首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
NanC is an Escherichia coli outer membrane protein involved in sialic acid (Neu5Ac, i.e., N-acetylneuraminic acid) uptake. Expression of the NanC gene is induced and controlled by Neu5Ac. The transport mechanism of Neu5Ac is not known. The structure of NanC was recently solved (PDB code: 2WJQ) and includes a unique arrangement of positively charged (basic) side chains consistent with a role in acidic sugar transport. However, initial functional measurements of NanC failed to find its role in the transport of sialic acids, perhaps because of the ionic conditions used in the experiments. We show here that the ionic conditions generally preferred for measuring the function of outer-membrane porins are not appropriate for NanC. Single channels of NanC at pH 7.0 have: (1) conductance 100 pS to 800 pS in 100 mM KCl to 3 M KCl), (2) anion over cation selectivity (V reversal = +16 mV in 250 mM KCl || 1 M KCl), and (3) two forms of voltage-dependent gating (channel closures above ±200 mV). Single-channel conductance decreases by 50% when HEPES concentration is increased from 100 μM to 100 mM in 250 mM KCl at pH 7.4, consistent with the two HEPES binding sites observed in the crystal structure. Studying alternative buffers, we find that phosphate interferes with the channel conductance. Single-channel conductance decreases by 19% when phosphate concentration is increased from 0 mM to 5 mM in 250 mM KCl at pH 8.0. Surprisingly, TRIS in the baths reacts with Ag|AgCl electrodes, producing artifacts even when the electrodes are on the far side of agar–KCl bridges. A suitable baseline solution for NanC is 250 mM KCl adjusted to pH 7.0 without buffer.  相似文献   

3.
4.
The entry of oligogalacturonates into Dickeya dadantii occurs through the specific channel KdgM. The genome of the bacterium encodes a second member of this family of outer membrane proteins, KdgN. We showed that this protein is also involved in the uptake of oligogalacturonates. When KdgN was reconstituted in proteoliposomes, it formed channels with a conductance of about 450 pS at a positive potential. These channels had weak anionic selectivity. The regulation of kdgN is complex, and five genes controlling the expression of kdgN have been identified: kdgR, pecS, ompR, hns, and crp. Moreover, kdgN was regulated by growth phase but only when bacteria were grown in rich medium. Most of these regulators of kdgN also control kdgM expression, but some of them regulate kdgM in the opposite manner: while PecS and OmpR are repressors of kdgM, they are activators of kdgN. This pattern resembles the regulation of the Escherichia coli general porins OmpF and OmpC, but such opposite regulation of two specific outer membrane channels has never been described before. KdgN may allow the bacteria to collect oligogalacturonates under saprophytic conditions, when virulence genes, including kdgM, are not expressed.  相似文献   

5.
Escherichia coli strains causing urinary tract infection (UTI) are increasingly recognized as belonging to specific clones. E. coli clone O25b:H4-ST131 has recently emerged globally as a leading multi-drug resistant pathogen causing urinary tract and bloodstream infections in hospitals and the community. While most molecular studies to date examine the mechanisms conferring multi-drug resistance in E. coli ST131, relatively little is known about their virulence potential. Here we examined E. coli ST131 clinical isolates from two geographically diverse collections, one representing the major pathogenic lineages causing UTI across the United Kingdom and a second representing UTI isolates from patients presenting at two large hospitals in Australia. We determined a draft genome sequence for one representative isolate, E. coli EC958, which produced CTX-M-15 extended-spectrum β-lactamase, CMY-23 type AmpC cephalosporinase and was resistant to ciprofloxacin. Comparative genome analysis indicated that EC958 encodes virulence genes commonly associated with uropathogenic E. coli (UPEC). The genome sequence of EC958 revealed a transposon insertion in the fimB gene encoding the activator of type 1 fimbriae, an important UPEC bladder colonization factor. We identified the same fimB transposon insertion in 59% of the ST131 UK isolates, as well as 71% of ST131 isolates from Australia, suggesting this mutation is common among E. coli ST131 strains. Insertional inactivation of fimB resulted in a phenotype resembling a slower off-to-on switching for type 1 fimbriae. Type 1 fimbriae expression could still be induced in fimB-null isolates; this correlated strongly with adherence to and invasion of human bladder cells and bladder colonisation in a mouse UTI model. We conclude that E. coli ST131 is a geographically widespread, antibiotic resistant clone that has the capacity to produce numerous virulence factors associated with UTI.  相似文献   

