首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Harvesting is often size‐selective, and in species with sexual size dimorphism, it may also be sex‐selective. A powerful approach to investigate potential consequences of size‐ and/or sex‐selective harvesting is to simulate it in a demographic population model. We developed a population‐based integral projection model for a size‐ and sex‐structured species, the commonly exploited pike (Esox lucius). The model allows reproductive success to be proportional to body size and potentially limited by both sexes. We ran all harvest simulations with both lower size limits and slot limits, and to quantify the effects of selective harvesting, we calculated sex ratios and the long‐term population growth rate (λ). In addition, we quantified to what degree purely size‐selective harvesting was sex‐selective, and determined when λ shifted from being female to male limited under size‐ and sex‐selective harvesting. We found that purely size‐selective harvest can be sex‐selective, and that it depends on the harvest limits and the size distributions of the sexes. For the size‐ and sex‐selective harvest simulations, λ increased with harvest intensity up to a threshold as females limited reproduction. Beyond this threshold, males became the limiting sex, and λ decreased as more males were harvested. The peak in λ, and the corresponding sex ratio in harvest, varied with both the selectivity and the intensity of the harvest simulation. Our model represents a useful extension of size‐structured population models as it includes both sexes, relaxes the assumption of female dominance, and accounts for size‐dependent fecundity. The consequences of selective harvesting presented here are especially relevant for size‐ and sex‐structured exploited species, such as commercial fisheries. Thus, our model provides a useful contribution toward the development of more sustainable harvesting regimes.  相似文献   

2.
Multi-species models consider interactions, particularly predation, between and within species. Traditional harvest management strategies, such as maximum sustainable yield do not account for these interactions. The exploitation of a single species can be maximised, but this does not mean that the entire ecosystem is being harvested sustainably or at its economic maximum. I present a computational technique (evolutionary algorithms) that can simultaneously optimise harvest management strategies of many species and can easily be modified to allow for factors such as stock recovery, sustainable yields or maximum levels of economic sustainable exploitation. I demonstrate that in an ecologically sustainably managed system where a stock is recovering, maximum economic yield is identical to the maximisation of yield by mass. These findings may have important implications for long term conservation aims and long term profits by fishers.  相似文献   

3.
Marine reserve effects on fishery profit   总被引:1,自引:0,他引:1  
Some studies suggest that fishery yields can be higher with reserves than under conventional management. However, the economic performance of fisheries depends on economic profit, not fish yield. The predictions of higher yields with reserves rely on intensive fishing pressures between reserves; the exorbitant costs of harvesting low-density populations erode profits. We incorporated this effect into a bioeconomic model to evaluate the economic performance of reserve-based management. Our results indicate that reserves can still benefit fisheries, even those targeting species that are expensive to harvest. However, in contrast to studies focused on yield, only a moderate proportion of the coast in reserves (with moderate harvest pressures outside reserves) is required to maximize profit. Furthermore, reserve area and harvest intensity can be traded off with little impact on profits, allowing for management flexibility while still providing higher profit than attainable under conventional management.  相似文献   

4.
The effect of seasonal harvesting on stage-structured population models   总被引:2,自引:0,他引:2  
In most models of population dynamics, increases in population due to birth are assumed to be time-independent, but many species reproduce only during a single period of the year. We propose an exploited single-species model with stage structure for the dynamics in a fish population for which births occur in a single pulse once per time period. Since birth pulse populations are often characterized with a discrete time dynamical system determined by its Poincaré map, we explore the consequences of harvest timing to equilibrium population sizes under seasonal dependence and obtain threshold conditions for their stability, and show that the timing of harvesting has a strong impact on the persistence of the fish population, on the volume of mature fish stock and on the maximum annual-sustainable yield. Moreover, our results imply that the population can sustain much higher harvest rates if the mature fish is removed as early in the season (after the birth pulse) as possible. Further, the effects of harvesting effort and harvest timing on the dynamical complexity are also investigated. Bifurcation diagrams are constructed with the birth rate (or harvesting effort or harvest timing) as the bifurcation parameter, and these are observed to display rich structure, including chaotic bands with periodic windows, pitch-fork and tangent bifurcations, non-unique dynamics (meaning that several attractors coexist) and attractor crisis. This suggests that birth pulse, in effect, provides a natural period or cyclicity that makes the dynamical behavior more complex.This work is supported by National Natural Science Foundation of China (10171106)  相似文献   

