共查询到20条相似文献,搜索用时 15 毫秒
1.
R D Baynes Y J Shih B G Hudson J D Cook 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1991,197(4):416-423
A soluble form of transferrin receptor has been detected in human serum and has been shown recently to be a truncated form of the intact membrane bound receptor. Mechanisms governing the release of transferrin receptor by cells are poorly understood and could be better defined by tissue culture. The present investigation was undertaken to characterize the transferrin receptor released by K562 erythroleukemic cells. In contrast with maturing sheep reticulocytes, which have been shown to release transferrin receptor in small vesicles termed exosomes, we demonstrated, with a monoclonal enzyme-linked immunoassay, that less than 30% of the transferrin receptor released by K562 cells in log phase growth was in a particulate form. The relative amounts of soluble and particulate receptor released to the supernatant did not change significantly during 48 hr of incubation. Soluble receptor was purified by immunoaffinity chromatography. On polyacrylamide gel electrophoresis, its mobility was the same (85 kDa) as that of the truncated monomeric form recently identified in human serum. Further evidence that serum and soluble receptors released by K562 cells are identical was provided by amino acid sequence analysis, which demonstrated that 16 of the first 19 residues of the N-terminal sequence of soluble K562 receptor are homologous with the serum receptor. The remaining three were not identifiable. K562 cells provide a useful in vitro model for studying the production of membrane-bound and soluble forms of released transferrin receptor. 相似文献
2.
Hemin treatment of mouse Friend virus-transformed cells in cultured caused a dose-dependent increase in hemoglobin synthesis. By the addition of radioactively labeled hemin and by the analysis of the radioactive heme in hemoglobin, only 60 to 70% of heme in the newly synthesized hemoglobin was accounted for by the exogenously added hemin. In keeping with this finding, hemin treatment increased the activity of two enzymes in the heme biosynthetic activity, i.e. delta-aminolevulinate (ALA) dehydratase and uroporphyrinogen-I (URO) synthase in these cells. Incorporation of [2(-14C)]glycine, [14C]ALA, and 59Fe into heme was also significantly increased in the cells treated with hemin, suggesting that essentially all enzyme activities in the heme biosynethetic pathway were increased after hemin treatment. These results indicate that heme in the newly synthesized hemoglobin in hemin-treated Friend cells derives both from hemin added to the culture and from heme synthesized intracellularly. In addition, these results suggest that the stimulation of heme biosynthesis by hemin in Friend virus-transformed cells is in contrast to the hemin repression of heme biosynthesis in liver cells. 相似文献
3.
Friend virus transformed murine erythroleukemia (MEL) cells are known to take up heme from the surrounding medium and to incorporate it into newly synthesized hemoglobin (Granick, J. L., and Sassa, S. (1978) J. Biol. Chem. 253, 5402-5406), but the mechanism of its uptake is unknown. We hypothesized the existence of a specific receptor for heme in the plasma membrane. Using [55Fe]heme, we examined the characteristics of its interaction with MEL cells at 4 degrees C. [55Fe]heme binding reached equilibrium within 4 h, was 80% dissociable by 16 h, and was independent of pH over the range 7.0-8.2. Specific heme binding was linear with cell number, and competitive binding studies with various heme analogues, such as free protoporphyrin IX, metal-substituted protoporphyrin IX, Fe-mesoporphyrin IX, and Fe-deuteroporphyrin IX, revealed significant stereospecificity for Fe-protoporphyrin IX. The dissociation constant of the interaction was 0.03 nM-1 with no evidence of cooperativity or multiple classes of sites. The average number of sites/cell was approximately 10,300. Reduction of binding following preincubation with trypsin, in conjunction with the above data, suggests that this cell type may display a receptor for heme which is comprised, as least in part, of protein. 相似文献
4.
5.