6.
7.
The Escherichia coli gene which encodes N-acetylneuraminic acid aldolase was isolated by the polymerase chain reaction, cloned into the inducible expression vector pTTQ18, and overexpressed in E. coli. The high yield of aldolase was achieved through both optimum growth of cells and efficient expression of the aldolase gene (20-30% soluble cellular protein). The recombinant enzyme was purified to homogeneity with an activity of 1.2-2.2 U/mg, which compared favorably with that of commercial preparations of E. coli aldolase (1.1 U/mg) and Clostridium perfringens aldolase (0.4 U/mg). The cloning strategy, fermentation conditions, purification protocol, and activity assay are described.  相似文献   

8.
Membrane proteins are frequently present in crowded environments, which favour lateral association and, on occasions, two-dimensional crystallization. To better understand the non-specific lateral association of a membrane protein we have characterized the free energy landscape for the dimerization of a bacterial outer membrane protein, NanC, in a phospholipid bilayer membrane. NanC is a member of the KdgM-family of bacterial outer membrane proteins and is responsible for sialic acid transport in E. coli. Umbrella sampling and coarse-grained molecular dynamics were employed to calculate the potentials of mean force (PMF) for a variety of restrained relative orientations of two NanC proteins as the separation of their centres of mass was varied. We found the free energy of dimerization for NanC to be in the range of to . Differences in the depths of the PMFs for the various orientations are related to the shape of the proteins. This was quantified by calculating the lipid-inaccessible buried surface area of the proteins in the region around the minimum of each PMF. The depth of the potential well of the PMF was shown to depend approximately linearly on the buried surface area. We were able to resolve local minima in the restrained PMFs that would not be revealed using conventional umbrella sampling. In particular, these features reflected the local organization of the intervening lipids between the two interacting proteins. Through a comparison with the distribution of lipids around a single freely-diffusing NanC, we were able to predict the location of these restrained local minima for the orientational configuration in which they were most pronounced. Our ability to make this prediction highlights the important role that lipid organization plays in the association of two NanCs in a bilayer.  相似文献   

9.
The gene encoding CMP-N-acetylneuraminic acid (CMP-NeuAc) synthetase (EC 2.7.7.43) in Escherichia coli serotype O7 K1 was isolated and overexpressed in E.coli W3110. Maximum expression of 8-10% of the soluble E.coli protein was achieved by placing the gene with an engineered 5'-terminus and Shine-Dalgarno sequence into a pKK223 vector derivative behind the tac promoter. The overexpressed synthetase was purified to greater than 95% homogeneity in a single step by chromatography on high titre Orange A Matrex dye resin. Enzyme purified by this method was used directly for the synthesis of CMP-NeuAc and derivatives. The enzymatic synthesis of CMP-NeuAc was carried out on a multigram scale using equimolar CTP and N-acetylneuraminic acid as substrates. The resultant CMP-NeuAc, isolated as its disodium salt by ethanol precipitation, was prepared in an overall yield of 94% and was judged to be greater than 95% pure by 1H NMR analysis. N-Carbomethoxyneuraminic acid and N-carbobenzyloxyneuraminic acid were also found to be substrates of the enzyme; 5-azidoneuraminic acid was not a substrate of the enzyme. N-Carbomethoxyneuraminic acid was coupled to CMP at a rate similar to that observed with NeuAc, whereas N-carbobenzyloxyneuraminic acid was coupled greater than 100-fold more slowly. The high level of expression achieved with the E.coli synthetase, together with the high degree of purity readily obtainable from crude cell extracts, make the recombinant bacterial enzyme the preferred catalyst for the enzymatic synthesis of CMP-N-acetylneuraminic acid.  相似文献   

