首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A catalyst-free biodiesel production method with supercritical methanol has been developed that allows a simple process and high yield because of simultaneous transesterification of triglycerides and methyl esterification of fatty acids. From these lines of evidence, we expected that similar results would be attained with the use of various alcohols by the supercritical treatment. However, it still remains unclear which type of reaction, transesterification or alkyl esterification, is faster. This parameter would be important in designing the optimum reaction conditions of the supercritical alcohol method. Therefore, we studied the effect of transesterification of triglycerides and esterification of fatty acids in rapeseed oil. Reaction temperature was set at 300 degrees C, and methanol, ethanol, 1-propanol, 1-butanol or 1-octanol was used as the reactant. The results showed that transesterification of triglycerides (rapeseed oil) was slower in reaction rates than alkyl esterification of fatty acids for any of the alcohols employed. Furthermore, saturated fatty acids such as palmitic and stearic acids had slightly lower reactivity than that of the unsaturated fatty acids; oleic, linoleic and linolenic.  相似文献   

2.
In the conventional transesterification of fats/vegetable oils for biodiesel production, free fatty acids and water always produce negative effects, since the presence of free fatty acids and water causes soap formation, consumes catalyst and reduces catalyst effectiveness, all of which result in a low conversion. The objective of this study was, therefore, to investigate the effect of water on the yield of methyl esters in transesterification of triglycerides and methyl esterification of fatty acids as treated by catalyst-free supercritical methanol. The presence of water did not have a significant effect on the yield, as complete conversions were always achieved regardless of the content of water. In fact, the present of water at a certain amount could enhance the methyl esters formation. For the vegetable oil containing water, three types of reaction took place; transesterification and hydrolysis of triglycerides and methyl esterification of fatty acids proceeded simultaneously during the treatment to produce a high yield. These results were compared with those of methyl esters prepared by acid- and alkaline-catalyzed methods. The finding demonstrated that, by a supercritical methanol approach, crude vegetable oil as well as its wastes could be readily used for biodiesel fuel production in a simple preparation.  相似文献   

3.
Ilham Z  Saka S 《Bioresource technology》2009,100(5):1793-1796
In this study, the non-catalytic supercritical method has been studied in utilizing dimethyl carbonate. It was demonstrated that, the supercritical dimethyl carbonate process without any catalysts applied, converted triglycerides to fatty acid methyl esters with glycerol carbonate and citramalic acid as by-products, while free fatty acids were converted to fatty acid methyl esters with glyoxal. After 12 min of reaction at 350 degrees C/20 MPa, rapeseed oil treated with supercritical dimethyl carbonate reached 94% (w/w) yield of fatty acid methyl ester. The by-products from this process which are glycerol carbonate and citramalic acid are much higher in value than glycerol produced by the conventional process. In addition, the yield of the fatty acid methyl esters as biodiesel was almost at par with supercritical methanol method. Therefore, supercritical dimethyl carbonate process can be a good candidate as an alternative biodiesel production process.  相似文献   

4.
This study demonstrated a one-step process for direct liquefaction and conversion of wet algal biomass containing about 90% of water to biodiesel under supercritical methanol conditions. This one-step process enables simultaneous extraction and transesterification of wet algal biomass. The process conditions are milder than those required for pyrolysis and prevent the formation of by-products. In the proposed process, fatty acid methyl esters (FAMEs) can be produced from polar phospholipids, free fatty acids, and triglycerides. A response surface methodology (RSM) was used to analyze the influence of the three process variables, namely, the wet algae to methanol (wt./vol.) ratio, the reaction temperature, and the reaction time, on the FAMEs conversion. Algal biodiesel samples were analyzed by ATR-FTIR and GC-MS. Based on the experimental analysis and RSM study, optimal conditions for this process are reported as: wet algae to methanol (wt./vol.) ratio of around 1:9, reaction temperature and time of about 255 °C, and 25 min respectively. This single-step process can potentially be an energy efficient and economical route for algal biodiesel production.  相似文献   