5.
Liu et al. (2018) used a virtual species approach to test the effects of outliers on species distribution models. In their simulations, they applied a threshold value over the simulated suitabilities to generate the species distributions, suggesting that using a probabilistic simulation approach would have been more complex and yield the same results. Here, we argue that using a probabilistic approach is not necessarily more complex and may significantly change results. Although the threshold approach may be justified under limited circumstances, the probabilistic approach has multiple advantages. First, it is in line with ecological theory, which largely assumes non‐threshold responses. Second, it is more general, as it includes the threshold as a limiting case. Third, it allows a better separation of the relevant intervening factors that influence model performance. Therefore, we argue that the probabilistic simulation approach should be used as a general standard in virtual species studies.  相似文献   

6.
Sport hunting has provided important economic incentives for conserving large predators since the early 1970''s, but wildlife managers also face substantial pressure to reduce depredation. Sport hunting is an inherently risky strategy for controlling predators as carnivore populations are difficult to monitor and some species show a propensity for infanticide that is exacerbated by removing adult males. Simulation models predict population declines from even moderate levels of hunting in infanticidal species, and harvest data suggest that African countries and U.S. states with the highest intensity of sport hunting have shown the steepest population declines in African lions and cougars over the past 25 yrs. Similar effects in African leopards may have been masked by mesopredator release owing to declines in sympatric lion populations, whereas there is no evidence of overhunting in non-infanticidal populations of American black bears. Effective conservation of these animals will require new harvest strategies and improved monitoring to counter demands for predator control by livestock producers and local communities.  相似文献   

7.
The importance of incorporating traditional ecological knowledge (TEK) and traditional resource management (TRM) into resource management plans is increasingly recognized, but little quantitative data exists on the ecological and economic implications of these systems. We quantitatively evaluate the TEK and TRM associated with the nontimber forest species, Aechmea magdalenae, in indigenous Chinanteco communities in Mexico. Two TRM systems forA. magdalenae are described and their effects on growth rates of individuals and populations are measured. Simulations using matrix population models combined with yield experiments reveal that one management system is higher yielding and less costly than the other. Thinning and transplanting are two of the most important management practices that enable populations to withstand higher rates of harvest than those predicted in a management plan that was not based on TRM. Quantitative evaluation of Chinanteco TEK is used to discuss how it may be best combined with science in management plans for nontimber forest species.  相似文献   

8.
Reptiles have served as an important source of protein for human populations around the world. Exploitation for food is heaviest in the tropical and sub-tropical regions, but also occurs in temperate areas. Of all reptiles, turtles are the most heavily exploited for human consumption. High, unsustainable levels of exploitation for food are directly responsible for the precarious conservation status of many turtles. Crocodilians, snakes, and lizards may be locally important food sources, however, with the exception of a few lizard species, they are exploited in a less intense and generally non-commercial manner for human consumption. In comparison, the commercial skin trade poses a far greater threat to the survival of crocodilians as well as certain large snakes and lizards. Recent field reports have implicated the south east Asian medicinal trade as a growing threat to reptiles, especially turtles and snakes. There are few unequivocal examples of managed harvest programmes for reptiles that are economically and culturally viable, as well as biologically sustainable. Given the economic importance of reptiles as sources of protein and other highly valued commodities, it is imperative that more attention be focused on the development of sustainable use programmes for these species.  相似文献   

