首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
刘志广  张丰盘 《生态学报》2016,36(2):360-368
随着种群动态和空间结构研究兴趣的增加,激发了大量的有关空间同步性的理论和实验的研究工作。空间种群的同步波动现象在自然界广泛存在,它的影响和原因引起了很多生态学家的兴趣。Moran定理是一个非常重要的解释。但以往的研究大多假设环境变化为空间相关的白噪音。越来越多的研究表明很多环境变化的时间序列具有正的时间自相关性,也就是说用红噪音来描述更加合理。因此,推广经典的Moran效应来处理空间相关红噪音的情形很有必要。利用线性的二阶自回归过程的种群模型,推导了两种群空间同步性与种群动态异质性和环境变化的时间相关性(即环境噪音的颜色)之间的关系。深入分析了种群异质性和噪音颜色对空间同步性的影响。结果表明种群动态异质性不利于空间同步性,但详细的关系比较复杂。而红色噪音的同步能力体现在两方面:一方面,本身的相关性对同步性有贡献;另一方面,环境变化时间相关性可以通过改变种群密度依赖来影响同步性,但对同步性的影响并无一致性的结论,依赖于种群的平均动态等因素。这些结果对理解同步性的机理、利用同步机理来制定物种保护策略和害虫防治都有重要的意义。  相似文献   

2.
BernardHugueny 《Oikos》2006,115(1):3-14
The recent interest in the spatial structure and dynamics of populations motivated numerous theoretical and empirical studies of spatial synchrony, the tendency of populations to fluctuate in unison over regional areas. The first comprehensive framework applied to spatial synchrony was probably the one elaborated by P. A. P. Moran back in 1953. He suggested that if two populations have the same linear density-dependent structure, the correlation between them will be equal to that between the local density-independent conditions. Surprisingly, the consequences of violating the assumption that the dynamics of the populations are identical has received little attention. In this paper, making the assumption that population dynamics can be described by linear and stationary autoregressive processes, I show that the observed spatial synchrony between two populations can be decomposed into two multiplicative components: the demographic component depending on the values of the autoregressive coefficients, and the correlation of the environmental noise. The Moran theorem corresponds to the special case where the demographic component equals unity. Using published data, I show that the spatial variability in population dynamics may substantially contribute to the spatial variability of population synchrony, and thus should not be neglected in future studies.  相似文献   

3.
A conceptual framework for the spatial analysis of landscape genetic data   总被引:1,自引:0,他引:1  
Understanding how landscape heterogeneity constrains gene flow and the spread of adaptive genetic variation is important for biological conservation given current global change. However, the integration of population genetics, landscape ecology and spatial statistics remains an interdisciplinary challenge at the levels of concepts and methods. We present a conceptual framework to relate the spatial distribution of genetic variation to the processes of gene flow and adaptation as regulated by spatial heterogeneity of the environment, while explicitly considering the spatial and temporal dynamics of landscapes, organisms and their genes. When selecting the appropriate analytical methods, it is necessary to consider the effects of multiple processes and the nature of population genetic data. Our framework relates key landscape genetics questions to four levels of analysis: (i) node-based methods, which model the spatial distribution of alleles at sampling locations (nodes) from local site characteristics; these methods are suitable for modeling adaptive genetic variation while accounting for the presence of spatial autocorrelation. (ii) Link-based methods, which model the probability of gene flow between two patches (link) and relate neutral molecular marker data to landscape heterogeneity; these methods are suitable for modeling neutral genetic variation but are subject to inferential problems, which may be alleviated by reducing links based on a network model of the population. (iii) Neighborhood-based methods, which model the connectivity of a focal patch with all other patches in its local neighborhood; these methods provide a link to metapopulation theory and landscape connectivity modeling and may allow the integration of node- and link-based information, but applications in landscape genetics are still limited. (iv) Boundary-based methods, which delineate genetically homogeneous populations and infer the location of genetic boundaries; these methods are suitable for testing for barrier effects of landscape features in a hypothesis-testing framework. We conclude that the power to detect the effect of landscape heterogeneity on the spatial distribution of genetic variation can be increased by explicit consideration of underlying assumptions and choice of an appropriate analytical approach depending on the research question.  相似文献   