Inhibition of transferrin receptor expression by interferon-alpha in human lymphoblastoid cells and mitogen-induced lymphocytes 总被引:2,自引:0,他引:2
125I-Transferrin binding to lymphoblastoid K562 and Daudi cells markedly increased after exposure of the cells to culture conditions that stimulated proliferation. Treatment of these cells with interferon-alpha (IFN-alpha) resulted in concurrent inhibition of cell growth and of the rise in transferrin binding. Scatchard analyses revealed that IFN reduced the number of transferrin receptors without altering the binding constant. When 125I-transferrin binding was measured using permeabilized cells, the IFN-induced reduction of binding was comparable to that observed with intact cells, indicating that IFN diminished the total number of cellular transferrin receptors. We also found that addition of IFN-alpha to phytohemagglutinin-stimulated human lymphocytes inhibited the mitogen-induced enhancement of [3H]thymidine incorporation as well as surface binding of 125I-transferrin. Our findings suggest that the decrease in transferrin receptor expression on IFN-alpha-treated cells may be one of the mechanisms responsible for the antiproliferative action of IFN. 相似文献
6.
Immunolocalization of transferrin and transferrin receptor in mouse small intestinal absorptive cells 总被引:3,自引:0,他引:3
The mechanisms by which the duodenal mucosa absorbs iron are unknown. Insorption into absorptive cells of luminal iron bound to transferrin via receptor-mediated endocytosis has been hypothesized, but transferrin and transferrin receptor are absent in apical microvillous brush borders of small bowel biopsies taken from fasted patients and normal volunteers. We hypothesized that a normal iron-containing diet might induce the transient appearance of transferrin and transferrin receptor in apical brush borders of small intestinal absorptive cells in a normal mouse that was provided iron-containing chow until the moment of sacrifice. Light and electron microscopic immunolocalization of transferrin and transferrin receptor in proximal small intestinal absorptive cells was limited to basolateral membranes and coated pits of cells predominantly in the crypts and basal regions of the villi. Transferrin and transferrin receptor were not detected in apical microvillous brush border membranes of these enterocytes. In parallel immunolocalization protocols designed to show the ability to immunodetect other antigens at these locations, maltase and proteoglycan were demonstrated in apical microvillous brush border membranes and in basolateral membranes, respectively, in absorptive cells of small intestinal villous tip, base, and crypt regions. Furthermore, transferrin and transferrin receptor were immunolocalized in hepatocyte sinusoidal microvillus membranes. We conclude that food does not induce the appearance of immunodetectable transferrin and transferrin receptor in the apical microvilli of small intestinal absorptive cells and, therefore, that these iron transport proteins are not involved in the apical microvillous membrane transport of luminal dietary iron. 相似文献
7.
We have identified both high-affinity (KD = 36 +/- 3 nM) and low-affinity (KD = 2.1 +/- 0.8 microM) prostacyclin (PGI2)-receptor sites on human erythroleukemia (HEL) cells using the radiolabelled prostacyclin analogue. [3H]iloprost. The addition of the phorbol ester, TPA, to the culture medium caused a 5-10-fold increase in the number of both the low- and the high-affinity sites, without any change in their affinity constants. Iloprost stimulated HEL cell membrane adenylate cyclase activity 5-fold. This stimulation was potentiated in the presence of GTP, indicating a conventional PGI2 receptor-G2-adenylate cyclase system. HEL cells represent a source of prostacyclin receptor mRNA which may be of value in expression cloning of this receptor. 相似文献
8.
Characterization of erythropoietin receptor on erythropoietin-unresponsive mouse erythroleukemia cells 总被引:3,自引:0,他引:3
A membrane receptor for erythropoietin was identified in various erythropoietin-unresponsive mouse erythroleukemia cells. Scatchard analyses of the binding of human 125I-labeled erythropoietin to T3C1-2-0, K-1, GM86 and 707 cells showed the presence of a single class of binding sites with apparent Kd values of 0.27-0.78 nM, which are slightly higher than those of erythropoietin-responsive cells. The number of binding sites varied from 110 to 930 per cell. Crosslinking of 125I-erythropoietin to its binding sites with disuccinimidyl suberate revealed the existence of a single binding protein with molecular mass of 63 kDa. No binding sites with higher molecular mass, as observed in erythropoietin-responsive cells, were detected, nor was any specific binding observed to the non-erythroid hematopoietic cell or to the human erythroleukemia cells examined. 相似文献
9.