9.
Studies on the ecological impacts of non‐timber forest products (NTFP) harvest reveal that plants are often more resilient to fruit and seed harvest than to bark and root harvest. Several studies indicate that sustainable fruit harvesting limits can be set very high (>80% fruit harvesting intensity). For species with clonal and sexual reproduction, understanding how fruit harvest affects clonal reproduction can shed light on the genetic risks and sustainability of NTFP harvest. We studied 18 populations of a gallery forest tree, Pentadesma butyracea (Clusiaceae), to test the impact of fruits harvest, climate and habitat size (gallery forest width) on the frequency of sexual or clonal recruitment in Benin, West Africa. We sampled populations in two ecological regions (Sudanian and Sudano‐Guinean) and in each region, we selected sites with low, moderate and high fruit harvesting intensities. These populations were selected in gallery forests with varying width to sample the natural variation in P. butyracea habitat size. Heavily harvested populations produced significantly less seedlings but had the highest density and proportion of clonal offspring. Our study suggests that for plant species with dual reproductive strategy (via seeds and clonal), fruit harvesting and associated disturbances that come with it can lead to an increase in the proportion of clonal offspring. This raises the issue that excessive fruit harvest by increasing the proportion of clonal offspring to the detriment of seed originated offspring may lead to a reduction in genetic diversity with consequence on harvested species capability to withstand environmental stochasticity.  相似文献   

10.
Theoretical analyses of single‐species models have revealed that the degree of synchrony in fluctuations of geographically separated populations increases with increasing spatial covariation in environmental fluctuations and increased interchange of individuals, but decreases with local strength of density dependence. Here we extend these results to include interspecific competition between two species as well as harvesting. We show that the effects of interspecific competition on the geographical scale of population synchrony are dependent on the pattern of spatial covariation of environmental variables. If the environmental noise is uncorrelated between the competing species, competition generally increases the spatial scale of population synchrony of both species. Otherwise, if the environmental noises are strongly correlated between species, competition generally increases the spatial scale of population synchrony of at least one, but also often of both species. The magnitude of these spatial scaling effects is, however, strongly influenced by the dispersal capacity of the two competing species. If the species are subject to proportional harvesting, this may synchronise population dynamics over large geographical areas, affecting the vulnerability of harvested species to environmental changes. However, the strength of interspecific competition may strongly modify this effect of harvesting on the spatial scale of population synchrony. For example, harvesting of one species may affect the spatial distribution of competing species that are not subject to harvesting. These analytical results provide an important illustration of the importance of applying an ecosystem rather than a single‐species perspective when developing harvest strategies for a sustainable management of exploited species.  相似文献   

11.
Theoretical models have shown that the effect of removing a given proportion of the population can be profoundly different if the harvest takes place late in the season compared to early. We explore the effect of these differences using theoretical models based on the concept of demographic value and empirical data on seasonal patterns of natural mortality risk in two contrasting populations of willow ptarmigan in Norway. Based on the theoretical models, we found that changes in the timing of harvest have a much stronger effect in populations with relatively low annual survival compared to populations characterized by longevity typical for species with slow life histories. Also, the timing of harvest is more influential in cases with constant mortality hazards compared to a situation with density-dependent natural mortality. Empirical data from two study populations of willow ptarmigan showed large deviations from the theoretical predictions of models with both constant and density-dependent mortality hazards. There were also large differences in both the temporal pattern and magnitude of annual survival between the two ptarmigan populations (54 vs 26% annual survival). Site differences illustrate the importance of knowledge of both the magnitude and temporal pattern of natural mortality hazard to be able to correctly predict the effect of changing the timing of harvest in a population. In the two ptarmigan populations, we show how harvest quotas can be adjusted in accordance to the empirical estimates of natural mortality risk and how this determines the effects of shifting from harvesting early to late in the annual cycle.  相似文献   

12.
The overfishing of an increasing number of fish populations has put focus on the need for development of robust sustainable harvest strategies that can be easily implemented. This requires estimates and modelling of the deterministic and stochastic components of the population dynamics as well as an evaluation of the contribution of different harvest strategies to future population fluctuations. Here we present an example of such an approach, using the collapse of Norwegian spring-spawning herring stock as a case. We demonstrate that the collapse probably was due to overfishing, and that the large influence of the environmental stochasticity could only influence the timing of the collapse. We suggest that a proportional threshold strategy with a threshold around 14 billion individuals (4 200 000 tons), combined with a harvest of 30–40% of the individuals above this threshold will give a sustainable yield with little annual variation. The choice of harvest strategy should also be strongly influenced by the uncertainty in the assessment of stock size. When the population stock is estimated with uncertainty, the proportional threshold strategy give a mean annual yield close to the optimum for known population size.  相似文献   