4.
Animal community dynamics in changing landscapes are primarily driven by changes in vegetation structure and ultimately by how species respond to these changes and at which spatial scale. We consider two major components of local community dynamics, species colonisation and extinction. We hypothesise that (1) the optimal spatial extent needed to accurately predict them will differ between these two processes; (2) it will also likely differ from species to species as a result of life history traits differences related to differences in habitat selection and (3) that a species' primary habitat will determine the spatial extent at which it perceives change in vegetation structure. We used data collected over 25 yr in a changing Mediterranean landscape to study bird species local colonisation and extinction patterns in two groups of species typical from two habitats: open farmland and woodland. Vegetation changes were measured at spatial extents ranging from 0.2 to 79 ha. Local species colonisation and extinction estimates were computed using a method accounting for heterogeneity in detection probability among species. We built linear models between local species colonisation/extinction estimates and vegetation changes and examined variations in model quality with respect to the spatial extent at which vegetation changes had been measured. Models for open habitat species showed that colonisation processes operated at the landscape scale (79 ha), while extinction was more tightly linked to local habitat requirements (0.2 ha). Models for woodland species presented a low and constant model quality whatever the spatial extent considered. Our results suggest that the dynamics of the woodland species considered responded to a combination of vegetation changes at several scales and, in particular, to changes in the vertical structure of the vegetation. We highlight the need to explicitly consider spatial extent in studies of habitat selection and of habitat and population dynamics to improve our understanding of the biological consequences of land use changes and guide more effective conservation efforts.  相似文献   

5.
The Moran effect for populations separated in space states that the autocorrelations in the population fluctuations equal the autocorrelation in environmental noise, assuming the same linear density regulation in all populations. Here we generalize the Moran effect to include also nonlinear density regulation with spatial heterogeneity in local population dynamics as well as in the effects of environmental covariates by deriving a simple expression for the correlation between the sizes of two populations, using diffusion approximation to the theta-logistic model. In general, spatial variation in parameters describing the dynamics reduces population synchrony. We also show that the contribution of a covariate to spatial synchrony depends strongly on spatial heterogeneity in the covariate or in its effect on local dynamics. These analyses show exactly how spatial environmental covariation can synchronize fluctuations of spatially segregated populations with no interchange of individuals even if the dynamics are nonlinear.  相似文献   

6.
Using a spatially homogeneous population model with migration (random individual dispersal) and spatially autocorrelated environmental noise, we show how migration and local density regulation affect the spatial scale of fluctuations in the log of population sizes as well as the 1-yr differences in these. The difference between the squares of these two spatial scales of population fluctuations does not depend on the spatial scale of the noise but only on migration rate and strength of local density regulation. We also show how migration, local density regulation, and spatially correlated environmental noise affect the realized population process at a specific location. As the migration increases, the realized local density regulation and the expected population size increase, while the realized environmental noise decreases. This approach also enables us to analyze the dynamics of the total population size within quadrats of different sizes. The risk of local quasi extinction is strongly reduced by increasing quadrat size or migration rate, while an increase in environmental stochasticity or spatial correlation in the environmental noise increases the risk of quasi extinction.  相似文献   

7.
1. A novel approach using a Gaussian white noise as stimulus is described which allowed quantitative analysis of neuronal responses in the cercal system of the cockroach, Periplaneta americana. Cerci were stimulated by air displacement which was modulated by a sinusoidal and a white noise signal. During the stimulation, intracellular recordings were made from a uniquely identifiable, nonspiking, local interneuron which locates within the terminal abdominal ganglion. The white noise stimulation was cross-correlated with the evoked response to compute first- and second-order kernels that could define the cell's response dynamics. 2. The interneuron, cell 101, has an exceptionally large transverse neurite that connects two asymmetrical dendritic arborizations located on both sides of the ganglion. 3. The first-order Wiener kernels in cell 101 were biphasic (differentiating). The waveforms of the kernels produced by the ipsilateral and contralateral stimulations were roughly mirror images of each other: the kernels produced by wind stimuli on the side ipsilateral to the cell body of the interneuron are initially depolarized and then hyperpolarized, whereas those on the other side are initially hyperpolarized. The polarity reversal occurred along the midline of the animal's body, and no well-defined kernel was produced by a stimulus directed head on or from the tail. 4. Mean square error (MSE) between the actual response and the model prediction suggests that the linear component in cell 101 comprises half of the cell's total response (MSEs for the linear models were about 50% at preferred directions), whereas the second-order, non-linear component is insignificant. The linear component of the wind-evoked response was bandpass with the preferred frequency of 70-90 Hz. 5. Accounting for a noise, we reasonably assumed that at high frequencies the graded response in cell 101 is linearly related to a modulation of the air displacement and sensitive to the rate of change of the signal (i.e., wind velocity) and the direction of its source. It is suggested that the dynamics of the first-order kernel simply reflect the dynamics of sensory receptors that respond linearly to wind stimulation.  相似文献   