5.
This study demonstrates the production of algal biodiesel from Dunaliella tertiolecta, Nannochloropsis oculata, wild freshwater microalgae, and macroalgae lipids using a highly efficient continuous catalytic process. The heterogeneous catalytic process uses supercritical methanol and porous titania microspheres in a fixed bed reactor to catalyze the simultaneous transesterification and esterification of triacylglycerides and free fatty acids, respectively, to fatty acid methyl esters (biodiesel). Triacylglycerides and free fatty acids were converted to alkyl esters with up to 85% efficiency as measured by 300 MHz 1H NMR spectroscopy. The lipid composition of the different algae was studied gravimetrically and by gas chromatography. The analysis showed that even though total lipids comprised upwards of 19% of algal dry weight the saponifiable lipids, and resulting biodiesel, comprised only 1% of dry weight. Thus highlighting the need to determine the triacylglyceride and free fatty acid content when considering microalgae for biodiesel production.  相似文献   

6.
High temperature and pressure are generally required to produce biodiesel using supercritical methanol. We reduced the harsh reaction conditions by means of sonicating the reaction mixture prior to transesterification using supercritical methanol. Soybean oil was selected as the raw material for transesterification. As soybean oil contains more unsaturated fatty acid triglycerides, the biodiesel degraded more at high temperature. The reactants were sonicated for 60 min at 35 °C prior to transesterification to avoid degradation of the product and to enhance biodiesel yield at temperatures <300 °C. The process parameters were optimized using central composite design. The variables selected for optimization were temperature, time, and the oil to methanol molar ratio. The temperature and oil to methanol molar ratios were varied from 250 to 280 °C and 1:40–1:50, respectively. The reaction time was tested between 4 and 12 min. The biodiesel was analyzed for any possible degradation by gas chromatography–mass spectroscopy and for the wt% of fatty acid methyl esters (FAME) obtained. The maximum FAME yield (84.2 wt%) was obtained at a temperature of 265.7 °C, an oil to alcohol molar ratio of 1:44.7, and a time of 8.8 min. The optimum yield was obtained at a pressure of 1,500 psi. The pressure and optimum temperature used to obtain the maximum yield were the lowest reported so far without the use of a co-solvent. Thus, the severity of the supercritical reactions was reduced by adding sonication prior to the reaction.  相似文献   

7.
The rapid development of biodiesel production technology has led to the generation of tremendous quantities of glycerol wastes, as the main by-product of the process. Stoichiometrically, it has been calculated that for every 100 kg of biodiesel, 10 kg of glycerol are produced. Based on the technology imposed by various biodiesel plants, glycerol wastes may contain numerous kinds of impurities such as methanol, salts, soaps, heavy metals, and residual fatty acids. This fact often renders biodiesel-derived glycerol unprofitable for further purification. Therefore, the utilization of crude glycerol though biotechnological means represents a promising alternative for the effective management of this industrial waste. This review summarizes the effect of various impurities-contaminants that are found in biodiesel-derived crude glycerol upon its conversion by microbial strains in biotechnological processes. Insights are given concerning the technologies that are currently applied in biodiesel production, with emphasis to the impurities that are added in the composition of crude glycerol, through each step of the production process. Moreover, extensive discussion is made in relation with the impact of the nature of impurities upon the performances of prokaryotic and eukaryotic microorganisms, during crude glycerol bioconversions into a variety of high added-value metabolic products. Finally, aspects concerning ways of crude glycerol treatment for the removal of inhibitory contaminants as reported in the literature are given and comprehensively discussed.  相似文献   

8.
《Process Biochemistry》2007,42(11):1481-1485
Whole cell Rhizopus oryzae (R. oryzae) IFO4697 immobilized within biomass support particles (BSPs) was used as catalyst for biodiesel production in tert-butanol, in which the stability of the catalyst could be enhanced significantly. Different feedstocks (refined, crude and acidified rapeseed oils) were adopted further for biodiesel production in tert-butanol system and it was found that when acidified rapeseed oil was used as feedstocks, the reaction rate and final methyl ester (ME) yield were significantly higher than that of refined and crude rapeseed oil. Major differences among the aforementioned oils were found to be the contents of free fatty acid (FFA), water and phospholipids, which showed varied influences on whole cell mediated methanolysis for biodiesel production. The reaction rate increased with the increase of free fatty acid content in oils; water content had varied influence on reaction rate and biodiesel yield; using adsorbent to remove excessive water could increase biodiesel yield significantly (from 73 to 84%); it was also found interestingly that phospholipids contained in oils could increase the reaction rate to a certain extent.  相似文献   

9.