13.
SYNOPSIS. The sustainable use of wild species by local peopleis emerging as an important conservation strategy. The premiseis the economic value of species will justify their own preservationas well as the habitats they occupy. However, the lack of naturalhistory and demographic information for the majority of speciesbeing exploited or with potential uses presents challengingproblems for implementing sustainable use programs. Each yearin Argentina and Paraguay, an average of 1.9 million tegu lizardsof the genus Tupinambis are exploited for their skins. In spiteof the importance of tegus as a resource, their biology is poorlyknown and their populations have never been managed. The lifehistory of Tupinambis, like that of other exploited lizards,is characterized by a relatively long life span, a large clutchsize, several years of growth before reproduction, and highmortality of hatchlings. Importantly, the mortality of young-of-the-yearand the proportion of females reproducing each year are bothprobably strongly influenced by interannual environmental variation.Whenthese parameters were randomized in life table projections tosimulate the effects of environmental stochasticity, the populationgrowth rate was highly sensitive to environmental fluctuations.Monte Carlo simulations of different harvest strategies showedthat estimates of population growth rates were overwhelminglyinfluenced by environmental variation and the number of yearsincluded in the growth rate estimate, even in the face of seeminglylarge changes in adult mortality that would result from populationmanagement. These results are both encouraging and cautionaryfor Tupinambis conservation. On the one hand these patternscan help explain how Tupinambis populations may have persistedin spite of high and variable harvest levels during many years,but conversely, stochastic effects make it difficult to evaluatethe effects of conservation measures. Size and sex can be determinedfrom harvested skins, and pilot studies suggest that analysesof the annual harvest can provide valuable information for evaluatinglong-term population trends.  相似文献   

14.
Shovelnose sturgeon (Scaphirhynchus platorynchus, Rafinesque, 1820) in the Wabash River, Illinois/Indiana, USA, provide an important recreational sport and commercial caviar fishery. In fact, it is one of the last commercially viable populations for sturgeon roe harvest. Due to increased demand in the caviar trade and endangered species legislation that protect shovelnose sturgeon in only a portion of their range, efforts of the roe harvest market may continue to divert toward unprotected populations like the shovelnose sturgeon in the Wabash River. Previous studies have shown that increased harvest pressure in this species can affect the age‐at‐maturation and result in recruitment overfishing. Therefore, it is important to closely and continuously monitor commercially exploited populations. Over the past decade (2007–2016), 13,170 shovelnose sturgeon were sampled with boat electroshocking, hoop nets, drift nets, trotlines, and benthic electrified trawls. Captured fish ranged from 61 to 910 mm fork length (FL; mean = 668 mm), with very few fish less than 550 mm FL. Although fish were found to be in a healthy condition (mean relative weight = 87), there was a decrease in the mean condition over time. In addition, we saw declines in mean FL, weight of roe‐per‐fish, and size‐at‐maturity for female fish directly impacted by harvest. The decline of these population parameters, coupled with an increase in total annual mortality and a truncated age frequency distribution, suggest that harvest is negatively impacting the demographics and recruitment of shovelnose sturgeon in the Wabash River. Considering the downward trajectory of population dynamics and high estimates of mortality, their resiliency to continued harvest and environmental changes will be limited.  相似文献   

