CGTase per gram of support; however, the catalytic efficiency of the immobilized enzyme was lower than 6%. Sepharose 4B activated with cyanogen bromide (CNBr-activated Sepharose) and Sepharose 4B with a spacer arm of 1,6-diaminohexane (EAH Sepharose) were also assayed. These gels react with the amino and carboxylic groups of CGTase, respectively. With CNBr-activated Sepharose, a low percentage of enzyme was bound to the support but with a significant catalytic efficiency (29%). A higher recovery of protein was obtained with EAH Sepharose (62%), but only 2.4% of the initial activity was present in the immobilized biocatalyst. The results were discussed in terms of CGTase structure and mechanism. In addition, the solvent accessibility of amino or carboxylic groups, calculated using the NACCESS software, was considered.  相似文献   

13.
The kinetics of the nucleophilic addition reactions of divinyl sulfone to amino groups of glycine and model proteins was studied in aqueous solution at 30 degrees C. The rate constants for glycine, bovine serum albumin, and alpha 1-casein were (4.84 +/- 0.58) x 10(-1), (2.97 +/- 0.31) x 10(-2), and (2.38 +/- 0.49) x 10(-2) M-1s-1, respectively. Divinyl sulfone was proposed as a cross-linking reagent for the qualitative detection of protein association in solution. The cross-linking capacity of divinyl sulfone was compared to that of 1,3,5-triacryloylhexahydro-s-triazine.  相似文献   

14.
Commercial preparations of trypsin, varying in activity, were immobilized in a cryogel of polyvinyl alcohol, activated by dialdehydes (terephthalic, succinic, or glutaric) or divinyl sulfone. All preparations of the immobilized enzyme exhibited hydrolytic activity and retained stability for 8 months. In an organic solvent environment, specimens of immobilized trypsin catalyzed the synthesis of N-carbobenzoxy-L-phenylalanyl-L-arginyl-L-leucine p-nitroanilide from N-carbobenzoxy-L-phenylalanyl-L-argininine methyl ester (or N-carbobenzoxy-L-phenylalanyl-L-arginine) and L-leucine p-nitroanilide, as well as the formation of N-carbobenzoxy-L-alanyl-L-alanyl-L-arginyl-L-phenylalanine p-nitroanilide from N-carbobenzoxy-L-alanyl-L-alanyl-L-arginine and L-phenylalanine p-nitroanilide. The presence of small amounts of water in organic solvents was prerequisite to the biocatalysts manifesting synthase activity in reactions of peptide bond formation.  相似文献   

15.
Rhizomucor miehei lipase (RML) is greatly hyperactivated (around 20‐ to 25‐fold toward small substrates) in the presence of sucrose laurate. Hyperactivation appears to be an intramolecular process because it is very similar for soluble enzymes and covalently immobilized derivatives. The hyperactivated enzyme was immobilized (in the presence of sucrose laurate) on cyanogen bromide‐activated Sepharose (very mild covalent immobilization through the amino terminal residue), on glyoxyl Sepharose (intense multipoint covalent immobilization through the region with the highest amount of Lys residues), and on different anion exchangers (by multipoint anionic exchange through the region with the highest density of negative charges). Covalent immobilization does not promote the fixation of the hyperactivated enzyme, but immobilization on Sepharose Q retains the hyperactivated enzyme even in the absence of a detergent. The hydrolysis of fish oils by these hyperactivated enzyme derivatives was sevenfold faster than by covalently immobilized derivatives and three and a half times faster than by the enzyme hyperactivated on octyl‐Sepharose. The open structure of the hyperactivated lipase is fairly exposed to the medium, and no steric hindrance should interfere with the hydrolysis of large substrates. These new hyperactivated derivatives seem to be more suitable for hydrolysis of oils by RML immobilized inside porous supports. In addition, the hyperactivated derivatives are fairly stable against heat and organic cosolvents. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

16.
Papain and lipase were immobilized on derivatized Sepharose 4-B. The activated agarose had a binding capacity of 1.2 micronmol amino groups/ml packed agarose or 17 mg proteins/g dry agarose. The immobilized enzyme preparations were tested for the effects of pH of assay, temperature of assay, and substrate concentrations. The effect of 6M urea on the activity of papain was also determined. Soluble forms of the enzymes were used for comparison. Immobilization of the enzymes resulted in slightly different pH and temperature optima for activities. For immobilized papain Km(app) was similar to the one observed with soluble papain. Immobilization of lipase, however, cause a decrease in Km values. The immobilized enzyme preparations were stable when stored at 4 degrees C and pH 7.5 for periods up to eight months. The soluble enzymes lost their activity within 96 hr under similar storage conditions. Immobilized papain did not lose any activity after treatment with 6M urea for 270 min, whereas soluble papain lost 81% of its activity after the urea treatment, indicating that the immobilization of papain imparted structural and conformational stability to this enzyme.  相似文献   