10.
11.
The cryptic gene bglH from the Escherichia coli chromosome was cloned into a tacOP-driven expression vector. The resulting plasmid was transferred into the porin-deficient E. coli strain KS26 and the protein was expressed by addition of IPTG. The BglH protein was localized in the outer membrane. It was purified to homogeneity using standard methods. Reconstitution experiments with lipid bilayer membranes defined BglH as a channel-forming component, i.e. it is an outer membrane porin. The single-channel conductance of BglH (560 pS in 1 M KCl) was only one-third of that of the general diffusion porins of E. coli outer membrane. The presence of carbohydrates in the aqueous phase led to a dose-dependent block of ion transport through the channel, similar to that found for LamB (maltoporin) of E. coli and Salmonella typhimurium, which means that BglH is a porin specific for the uptake of carbohydrates. The binding constants of a variety of different carbohydrates were calculated from titration experiments of the BglH-induced membrane conductance. The tightest binding was observed with the aromatic beta-D-glucosides arbutin and salicin, and with gentibiose and cellobiose. Binding of maltooligosaccharides to BglH was in contrast to their binding to LamB in that it was much weaker, indicating that the binding site of BglH for carbohydrates is different from that of LamB (maltoporin). The kinetics of cellopentaose binding to BglH was investigated using the carbohydrate-induced current noise and was compared with that of cellopentaose binding to LamB (maltoporin) and ScrY (sucroseporin).  相似文献   

12.
Expression of the FimB recombinase, and hence the OFF-to-ON switching of type 1 fimbriation in Escherichia coli, is inhibited by sialic acid (Neu(5)Ac) and by GlcNAc. NanR (Neu(5)Ac-responsive) and NagC (GlcNAc-6P-responsive) activate fimB expression by binding to operators (O(NR) and O(NC1) respectively) located more than 600 bp upstream of the fimB promoter within the large (1.4 kb) nanC-fimB intergenic region. Here it is demonstrated that NagC binding to a second site (O(NC2)), located 212 bp closer to fimB, also controls fimB expression, and that integration host factor (IHF), which binds midway between O(NC1) and O(NC2), facilitates NagC binding to its two operator sites. In contrast, IHF does not enhance the ability of NanR to activate fimB expression in the wild-type background. Neither sequences up to 820 bp upstream of O(NR), nor those 270 bp downstream of O(NC2), are required for activation by NanR and NagC. However, placing the NanR, IHF and NagC binding sites closer to the fimB promoter enhances the ability of the regulators to activate fimB expression. These results support a refined model for how two potentially key indicators of host inflammation, Neu(5)Ac and GlcNAc, regulate type 1 fimbriation.  相似文献   

13.
The ompX gene of Enterobacter aerogenes was cloned. Its overexpression induced a decrease in the major porin Omp36 production and consequently a beta-lactam resistance was noted. Purified outer membrane protein X (OmpX) was reconstituted into artificial membranes and formed ion channels with a conductance of 20 pS in 1 M NaCl and a cationic selectivity. Both MarA expression and high osmolarity induced a noticeable increase of the OmpX synthesis in the E. aerogenes ATCC 13048 strain. In addition, OmpX synthesis increased under conditions in which the expression of the E. aerogenes major non-specific porins, Omp36 and Omp35, decreased.  相似文献   

14.
Escherichia coli K-12 produces both the OmpF and OmpC porins, the relative amounts of which in the outer membrane are affected in a reciprocal manner by the osmolarity of the growth medium. In contrast, E. coli B produces only the OmpF porin, regardless of the medium osmolarity. In this study, it was revealed that there is an extensive deletion within the ompC locus of the E. coli B chromosome. Cloning and nucleotide sequencing of the regulatory gene, ompR , of E. coli B revealed that there are two amino acid alterations (Lys-6 to Asn and Ala-130 to Thr) in the amino acid sequence of the OmpR protein, as compared with that of E. coli K-12. It is suggested that these particular amino acid alterations are responsible for the constitutive expression of the ompF gene observed in E. coli B.  相似文献   