Iron uptake from transferrin and transferrin endocytic cycle in Friend erythroleukemia cells 总被引:2,自引:0,他引:2
Several aspects of iron metabolism were studied in cultured Friend erythroleukemia cells before and after induction of hemoglobin synthesis by dimethyl sulfoxide. The maximal rate of iron uptake from 59Fe-labeled transferrin, 1.5 X 10(6) atoms of Fe/cell per 30 min in uninduced cells, increased to 3 X 10(6) atoms/cell after 5 days of induction. The increase in iron uptake was not accompanied by a proportional increase in the number of transferrin receptors detected by 125I-labeled transferrin binding, suggesting a more efficient iron uptake by transferrin receptors in induced cells, with the rate of about 26 iron atoms per receptor per hour, compared to 15 atoms in uninduced cells. In agreement with this conclusion are results of the study of cellular 125I or 59Fe labeled transferrin kinetics. In the induced cells transferrin endocytosis and release proceeded with identical rates and all the endocytosed iron was retained inside the cell. On the other hand, transferrin release by uninduced cells was significantly slower and a substantial part of internalized 59Fe was released. On the basis of these results, different efficiency of iron release from internalized transferrin, accompanied by changes in cellular transferrin kinetics, is proposed as one of the factors determining the rate of iron uptake by developing erythroid cells. 相似文献
10.
11.
12.
13.
Heme synthesis by erythroid progenitor cells is maintained by erythropoietin (EP), insulin-like growth factor-I (IGF-I), and stem cell factor (SCF), and without these growth factors apoptosis (programmed cell death) occurs. To clarify the possible interaction between heme synthesis and programmed cell death of human erythroid progenitor cells, the effect of specific inhibition of heme synthesis on apoptosis of highly purified human erythroid colony forming cells (ECFC) was studied. When the amount of uncleaved DNA was determined as a measure of apoptosis, the heme synthesis inhibitors, succinylacetone (SA) (0.1 mmol/L) or isonicotinic acid hydrazide (INH) (10 mmol/L), significantly decreased the amount of uncleaved DNA (P < 0.01) in the presence of erythropoietin (EP). Addition of recombinant heavy-chain ferritin (rHF) (10 nmol/L), or deprivation of transferrin from the culture medium, which decreased heme synthesis, also reduced the amount of uncleaved DNA (P < 0.01). The production of apoptosis by diverse inhibitors of heme synthesis was in each case reversed by the addition of hemin (0.1 mmol/L) and did not occur with HL-60 cells. When the colony-forming capacity of ECFC was determined by plasma clot assay, SA, INH, or rHF reduced the number of CFU-E (P < 0.01), and the effect of SA was reversed by hemin. The addition of SA did not alter the c-myc response of ECFC to EP. These data indicate that inhibition of heme synthesis induces apoptosis of human erythroid progenitor cells, in a manner independent of an early c-myc response, and suggest that the presence of apoptosis in ineffective erythropoiesis may be secondary to impaired heme synthesis. © 1995 Wiley-Liss, Inc. 相似文献
14.
Carole Beaumont Jean-Charles Deybach Bernard Grandchamp Vasco Da Silva Hubert De Verneuil Yves Nordmann 《Experimental cell research》1984,154(2):474-484
Heme has been reported to exert a control over its own biosynthesis and to affect the erythroid differentiation process at different sites. In this study, succinylacetone, a powerful inhibitor of δ-aminolevulinic acid dehydrase was used to block heme synthesis and to study the effects of heme depletion on the dimethylsulfoxide (DMSO)-mediated induction of the heme pathway enzymes in Friend virus-transformed erythroleukemia cells. The presence of succinylacetone in the medium during the DMSO treatment (1) potentiates the induction of δ-aminolevulinic acid synthetase (the first enzyme of the pathway) and this effect is reversed by the addition of exogenous hemin; (2) does not affect the induction of δ-aminolevulinic acid dehydrase (the second enzyme); (3) prevents the induction of porphobilinogen deaminase (the third enzyme), since no increase could be detected in either the enzyme activity or the immunoreactive protein and this effect could not be reversed by the addition of exogenous hemin; (4) does not affect the induction of ferrochelatase. The possible role of heme or of intermediate metabolites of the pathway on the induction of these enzymes during the erythroid differentiation process is discussed. 相似文献
15.