8.
1. A central question in ecology is to separate the relative contribution of density dependence and stochastic influences to annual fluctuations in population size. Here we estimate the deterministic and stochastic components of the dynamics of different European populations of white stork Ciconia ciconia. We then examined whether annual changes in population size was related to the climate during the breeding period (the 'tap hypothesis' sensu Saether, Sutherland & Engen (2004, Advances in Ecological Research, 35, 185 209) or during the nonbreeding period, especially in the winter areas in Africa (the 'tube hypothesis'). 2. A general characteristic of the population dynamics of this long-distance migrant is small environmental stochasticity and strong density regulation around the carrying capacity with short return times to equilibrium. 3. Annual changes in the size of the eastern European populations were correlated by rainfall in the wintering areas in Africa as well as local weather in the breeding areas just before arrival and in the later part of the breeding season and regional climate variation (North Atlantic Oscillation). This indicates that weather influences the population fluctuations of white storks through losses of sexually mature individuals as well as through an effect on the number of individuals that manages to establish themselves in the breeding population. Thus, both the tap and tube hypothesis explains climate influences on white stork population dynamics. 4. The spatial scale of environmental noise after accounting for the local dynamics was 67 km, suggesting that the strong density dependence reduces the synchronizing effects of climate variation on the population dynamics of white stork. 5. Several climate variables reduced the synchrony of the residual variation in population size after accounting for density dependence and demographic stochasticity, indicating that these climate variables had a synchronizing effect on the population fluctuations. In contrast, other climatic variables acted as desynchronizing agents. 6. Our results illustrate that evaluating the effects of common environmental variables on the spatio-temporal variation in population dynamics require estimates and modelling of their influence on the local dynamics.  相似文献   

9.
A gene diversity analysis was performed using microsatellite loci in order to (i) describe the extent and pattern of population structure in Atlantic salmon (Salmo salar L.) within a river system; (ii) establish the importance of quantifying the signal:noise ratio in accurately estimating population structure; and (iii) assess the potential usefulness of two evolutionary models in explaining within-river population structure from the ecological and habitat characteristics of Atlantic salmon. We found weak, yet highly significant microscale spatial patterning after accounting for variance among temporal replicates within sites. Lower genetic distances were observed among temporal samples at four sampling sites whereas no evidence for temporal stability was observed at the other three locations. The component of genetic variance attributable to either temporal instability and/or random sampling errors was almost three times more important than the pure spatial component. This indicates that not considering signal:noise ratio may lead to an important overestimation of genetic substructuring in situations of weak genetic differentiation. This study also illustrates the usefulness of the member-vagrant hypothesis to generate a priori predictions regarding the number of subpopulations that should compose a species, given its life-history characteristics and habitat structure. On the other hand, a metapopulation model appears better suited to explain the extent of genetic divergence among subpopulations, as well as its temporal persistence, given the reality of habitat patchiness and environment instability. We thus conclude that the combined use of both models may offer a promising avenue for studies aiming to understand the dynamics of genetic structure of species found in unstable environments.  相似文献   

10.
One of the most important questions in ecology is the relative importance of local conditions (niche processes) and dispersal ability (neutral processes) in driving metacommunity structure. Although many studies have been conducted in recent years, there is still much debate. We evaluated the processes (niche and neutral) responsible for variation in anuran composition in 28 lentic water bodies in southeastern Brazil. Because anurans depend heavily on environmental conditions, we hypothesized that environmental variables (niche processes) are the most important drivers of community composition. Additionally, as anurans have limited dispersal abilities, and the study region presents harsh conditions (high forest fragmentation, low rainfall and long dry season), we expected a lower, but significant, spatial signature in metacommunity structure, due to neutral dynamics. We used a partial redundancy analysis with variation partitioning to evaluate the relative influence of environmental and spatial variables as drivers of metacommunity structure. Additionally, we used a recently developed spatial autocorrelation analysis to test if neutral dynamics can be attributed to the pure spatial component. This analysis is based on predictions that species abundances are independent but similarly spatially structured, with correlograms similar in shape. Therefore, under neutral dynamics there is no expectation of a correlation between the pairwise distance of spatial correlograms and the pairwise correlation of species abundances predicted by the pure spatial component. We found that the environmental component explained 21.5%, the spatial component 10.2%, and the shared component 6.4% of the metacommunity structure. We found no correlation between correlograms and correlation of abundances predicted by the pure spatial component (Mantel test = ?0.109, P = 0.961). In our study, niche‐based processes are the dominant process that explained community composition. However, neutral processes are important because spatial variation can be attributed to pure neutral dynamics rather than to missing spatially structured environmental factors.  相似文献   