Background

The enzymatic production of biodiesel through alcoholysis of triglycerides has become more attractive because it shows potential in overcoming the drawbacks of chemical processes. In this study, we investigate the production of biodiesel from crude, non-edible Jatropha oil and methanol to characterize Burkholderia cepacia lipase immobilized in an n-butyl-substituted hydrophobic silica monolith. We also evaluate the performance of a lipase-immobilized silica monolith bioreactor in the continuous production of biodiesel.

Results

The Jatropha oil used contained 18% free fatty acids, which is problematic in a base-catalyzed process. In the lipase-catalyzed reaction, the presence of free fatty acids made the reaction mixture homogeneous and allowed bioconversion to proceed to 90% biodiesel yield after a 12 hour reaction time. The optimal molar ratio of methanol to oil was 3.3 to 3.5 parts methanol to one part oil, with water content of 0.6% (w/w). Further experiments revealed that B. cepacia lipase immobilized in hydrophobic silicates was sufficiently tolerant to methanol, and glycerol adsorbed on the support disturbed the reaction to some extent in the present reaction system. The continuous production of biodiesel was performed at steady state using a lipase-immobilized silica monolith bioreactor loaded with 1.67 g of lipase. The yield of 95% was reached at a flow rate of 0.6 mL/h, although the performance of the continuous bioreactor was somewhat below that predicted from the batch reactor. The bioreactor was operated successfully for almost 50 days with 80% retention of the initial yield.

Conclusions

The presence of free fatty acids originally contained in Jatropha oil improved the reaction efficiency of the biodiesel production. A combination of B. cepacia lipase and its immobilization support, n-butyl-substituted silica monolith, was effective in the production of biodiesel. This procedure is easily applicable to the design of a continuous flow-through bioreactor system.  相似文献   

10.
The production of synthetic glycerol from petrochemical feedstocks has been decreasing in recent years. This is largely due to increasing supplies of crude glycerol derived as a co-product from the oleochemical industry, especially biodiesel production. The price of glycerol is at historic lows, and the supply of crude glycerol is projected to grow faster than its industrial uses. This oversupply is driving the transition from glycerol as a product to glycerol as a precursor for new industrial applications, including its use as a substrate for bioconversion. This article reviews the use of fungi for the bioconversion of crude glycerol to the value-added products 1,2-propanediol, ethanol, single cell oil, specialty polyunsaturated fatty acids, biosurfactants, and organic acids. Information on the impurities of crude glycerol from different industrial processes is also included.  相似文献   

11.
The presence of high levels of free fatty acids (FFA) in oil is a barrier to one‐step biodiesel production. Undesirable soaps are formed during conventional chemical methods, and enzyme deactivation occurs when enzymatic methods are used. This work investigates an efficient technique to simultaneously convert a mixture of free fatty acids and triglycerides (TAG). A partial soybean hydrolysate containing 73.04% free fatty acids and 24.81% triglycerides was used as a substrate for the enzymatic production of fatty acid methyl ester (FAME). Whole‐cell Candida antarctica lipase B‐expressing Aspergillus oryzae, and Novozym 435 produced only 75.2 and 73.5% FAME, respectively. Fusarium heterosporum lipase‐expressing A. oryzae produced more than 93% FAME in 72 h using three molar equivalents of methanol. FFA and TAG were converted simultaneously in the presence of increasing water content that resulted from esterification. Therefore, F. heterosporum lipase with a noted high level of tolerance of water could be useful in the industrial production of biodiesel from feedstock that has high proportion of free fatty acids.  相似文献   

12.
Biodiesel production—current state of the art and challenges   总被引:3,自引:0,他引:3  
Biodiesel is a clean-burning fuel produced from grease, vegetable oils, or animal fats. Biodiesel is produced by transesterification of oils with short-chain alcohols or by the esterification of fatty acids. The transesterification reaction consists of transforming triglycerides into fatty acid alkyl esters, in the presence of an alcohol, such as methanol or ethanol, and a catalyst, such as an alkali or acid, with glycerol as a byproduct. Because of diminishing petroleum reserves and the deleterious environmental consequences of exhaust gases from petroleum diesel, biodiesel has attracted attention during the past few years as a renewable and environmentally friendly fuel. Since biodiesel is made entirely from vegetable oil or animal fats, it is renewable and biodegradable. The majority of biodiesel today is produced by alkali-catalyzed transesterification with methanol, which results in a relatively short reaction time. However, the vegetable oil and alcohol must be substantially anhydrous and have a low free fatty acid content, because the presence of water or free fatty acid or both promotes soap formation. In this article, we examine different biodiesel sources (edible and nonedible), virgin oil versus waste oil, algae-based biodiesel that is gaining increasing importance, role of different catalysts including enzyme catalysts, and the current state-of-the-art in biodiesel production. JIMB 2008: BioEnergy—special issue.  相似文献   