16.
17.
Biphasic ordered induction of heme synthesis in differentiating murine erythroleukemia cells: role of erythroid 5-aminolevulinate synthase. 总被引:2,自引:0,他引:2 下载免费PDF全文
During dimethyl sulfoxide (DMSO)-stimulated differentiation of murine erythroleukemia (MEL) cells, one of the early events is the induction of the heme biosynthetic pathway. While recent reports have clearly demonstrated that GATA-1 is involved in the induction of erythroid cell-specific forms of 5-aminolevulinate synthase (ALAS-2) and porphobilinogen (PBG) deaminase and that cellular iron status plays a regulatory role for ALAS-2, little is known about regulation of the remainder of the pathway. In the current study, we have made use of a stable MEL cell mutant (MEAN-1) in which ALAS-2 enzyme activity is not induced by DMSO, hexamethylene bisacetamide (HMBA), or butyric acid. In this cell line, addition of 2% DMSO to growing cultures results in the normal induction of PBG deaminase and coproporphyrinogen oxidase but not in the induction of the terminal two enzymes, protoporphyrinogen oxidase and ferrochelatase. These DMSO-treated cells did not produce mRNA for beta-globin and do not terminally differentiate. In addition, the cellular level of ALAS activity declines rapidly after addition of DMSO, indicating that ALAS-1 must turn over rapidly at this time. Addition of 75 microM hemin alone to the cultures did not induce cells to terminally differentiate or induce any of the pathway enzymes. However, the simultaneous addition of 2% DMSO and 75 microM hemin caused the cells to carry out a normal program of terminal erythroid differentiation, including the induction of ferrochelatase and beta-globin. These data suggest that induction of the entire heme biosynthetic pathway is biphasic in nature and that induction of the terminal enzymes may be mediated by the end product of the pathway, heme. We have introduced mouse ALAS-2 cDNA into the ALAS-2 mutant cell line (MEAN-1) under the control of the mouse metallothionein promoter (MEAN-RA). When Cd and Zn are added to cultures of MEAN-RA in the absence of DMSO, ALAS-2 is induced but erythroid differentiation does not occur and cells continue to grow normally. In the presence of metallothionein inducers and DMSO, the MEAN-RA cells induce in a fashion similar to that found with the wild-type 270 MEL cells. Induction of the activities of ALAS, PBG deaminase, coproporphyrinogen oxidase, and ferrochelatase occurs. In cultures of MEAN-RA where ALAS-2 had been induced with Cd plus Zn 24 h prior to DMSO addition, onset of heme synthesis occurs more rapidly than when DMSO and Cd plus Zn are added simultaneously. This study reveals that induction of ALAS-2 alone is not sufficient to induce terminal differentiation of the MEAN-RA cells, and it does not appear that ALAS-2 alone is the rate-limiting enzyme of the heme biosynthetic pathway during MEL cell differentiation. 相似文献
18.
Anandamide (AEA) is an endogenous agonist for the cannabinoid receptor 2 (CB2) which is expressed in osteoblasts. Arachidonic acid (AA) is the precursor for AEA and dietary n-3 polyunsaturated fatty acids (PUFA) are known to reduce the concentrations of AA in tissues and cells. Therefore, we hypothesized that n-3 PUFA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which reduce AA in cells, could lower AEA in osteoblasts by altering enzyme expression of the endocannabinoid (EC) system. MC3T3-E1 osteoblast-like cells were grown for 6, 10, 15, 20, 25 or 30 days in osteogenic medium. Osteoblasts were treated with 10 μM of AA, EPA, DHA, oleic acid (OA) or EPA+DHA (5 μM each) for 72 h prior to their collection for measurement of mRNA and alkaline phosphatase (ALP) activity. Compared to vehicle control, osteoblasts treated with AA had higher levels of AA and n-6 PUFA while those treated with EPA and DHA had lower n-6 but higher n-3 PUFA. Independent of the fatty acid treatments, osteoblasts matured normally as evidenced by ALP activity. N-acyl phosphatidylethanolamine-selective phospholipase D (NAPE-PLD), fatty acid amide hydrolase (FAAH) and CB2 mRNA expression were higher at 20 days compared to 10 days. NAPE-PLD and CB2 mRNA was lower in osteoblasts treated with EPA compared to all other groups. Thus, mRNA expression for NAPE-PLD, FAAH, and CB2 increased during osteoblast maturation and EPA reduced mRNA for NAPE-PLD and CB2 receptor. In conclusion, EPA lowered mRNA levels for proteins of the EC system and mRNA for AEA synthesis/degradation is reported in osteoblasts. 相似文献
19.