11.
Spatial synchrony of oscillating populations has been observed in many ecological systems, and its influences and causes have attracted the interest of ecologists. Spatially correlated environmental noises, dispersal, and trophic interactions have been considered as the causes of spatial synchrony. In this study, we develop a spatially structured population model, which is described by coupled-map lattices and incorporates both dispersal and colored environmental noise. A method for generating time series with desired spatial correlation and color is introduced. Then, we use these generated time series to analyze the influence of noise color on synchrony in population dynamics. The noise color refers to the temporal correlation in the time series data of the noise, and is expressed as the degree of (first-order) autocorrelation for autoregressive noise. Patterns of spatial synchrony are considered for stable, periodic and chaotic population dynamics. Numerical simulations verify that environmental noise color has a major influence on the level of synchrony, which depends strongly on how noise is introduced into the model. Furthermore, the influence of noise color also depends on patterns of dispersal between local populations. In addition, the desynchronizing effect of reddened noise is always weaker than that of white noise. From our results, we notice that the role of reddened environmental noise on spatial synchrony should be treated carefully and cautiously, especially for the spatially structured populations linked by dispersal.  相似文献   

12.
The machinery behind the visual perception of motion and the subsequent sensori-motor transformation, such as in ocular following response (OFR), is confronted to uncertainties which are efficiently resolved in the primate's visual system. We may understand this response as an ideal observer in a probabilistic framework by using Bayesian theory [Weiss, Y., Simoncelli, E.P., Adelson, E.H., 2002. Motion illusions as optimal percepts. Nature Neuroscience, 5(6), 598-604, doi:10.1038/nn858] which we previously proved to be successfully adapted to model the OFR for different levels of noise with full field gratings. More recent experiments of OFR have used disk gratings and bipartite stimuli which are optimized to study the dynamics of center-surround integration. We quantified two main characteristics of the spatial integration of motion: (i) a finite optimal stimulus size for driving OFR, surrounded by an antagonistic modulation and (ii) a direction selective suppressive effect of the surround on the contrast gain control of the central stimuli [Barthélemy, F.V., Vanzetta, I., Masson, G.S., 2006. Behavioral receptive field for ocular following in humans: dynamics of spatial summation and center-surround interactions. Journal of Neurophysiology, (95), 3712-3726, doi:10.1152/jn.00112.2006]. Herein, we extended the ideal observer model to simulate the spatial integration of the different local motion cues within a probabilistic representation. We present analytical results which show that the hypothesis of independence of local measures can describe the spatial integration of the motion signal. Within this framework, we successfully accounted for the contrast gain control mechanisms observed in the behavioral data for center-surround stimuli. However, another inhibitory mechanism had to be added to account for suppressive effects of the surround.  相似文献   

13.
We present an efficient approach to discriminate between typical and atypical brains from macroscopic neural dynamics recorded as magnetoencephalograms (MEG). Our approach is based on the fact that spontaneous brain activity can be accurately described with stochastic dynamics, as a multivariate Ornstein-Uhlenbeck process (mOUP). By fitting the data to a mOUP we obtain: 1) the functional connectivity matrix, corresponding to the drift operator, and 2) the traces of background stochastic activity (noise) driving the brain. We applied this method to investigate functional connectivity and background noise in juvenile patients (n = 9) with Asperger’s syndrome, a form of autism spectrum disorder (ASD), and compared them to age-matched juvenile control subjects (n = 10). Our analysis reveals significant alterations in both functional brain connectivity and background noise in ASD patients. The dominant connectivity change in ASD relative to control shows enhanced functional excitation from occipital to frontal areas along a parasagittal axis. Background noise in ASD patients is spatially correlated over wide areas, as opposed to control, where areas driven by correlated noise form smaller patches. An analysis of the spatial complexity reveals that it is significantly lower in ASD subjects. Although the detailed physiological mechanisms underlying these alterations cannot be determined from macroscopic brain recordings, we speculate that enhanced occipital-frontal excitation may result from changes in white matter density in ASD, as suggested in previous studies. We also venture that long-range spatial correlations in the background noise may result from less specificity (or more promiscuity) of thalamo-cortical projections. All the calculations involved in our analysis are highly efficient and outperform other algorithms to discriminate typical and atypical brains with a comparable level of accuracy. Altogether our results demonstrate a promising potential of our approach as an efficient biomarker for altered brain dynamics associated with a cognitive phenotype.  相似文献   