15.
Harvesting in seasonal environments   总被引:2,自引:0,他引:2  
Most harvest theory is based on an assumption of a constant or stochastic environment, yet most populations experience some form of environmental seasonality. Assuming that a population follows logistic growth we investigate harvesting in seasonal environments, focusing on maximum annual yield (M.A.Y.) and population persistence under five commonly used harvest strategies. We show that the optimal strategy depends dramatically on the intrinsic growth rate of population and the magnitude of seasonality. The ordered effectiveness of these alternative harvest strategies is given for different combinations of intrinsic growth rate and seasonality. Also, for piecewise continuous-time harvest strategies (i.e., open / closed harvest, and pulse harvest) harvest timing is of crucial importance to annual yield. Optimal timing for harvests coincides with maximal rate of decline in the seasonally fluctuating carrying capacity. For large intrinsic growth rate and small environmental variability several strategies (i.e., constant exploitation rate, linear exploitation rate, and time-dependent harvest) are so effective that M.A.Y. is very close to maximum sustainable yield (M.S.Y.). M.A.Y. of pulse harvest can be even larger than M.S.Y. because in seasonal environments population size varies substantially during the course of the year and how it varies relative to the carrying capacity is what determines the value relative to optimal harvest rate. However, for populations with small intrinsic growth rate but subject to large seasonality none of these strategies is particularly effective with M.A.Y. much lower than M.S.Y. Finding an optimal harvest strategy for this case and to explore harvesting in populations that follow other growth models (e.g., involving predation or age structure) will be an interesting but challenging problem.  相似文献   

16.
The harvest of non-timber forest products (NTFPs), together with other sources of anthropogenic disturbance, impact plant populations greatly. Despite this, conservation research on NTFPs typically focuses on harvest alone, ignoring possible confounding effects of other anthropogenic and ecological factors. Disentangling anthropogenic disturbances is critical in regions such as India’s Western Ghats, a biodiversity hotspot with high human density. Identifying strategies that permit both use and conservation of resources is essential to preserving biodiversity while meeting local needs. We assessed the effects of NTFP harvesting (fruit harvest from canopy and lopping of branches for fruit) in combination with other common anthropogenic disturbances (cattle grazing, fire frequency and distance from village), in order to identify which stressors have greater effects on recruitment of three tropical dry forest fruit tree species. Specifically, we assessed the structure of 54 populations of Phyllanthus emblica, P. indofischeri and Terminalia chebula spread across the Nilgiri Biosphere Reserve, Western Ghats to ask: (1) How are populations recruiting? and (2) What anthropogenic disturbance and environmental factors, specifically forest type and elevation, are the most important predictors of recruitment status? We combined participatory research with an information-theoretic model-averaging approach to determine which factors most affect population structure and recruitment status. Our models illustrate that for T. chebula, high fire frequency and high fruit harvest intensity decreased the proportion of saplings, while lopping branches or stems to obtain fruit increased it. For Phyllanthus spp, recruitment was significantly lower in plots with more frequent fire. Indices of recruitment of both species were significantly higher for plots in more open-canopy environments of savanna woodlands than in dry forests. Our research illustrates an approach for identifying which factors are most important in limiting recruitment of NTFP populations and other plant species that may be in decline, in order to design effective management strategies.  相似文献   

17.
Thousands of plant and animal species in tropical regions provide a variety of non-timber products that are used by billions of people all over the world. Conservation and long term utilization of these species require that they be harvested on a sustainable basis. However, the extent to which non-timber forest products are exploited without adverse effects on natural populations is not known. There is in fact considerable evidence for non-sustainable harvest of non-timber products. We outline methods that may be used to assess the impact of harvest on population processes of the species that are being harvested. We present sampling protocols for rapid assessment as well as long term monitoring of populations. We briefly consider the limitations of these methods and suggest that the monitoring protocols we outline should be part of an overall management plan designed to extract and utilize non-timber tropical forest products on a long term basis.  相似文献   

18.
The spear leaves of the palms Astrocaryum chambira and A. standleyanum have been traditionally used by Colombian indigenous communities as a source of fiber for handicraft production. Traditional management practices, including destructive harvest, have reduced population sizes of both species. We monitored a population of A. chambira in the Amazon, and one of A. standleyanum at the Pacific lowlands of Colombia. We then constructed integral projection models (IPM) to evaluate the transient population dynamics of populations under different exploitation regimes. Our results show that during the next 50 years the population of A. standleyanum will grow at an annual rate of 2.0 percent, and that of A. chambira at a rate of 0.8 percent. However, projected population growth is highly sensitive to harvest in both species: a destructive harvest of 5 percent of all usable individuals (subadults and adults) would cease population growth, while a 10 percent harvest intensity would cause populations to decrease by 0.5–0.6 percent annually. Our simulations further indicate that management practices associated with indigenous slash‐and‐burn agriculture would reduce fiber production, whereas caring for seedlings would increase population growth and fiber production in the coming decades. In order to sustain viable populations of both species and maintain a steady fiber supply, it is vital to prevent destructive harvest practices, and to leave some forest areas untouched, where populations can regenerate and act as a source of seedlings for intervened areas.  相似文献   