13.
A technique to produce biodiesel from crude Jatropha curcas seed oil (CJCO) having high free fatty acids (15%FFA) has been developed. The high FFA level of JCJO was reduced to less than 1% by a two-step pretreatment process. The first step was carried out with 0.60 w/w methanol-to-oil ratio in the presence of 1% w/w H(2)SO(4) as an acid catalyst in 1-h reaction at 50 degrees C. After the reaction, the mixture was allowed to settle for 2h and the methanol-water mixture separated at the top layer was removed. The second step was transesterified using 0.24 w/w methanol to oil and 1.4% w/w NaOH to oil as alkaline catalyst to produce biodiesel at 65 degrees C. The final yield for methyl esters of fatty acids was achieved ca. 90% in 2 h.  相似文献   

14.
An actinomycete producing oil‐like mixtures was isolated and characterized. The strain was isolated from sheep faeces and identified as Streptomyces sp. S161 based on 16S rRNA gene sequence analysis. The strain showed cellulase and xylanase activities. The 1H nuclear magnetic resonance (NMR) spectra of the mixtures showed that the mixtures were composed of fatty acid methyl esters (52·5), triglycerides (13·7) and monoglycerides (9·1) (mol.%). Based on the gas chromatography–mass spectrometry (GC‐MS) analysis, the fatty acid methyl esters were mainly composed of C14‐C16 long‐chain fatty acids. The results indicated that Streptomyces sp. S161 could produce fatty acid methyl esters (FAME) directly from starch. To our knowledge, this is the first isolated strain that can produce biodiesel (FAME) directly from starch.

Significance and Impact of the Study

Nowadays, production of biodiesel is based on plant oils, animal fats, algal oils and microbial oils. Lipid mostly consists of triacylglycerols (TAG), and conversion of these lipids into fatty acid short‐chain alcohol esters (methanol or ethanol) is the final step in biodiesel production. In this study, an oil‐producing Streptomyces strain was isolated from sheep faeces. The oil was composed of C14‐C16 long‐chain fatty acid methyl esters, triglycerides and monoglycerides. This is the first isolated strain‐producing biodiesel (FAME) directly from starch. Due to showing cellulase and xylanase activities, the strain would be helpful for converting renewable lignocellulose into biodiesel directly.  相似文献   

15.
In this study, fatty acid methyl esters (FAME) have been successfully produced from transesterification reaction between triglycerides and methyl acetate, instead of alcohol. In this non-catalytic supercritical methyl acetate (SCMA) technology, triacetin which is a valuable biodiesel additive is produced as side product rather than glycerol, which has lower commercial value. Besides, the properties of the biodiesel (FAME and triacetin) were found to be superior compared to those produced from conventional catalytic reactions (FAME only). In this study, the effects of various important parameters on the yield of biodiesel were optimized by utilizing Response Surface Methodology (RSM) analysis. The mathematical model developed was found to be adequate and statistically accurate to predict the optimum yield of biodiesel. The optimum conditions were found to be 399 °C for reaction temperature, 30 mol/mol of methyl acetate to oil molar ratio and reaction time of 59 min to achieve 97.6% biodiesel yield.  相似文献   

16.
In this study, production of biodiesel from low cost raw materials, such as rice bran and dewaxed-degummed rice bran oil (DDRBO), under supercritical condition was carried out. Carbon dioxide (CO2) was employed as co-solvent to decrease the supercritical temperature and pressure of methanol. The effects of different raw materials on the yield of biodiesel production were investigated. In situ transesterification of rice bran with supercritical methanol at 30 MPa and 300 °C for 5 min was not a promising way to produce biodiesel because the purity and yield of fatty acid methyl esters (FAMEs) obtained were 52.52% and 51.28%, respectively. When DDRBO was reacted, the purity and yield were 89.25% and 94.84%, respectively. Trans-FAMEs, which constituted about 16% of biodiesel, were found. They were identified as methyl elaidate [trans-9], methyl linoleaidate [trans-9, trans-12], methyl linoleaidate [cis-9, trans-12], and methyl linoleaidate [trans-9, cis-12]. Hydrocarbons, which constituted about 3% of the reaction product, were also detected.  相似文献   