14.
Stepping-stone models for the ecological dynamics of metapopulations are often used to address general questions about the effects of spatial structure on the nature and complexity of population fluctuations. Such models describe an ensemble of local and spatially isolated habitat patches that are connected through dispersal. Reproduction and hence the dynamics in a given local population depend on the density of that local population, and a fraction of every local population disperses to neighboring patches. In such models, interesting dynamic phenomena, e.g. the persistence of locally unstable predator-prey interactions, are only observed if the local dynamics in an isolated patch exhibit non-equilibrium behavior. Therefore, the scope of these models is limited. Here we extend these models by making the biologically plausible assumption that reproductive success in a given local habitat not only depends on the density of the local population living in that habitat, but also on the densities of neighboring local populations. This would occur if competition for resources occurs between neighboring populations, e.g. due to foraging in neighboring habitats. With this assumption of quasi-local competition the dynamics of the model change completely. The main difference is that even if the dynamics of the local populations have a stable equilibrium in isolation, the spatially uniform equilibrium in which all local populations are at their carrying capacity becomes unstable if the strength of quasi-local competition reaches a critical level, which can be calculated analytically. In this case the metapopulation reaches a new stable state, which is, however, not spatially uniform anymore and instead results in an irregular spatial pattern of local population abundance. For large metapopulations, a huge number of different, spatially non-uniform equilibrium states coexist as attractors of the metapopulation dynamics, so that the final state of the system depends critically on the initial conditions. The existence of a large number of attractors has important consequences when environmental noise is introduced into the model. Then the metapopulation performs a random walk in the space of all attractors. This leads to large and complicated population fluctuations whose power spectrum obeys a red-shifted power law. Our theory reiterates the potential importance of spatial structure for ecological processes and proposes new mechanisms for the emergence of non-uniform spatial patterns of abundance and for the persistence of complicated temporal population fluctuations.  相似文献   

15.
1. The receptive field properties of visual neurons in the retina of the catfish are studied by a white noise spatio-temporal stimulus. The spatial and temporal inputs of the stimulus are independent and lead to complete linear characterizations and local nonlinear characterizations of the neural response. 2. Horizontal cells, bipolar cells, and sustained or Type N amacrine cells all yield spatially coherent linear correlations. The horizontal cells have the shortest latency by these methods and exhibit a late depolarizing component that is wider in spatial extent than the initial hyperpolarizing component. Depolarizing Type N neurons have center-hyperpolarizing local nonlinearity. 3. Transient or Type C amacrine cells do not correlate well with the intensity of the stimulus, even though the Fast variety responds vigorously to the stimulus. 4. Ganglion cells are classified into Excitatory, Inhibitory and Biphasic classes based upon their linear correlations. Some ganglions exhibit responses dependent upon the orientation of stimulus. Although linear correlation of the Excitatory class is similar to that of the depolarizing Type N cell, the locally nonlinear character of these cell types is distinct. The receptive field of the Inhibitory ganglion cells has strong locally excitatory nonlinearity.  相似文献   

16.
1. Synchronous fluctuations of geographically separated populations are in general explained by the Moran effect, i.e. a common influence on the local population dynamics of environmental variables that are correlated in space. Empirical support for such a Moran effect has been difficult to provide, mainly due to problems separating out effects of local population dynamics, demographic stochasticity and dispersal that also influence the spatial scaling of population processes. Here we generalize the Moran effect by decomposing the spatial autocorrelation function for fluctuations in the size of great tit Parus major and blue tit Cyanistes caeruleus populations into components due to spatial correlations in the environmental noise, local differences in the strength of density regulation and the effects of demographic stochasticity. 2. Differences between localities in the strength of density dependence and nonlinearity in the density regulation had a small effect on population synchrony, whereas demographic stochasticity reduced the effects of the spatial correlation in environmental noise on the spatial correlations in population size by 21.7% and 23.3% in the great tit and blue tit, respectively. 3. Different environmental variables, such as beech mast and climate, induce a common environmental forcing on the dynamics of central European great and blue tit populations. This generates synchronous fluctuations in the size of populations located several hundred kilometres apart. 4. Although these environmental variables were autocorrelated over large areas, their contribution to the spatial synchrony in the population fluctuations differed, dependent on the spatial scaling of their effects on the local population dynamics. We also demonstrate that this effect can lead to the paradoxical result that a common environmental variable can induce spatial desynchronization of the population fluctuations. 5. This demonstrates that a proper understanding of the ecological consequences of environmental changes, especially those that occur simultaneously over large areas, will require information about the spatial scaling of their effects on local population dynamics.  相似文献   