Functional expression of the human transferrin receptor cDNA in Chinese hamster ovary cells deficient in endogenous transferrin receptor 总被引:21,自引:15,他引:21 下载免费PDF全文
Transferrin (Tf) receptor-variant Chinese hamster ovary cells have been isolated by selection for resistance to two Tf-toxin conjugates. The hybrid toxins contain Tf covalently linked to ricin A chain or a genetically engineered diphtheria toxin fragment. The Tf-receptor-variant (TRV) cells do not have detectable cell-surface Tf receptor; they do not bind fluorescein-Tf or 125I-Tf. TRV cells are at least 100-fold more resistant to the Tf-diphtheria toxin conjugate than are the parent cells. The TRV cells have retained sensitivity to native diphtheria toxin, indicating that the increased resistance to the conjugate is correlated with the loss of Tf binding. The endocytosis of fluorescein-labeled alpha 2-macroglobulin is normal in TRV cells, demonstrating that the defect does not pleiotropically affect endocytosis. Since these cells lack endogenous Tf receptor activity, they are ideally suited for studies of the functional expression of normal or altered Tf receptors introduced into the cells by cDNA transfection. One advantage of this system is that Tf binding and uptake can be used to monitor the behavior of the transfected receptor. A cDNA clone of the human Tf receptor has been transfected into TRV cells. In the stably expressing transfectants, the behavior of the human receptor is very similar to that of the endogenous Chinese hamster ovary cell Tf receptor. Tf binds to cell surface receptors, and is internalized into the para-Golgi region of the cell. Iron is released from Tf, and the apo-Tf and its receptor are recycled back to the cell surface. Thus, the TRV cells can be used to study the behavior of genetically altered Tf receptors in the absence of interfering effects from endogenous receptors. 相似文献
20.
Dependence of globin gene expression in mouse erythroleukemia cells on the NF-E2 heterodimer. 总被引:12,自引:6,他引:12 下载免费PDF全文
High-level, tissue-specific expression of the beta-globin genes requires the presence of an upstream locus control region (LCR). The overall enhancer activity of the beta-globin complex LCR (beta-LCR) is dependent on the integrity of the tandem NF-E2 sites of HS-2. The NF-E2 protein which binds these sites is a heterodimeric basic leucine zipper protein composed of a tissue-specific subunit, p45 NF-E2, and a smaller subunit, p18 NF-E2, that is widely expressed. In these studies, we sought to investigate the role of NF-E2 in globin expression. We show that expression of a dominant-negative mutant p18 greatly reduces the amount of functional NF-E2 complex in the cell. Reduced levels of both alpha- and beta-globin were associated with the lower levels of NF-E2 activity in this cell line. Globin expression was fully restored upon the introduction of a tethered p45-p18 heterodimer. We also examined CB3 cells, a mouse erythroleukemia (MEL) cell line that does not express endogenous p45 NF-E2, and demonstrated that the restoration of globin gene expression was dependent upon the levels of expressed tethered NF-E2 heterodimer. Results of DNase I hypersensitivity mapping and in vivo footprinting assays showed no detectable chromatin alterations in beta-LCR HS-2 due to loss of NF-E2. Finally, we examined the specificity of NF-E2 for globin gene expression in MEL cells. These experiments indicate a critical role for the amino-terminal domain of p45 NF-E2 and show that a related protein, LCRF1, is unable to restore globin gene expression in p45 NF-E2-deficient cells. From these results, we conclude that NF-E2 is specifically required for high level goblin gene expression in MEL cells. 相似文献