19.
From 1997 to 1999, Schizaphis graminum (Rondani), intensity (number per tiller) was estimated on 115 occasions from hard red winter wheat fields located throughout the major wheat growing regions of Oklahoma. A total of 32 and 83 fields was sampled during the fall and spring, respectively. The parameters of linear regressions relating the mean number of greenbugs per tiller (m) and the proportion of infested tillers (PT) differed significantly between fall and spring infestations. The PT-m linear model provided a good fit for data on S. graminum for fall and spring infestations at tally thresholds of 0, 1, 2, and 3. A tally threshold (T) represents the number of greenbugs present on a tiller before the tiller is classified as infested by >T greenbugs. A regression model with a tally threshold of 2 was the most precise for classifying S. graminum populations during fall growth of winter wheat because it explained a greater amount of the variation in the PT-m relationship (97%) than models with other tally thresholds. A separate spring model with a tally threshold of 1 was the most precise for classifying S. graminum populations during spring growth of winter wheat. Sequential sampling stop lines based on sequential probability ratio tests were calculated for economic thresholds of 3 or 6 greenbugs per tiller for fall infestations and 6 or 9 greenbugs per tiller for spring infestations. With the newly developed parameters, the average sample number required to classify greenbug populations near economic thresholds (as above or below the economic threshold) varied from 69 to 207. We expect that the sampling plans for greenbugs in winter wheat developed during this study will be efficient and useful tools for consultants and producers in the southern plains.  相似文献   

20.
Harvest index: a review of its use in plant breeding and crop physiology   总被引:7,自引:0,他引:7  
This review charts the use of the concept of harvest index in crop improvement and physiology, concentrating on the literature from the last 20 years. Evidence from abstract journals indicates that the term has been applied most to small grain cereal crops and pulses, in India, Western Europe and the USA, and that it has been less useful for maize and tuber crops. Standard methods of measuring harvest index, the associated problems of measurement and interpretation, and representative values for a range of world species are reviewed. The values for modern varieties of most intensively-cultivated grain crops fall within the range 0.4 to 0.6. Variation between varieties of the same species is illustrated by trends in the harvest indices of old, outclassed and recent varieties of temperate and mediterranean wheat and barley (compared under uniform conditions); this shows a progressive increase throughout the present century, although improvement has been much slower in Australia and Canada than in the UK. In most cases, the improvement in harvest index has been a consequence of increased grain population density coupled with stable individual grain weight. The high heritability of harvest index is explored by examining its (rather weak) response to variation in environmental factors (fertilisation, population density, application of growth regulators) in the absence of severe stress. A fuller perspective is gained by reviewing aspects of the harvest index of rice, maize and tropical pulses. With rice, attention must be paid to the fact that the adhering lemma and palea (not primarily part of economic yield) can make up 20% of grain weight; and there are important interactions among biomass, grain yield and season length. Maize differs from most small grain crops in that harvest index (in N. American varieties) was already high at the start of this century, and increases in yield potential have been largely the consequence of increased biomass production. The harvest index of many pulse species and varieties tends to be low because selection has been for some yield in all seasons. Extension of the harvest index concept to express the partitioning of mineral nutrients as well as dry matter (e.g. the nitrogen harvest index) has provided a range of responses whose implications for production and breeding remain to be explored. It is concluded that even though the principal cereal crops appear to be approaching the upper limit of harvest index, and future yield gains will have to be sought by increased biomass production, there will still be a need for the concept of harvest index as a tool in interpreting crop response to different environments and climatic change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号