17.
Scaling up population dynamics: integrating theory and data   总被引:2,自引:0,他引:2  
Melbourne BA  Chesson P 《Oecologia》2005,145(2):178-186
How to scale up from local-scale interactions to regional-scale dynamics is a critical issue in field ecology. We show how to implement a systematic approach to the problem of scaling up, using scale transition theory. Scale transition theory shows that dynamics on larger spatial scales differ from predictions based on the local dynamics alone because of an interaction between local-scale nonlinear dynamics and spatial variation in density or the environment. Based on this theory, a systematic approach to scaling up has four steps: (1) derive a model to translate the effects of local dynamics to the regional scale, and to identify key interactions between nonlinearity and spatial variation, (2) measure local-scale model parameters to determine nonlinearities at local scales, (3) measure spatial variation, and (4) combine nonlinearity and variation measures to obtain the scale transition. We illustrate the approach, with an example from benthic stream ecology of caddisflies living in riffles. By sampling from a simulated system, we show how collecting the appropriate data at local (riffle) scales to measure nonlinearities, combined with measures of spatial variation, leads to the correct inference for dynamics at the larger scale of the stream. The approach provides a way to investigate the mechanisms and consequences of changes in population dynamics with spatial scale using a relatively small amount of field data.  相似文献   

18.
Multivariate analysis of noise in genetic regulatory networks   总被引:4,自引:0,他引:4  
Stochasticity is an intrinsic property of genetic regulatory networks due to the low copy numbers of the major molecular species, such as, DNA, mRNA, and regulatory proteins. Therefore, investigation of the mechanisms that reduce the stochastic noise is essential in understanding the reproducible behaviors of real organisms and is also a key to design synthetic genetic regulatory networks that can reliably work. We use an analytical and systematic method, the linear noise approximation of the chemical master equation along with the decoupling of a stoichiometric matrix. In the analysis of fluctuations of multiple molecular species, the covariance is an important measure of noise. However, usually the representation of a covariance matrix in the natural coordinate system, i.e. the copy numbers of the molecular species, is intractably complicated because reactions change copy numbers of more than one molecular species simultaneously. Decoupling of a stoichiometric matrix, which is a transformation of variables, significantly simplifies the representation of a covariance matrix and elucidates the mechanisms behind the observed fluctuations in the copy numbers. We apply our method to three types of fundamental genetic regulatory networks, that is, a single-gene autoregulatory network, a two-gene autoregulatory network, and a mutually repressive network. We have found that there are multiple noise components differently originating. Each noise component produces fluctuation in the characteristic direction. The resulting fluctuations in the copy numbers of the molecular species are the sum of these fluctuations. In the examples, the limitation of the negative feedback in noise reduction and the trade-off of fluctuations in multiple molecular species are clearly explained. The analytical representations show the full parameter dependence. Additionally, the validity of our method is tested by stochastic simulations.  相似文献   

19.
20.
Cortical neural networks exhibit high internal variability in spontaneous dynamic activities and they can robustly and reliably respond to external stimuli with multilevel features–from microscopic irregular spiking of neurons to macroscopic oscillatory local field potential. A comprehensive study integrating these multilevel features in spontaneous and stimulus–evoked dynamics with seemingly distinct mechanisms is still lacking. Here, we study the stimulus–response dynamics of biologically plausible excitation–inhibition (E–I) balanced networks. We confirm that networks around critical synchronous transition states can maintain strong internal variability but are sensitive to external stimuli. In this dynamical region, applying a stimulus to the network can reduce the trial-to-trial variability and shift the network oscillatory frequency while preserving the dynamical criticality. These multilevel features widely observed in different experiments cannot simultaneously occur in non-critical dynamical states. Furthermore, the dynamical mechanisms underlying these multilevel features are revealed using a semi-analytical mean-field theory that derives the macroscopic network field equations from the microscopic neuronal networks, enabling the analysis by nonlinear dynamics theory and linear noise approximation. The generic dynamical principle revealed here contributes to a more integrative understanding of neural systems and brain functions and incorporates multimodal and multilevel experimental observations. The E–I balanced neural network in combination with the effective mean-field theory can serve as a mechanistic modeling framework to study the multilevel neural dynamics underlying neural information and cognitive processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号