15.
The gene encoding porin protein F of Pseudomonas aeruginosa was cloned onto a cosmid vector into Escherichia coli. Protein F was expressed as the predominant outer membrane protein in a porin-deficient E. coli background and was clearly visible on one-dimensional sodium dodecyl sulfate-polyacrylamide gels in a porin-sufficient background. The identity of the protein F from the E. coli clone and native P. aeruginosa protein F was demonstrated by their identical mobilities on sodium dodecyl sulfate-polyacrylamide gel electrophoretograms, 2-mercaptoethanol modifiabilities, and reactivities with monoclonal antibodies specific of two separate epitopes of protein F. In the course of gene subcloning, a 2-kilobase DNA fragment was isolated, with an apparent truncation of the part of the gene encoding the carboxy terminus of protein F. This subclone produced a 24,000-molecular-weight, outer membrane-associated, truncated protein F derivative which was not 2-mercaptoethanol modifiable and which reacted with only one of the two classes of protein F-specific monoclonal antibodies. The 2-kilobase fragment was used in Southern blot hybridizations to construct a restriction map of the cloned and subcloned fragments and to demonstrate with restriction digests of whole P. aeruginosa DNA that only one copy of the protein F gene was present in the P. aeruginosa chromosome. The protein F produced by the original cosmid clone in a porin-deficient E. coli background was purified. To demonstrate retention of porin function after cloning, the protein F from the E. coli clone was incorporated into black lipid bilayer membranes. Two major classes of channels were revealed. The predominant class of channels had an average conductance of 0.36 nS in 1 M KCl, whereas larger channels (4 to 7 nS) were seen at a lower frequency. Similar channel sizes were observed for porin protein F purified by the same method from P. aeruginosa outer membranes.  相似文献   

16.
After being expressed in Escherichia coli JC5412, which is defective in glutamate transport, a Zymomonas mobilis gene which enabled this strain to grow on glutamate was cloned. This gene encodes a protein with 33% amino acid identity to the leucine-responsive regulatory protein (Lrp) of E. coli. Although overall glutamate uptake in E. coli was increased, the protein encoded by the cloned fragment repressed the secondary H+/glutamate transport system GltP by interaction with the promoter region of the gltP gene. It also repressed the secondary, H(+)-coupled glutamate uptake system of Z. mobilis, indicating that at least one role of this protein in Z. mobilis is to regulate glutamate transport. Consequently, it was designated Grp (for glutamate uptake regulatory protein). When expressed in E. coli, Grp repressed the secondary H+/glutamate transport system GltP by binding to the regulatory regions of the gltP gene. An lrp mutation in E. coli was complemented in trans with respect to the positive expression regulation of ilvIH (coding for acetohydroxy acid synthase III) by a plasmid which carries the grp gene. The expression of grp is autoregulated, and in Z. mobilis, it depends on growth conditions. The putative presence of a homolog of Grp in E. coli is discussed.  相似文献   

17.
18.
Zakharian E  Reusch RN 《FEBS letters》2003,555(2):229-235
The temperature dependence of single-channel conductance and open probability for outer membrane protein A (OmpA) of Escherichia coli were examined in planar lipid bilayers. OmpA formed two interconvertible conductance states, small channels, 36-140 pS, between 15 and 37 degrees C, and large channels, 115-373 pS, between 21 and 39 degrees C. Increasing temperatures had strong effects on open probabilities and on the ratio of large to small channels, particularly between 22 and 34 degrees C, which effected sharp increases in average conductance. The data infer that OmpA is a flexible temperature-sensitive protein that exists as a small pore structure at lower temperatures, but refolds into a large pore at higher temperatures.  相似文献   

19.
20.
R Kaul  M J Duncan  J Guest  W M Wenman 《Gene》1990,87(1):97-103
The major outer membrane protein (MOMP)-encoding gene (omp1) of Chlamydia trachomatis has been cloned into Escherichia coli and partially sequenced. This recombinant gene expresses a full-length 40-kDa product, which is recognized by a monoclonal antibody directed against the species-specific epitope of MOMP. The recombinant omp1 is expressed in either insertion orientation, indicating that it utilizes its own promoter system. The endogenous omp1 promoter possesses a relatively low activity despite the high level of MOMP expression. Deletion of a 520-bp fragment at the 3' end encoding 39 amino acids (aa) at the C terminus and the remainder of the noncoding region leads to a significant decrease in mRNA stability and loss of protein synthesis. When the MOMP-encoding plasmid was introduced into E. coli minicells, it expressed 40- and 43-kDa proteins; however, inhibition of post-translational processing by ethanol revealed only a 43-kDa protein. These data indicate that the unprocessed omp1 gene product contains a 22-aa leader sequence which is cleaved during translocation to the outer membrane, to yield a processed 40-kDa protein. The recombinant MOMP was localized to the outer membrane E. coli fraction, comparable to the location of the native C. trachomatis protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号