17.
One step purification of chymosin by mixed mode chromatography   总被引:5,自引:0,他引:5  
Mixed mode Sepharose and Perloza bead cellulose matrices were prepared using various chemistries. These matrices contained hydrophobic (aliphatic and/or aromatic) and ionic (carboxylate or alkylamine) groups. Hydrophobic amine ligands were attached to epichlorohydrin activated Sepharose (mixed mode amine matrices). Hexylamine, aminophenylpropanediol and phenylethylamine were the preferred ligands, on the basis of cost and performance. Other mixed mode matrices were produced by incomplete attachment (0-80%) of the same amine ligands to carboxylate matrices. The best results were obtained using unmodified or partially ligand-modified aminocaproic acid Sepharose and Perloza. High ligand densities were used, resulting in high capacity. Furthermore, chymosin was adsorbed at high and low ionic strengths, which reduced sample preparation requirements. Chymosin, essentially homogeneous by electrophoresis, was recovered by a small pH change. The methods described were simple, efficient, inexpensive and provided very good resolution of chymosin from a crude recombinant source. The carboxylate matrices had the best combination of capacity and regeneration properties. The performance of Sepharose and Perloza carboxylate matrices was similar, but higher capacities were found for the latter. Because it is cheaper and can be used at higher flow rates, Perloza should be better suited to large scale application. High capacity chymosin adsorption was found with carboxymethyl ion exchange matrices, but low ionic strength was essential for adsorption and the purity was inferior to that of the mixed mode matrices. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 45-55, 1997.  相似文献   

18.
A non-hydrolyzable phosphonate analogue of phosphatidyl inositol, racemic myo-inosityl-(1)-5-oxa-16-trifluoroacetamidohexadecyl phosphonate, was synthesized. This phosphonate inhibited the activity of phosphatidyl inositol-specific phospholipase C (PI-PLC) from Bacillus cereus with an IC50 of approximately 10 mM. Removal of the trifluoroacetyl blocking group followed by covalent binding of the phosphonate to cyanogen bromide activated Sepharose 4B via the amino group produced an affinity matrix specific for the PI-PLC from B. cereus. This affinity matrix was used to purify the phospholipase C from a complex mixture of proteins in a single step. Competition experiments with myo-inositol in the elution medium indicated that specific binding of the enzyme to the matrix most likely involves the enzyme active site. The inositol phosphonate derivatized matrix was stable over several months in neutral and alkaline media and was used repeatedly without loss of binding capacity. These results show that affinity matrices employing myo-inositol phosphonate ligands are useful for isolation and binding studies of PI-PLC and possibly of other enzymes interacting with phosphoinositides or myo-inositol phosphate derivatives.  相似文献   

19.
Cellulase produced by fungus Trichoderma viride was immobilized on agarose beads (Sepharose 4B) activated by cyanogen bromide and also on activated agarose beads that contained spacer arm (activated CH-Sepharose 4B and Affi-Gel 15). The CMCase activity retained by immobilized cellulase on activated Sepharose containing the spacer tended to be higher than that immobilized without spacer, although the extent of protein immobilization was lower. Also, the higher substrate specificity for cellulase immobilized on beads with spacer was obtained for cellobiose, acid-swollen cellulose, or cellulose powder. The hydrolysis product from their substrates was mainly glucose.  相似文献   

20.
Nitroxide spin labels were attached to CNBr-activated Sepharose 4B directly and through oligoglycines and oo-amino-carboxylic acids of varying length. The homogeneity of the carbohydrate environments of directly attached labels was investigated by measuring dipolar interactions between nitroxides as a function of solvation and of spin dilution with a diamagnetic analogue, as well as by electron exchange between the nitroxides and paramagnetic metal ions in solution. Only the exchange experiment revealed any inhomogeneity, suggesting that a small proportion of sites may be less accessible than the majority. The distances between sites were sufficiently small to allow, in principle, multiple-site interactions between quite small proteins in solution and immobilized ligands. Reorientation of the label at the matrix, characterized by the correlation time t, became more rapid with increasing spacer length n. For n > 12, the decrease in t was less pronounced. The two types of spacer behaved similarly. Thus an ideal spacer length for affinity separations is 12 atoms; this is in good agreement with data from a variety of affinity separations. The results of electron spin resonance studies of the effect of non-aqueous solvent on directly and indirectly labelled Sepharose 4B were used to suggest reasons why enzymes immobilized on Sepharose may be stabilized to denaturing solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号