17.
Shi H  Bao Z 《Bioresource technology》2008,99(18):9025-9028
A new method which coupled the two-phase solvent extraction (TSE) with the synthesis of biodiesel was studied. Investigations were carried out on transesterification of methanol with oil-hexane solution coming from TSE process in the presence of sodium hydroxide as the catalyst. Biodiesel (fatty acid methyl esters) were the products of transesterification. The influential factors of transesterification, such as reaction time, catalyst concentration, mole ratio of methanol to oil and reaction temperature were optimized. The results showed that the optimal reaction parameters were sodium hydroxide concentration 1.1% by weight of rapeseed oil, mole ratio of methanol to oil 9:1, reaction time 120 min, and reaction temperature 55-60 degrees C. Under these conditions, the TG conversion would rise up to 98.2%. Based on the new method, biodiesel production process could be simplified and the biodiesel cost could be reduced.  相似文献   

18.
Transesterification of triglycerides with short chain alcohols is the key reaction in biodiesel production, in addition to other applications in chemical synthesis. However, it is crucial to optimize reaction conditions to make enzymatic transesterification a cost-effective and competitive process. In this work, a new, easy Fourier transform infrared (FTIR) spectroscopic approach for monitoring the transesterification reaction is reported and compared with a gas-chromatographic method. The concentration of the total methyl esters in the reaction mixture is determined from the peak intensity at ∼1435 cm–1 in the second derivatives of the FTIR absorption spectra using a linear regression calibration. Interestingly, we found that the use of second derivatives allows an accurate determination of the methyl esters without the interference of free fatty acids. Moreover, information on substrate hydrolysis can be obtained within the same measurement by the infrared absorption at ∼1709 cm–1. We applied this approach to monitor methanolysis and hydrolysis reactions catalyzed by different commercial lipases, which displayed different sensitivities to methanol inhibition. Therefore, the FTIR approach reported in this work represents a rapid, inexpensive, and accurate method to monitor enzymatic transesterification, requiring very limited sample preparation and a simple statistical analysis of the spectroscopic data.  相似文献   

19.
Zhang J  Jiang L 《Bioresource technology》2008,99(18):8995-8998
A technique to produce biodiesel from crude Zanthoxylum bungeanum seed oil (ZSO) with high free fatty acids (FFA) was developed. The acid value of ZSO was reduced to 1.16mg KOH/g from 45.51mg KOH/g by only one-step acid-catalyzed esterification with methanol-to-oil molar ratio 24:1, H(2)SO(4) 2%, temperature 60 degrees C and reaction time 80min, which was selected as optimum for the acid-catalyzed esterification. During the acid-catalyzed esterification, FFA was converted into fatty acid methyl esters, which was confirmed by (1)H NMR spectrum. Compared with the other two-step pretreatment procedure, this one-step pretreatment can reduce the production cost of ZSO biodiesel. Alkaline-catalyzed transesterification converted the pretreated ZSO into ZSO biodiesel. The yield of ZSO biodiesel was above 98% determined by (1)H NMR spectrum. This study supports the use of crude ZSO as a viable and valuable raw feedstock for biodiesel production.  相似文献   

20.
Reactive separations using green catalysts offer great opportunities for manufacturing fatty esters, involved in specialty chemicals and biodiesel production. Integrating reaction and separation into one unit provides key benefits such as: simplified operation, no waste, reduced capital investment and low operating costs.This work presents a novel heat-integrated reactive absorption process that eliminates all conventional catalyst related operations, efficiently uses the raw materials and equipment, and considerably reduces the energy requirements for biodiesel production - 85% lower as compared to the base case. Rigorous simulations based on experimental results were carried out using Aspen Plus and Dynamics. Despite the high degree of integration, the process is well controllable using an efficient control structure proposed in this work. The main results are provided for a plant producing 10 ktpy fatty acid methyl esters from methanol and waste vegetable oil with high free fatty acids content, using sulfated zirconia as solid acid catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号