首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Upon differential centrifugation of rat liver homogenate, the enzyme acyl-CoA:dihydroxyacetone-phosphate acyltransferase (EC 2.3.1.42) was found to be localized in the light mitochondrial (L) fraction which is enriched with lysosomes and peroxisomes. Peroxisomes were separated from lysosomes in a density gradient centrifugation using rats which were injected with Triton WR 1339. By comparing the enzyme distribution with the distribution of different marker enzymes, it was concluded that dihydroxyacetone phosphate acyltransferase is primarily localized in rat liver peroxisomes (microbodies). Similarly, the enzyme acyl dihydroxyacetone-phosphate:NADPH oxidoreductase (EC 1.1.1.101) was shown to be enriched in the peroxisomal fraction, although a portion of this reductase is also present in the microsomal fraction.  相似文献   

2.
The rumen entodiniomorphid ciliate protozoon Polyplastron multivesiculatum was shown, by biochemical and electron microscopic techniques, to possess hydrogenosomes. After differential centrifugation of whole cell homogenates the hydrogenosomal marker enzymes pyruvate:ferredoxin oxidoreductase and hydrogenase were recovered predominantly (61% and 70% of activity respectively) in the large granular fractions that were sedimented by centrifugation for 10(4) g-min (fraction P1) and 10(5) g-min (fraction P2). These subcellular fractions contained membrane-bound organelles that were approximately 0.4-0.6 microns in diameter and which had a mean equilibrium density of 1.22-1.24 g ml-1 after isopycnic centrifugation in sucrose gradients. Malate dehydrogenase (decarboxylating) activity, however, was predominantly non-sedimentable after centrifugation for 6 x 10(6) g-min. Numerous hydrogenosome-like organelles were present in the ectoplasm and endoplasm of the cell. Hydrogenase activity was demonstrated and localized in the protozoan cell using a novel staining procedure with distyryl nitroblue tetrazolium chloride (DSNBT).  相似文献   

3.
On subcellular fractionation, the enzyme acyl/alkyl dihydroxyacetone phosphate (DHAP) reductase (EC 1.1.1.101) in guinea pig and rat liver was found to be present in both the light mitochondrial (L) and microsomal fractions. By using metrizamide density gradient centrifugation, it was shown that the alkyl DHAP reductase activity in the "L" fraction is localized mainly in peroxisomes. From the distribution of the marker enzymes it was calculated that about two-thirds of the liver reductase activity is in the peroxisomes and the rest in the microsomes. The properties of this enzyme in peroxisomes and microsomes are similar with respect to heat inactivation, pH optima, sensitivity to trypsin, and inhibition by NADP+ and acyl CoA. The enzyme activity in the peroxisomes and microsomes from mouse liver is increased to the same extent by chronically feeding the animals clofibrate, a hypolipidemic drug. The kinetic properties of this enzyme in these two different organelles are also similar. From these results it is concluded that the same enzyme is present in two different subcellular compartments of liver.  相似文献   

4.
A. Suzuki  P. Gadal  A. Oaks 《Planta》1981,151(5):457-461
The cellular distribution of enzymes involved in nitrogen assimilation: nitrate reductase (EC 1.6.6.2), nitrite reductase (EC 1.6.6.4), glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 2.6.1.53), and glutamate dehydrogenase (EC 1.4.1.3) has been studied in the roots of five plants: maize (Zea mays L. hybrid W 64A x W 182E), rice (Oryza sativa L. cv. Delta), bean (Phaseolus vulgaris L. cv. Contender), pea (Pisum sativum L. cv. Demi-nain), and barley (Hordeum vulgare L.). Initially, cell organelles were separated from soluble proteins by differential centrifugation. Cell organelles were also subjected to sucrose density gradients. The results obtained by these two methods indicate that nitrite reductase and glutamate synthase are localized in plastids, nitrate reductase and glutamine synthetase are present in the cytosol, and glutamate dehydrogenase is a mitochondrial enzyme.  相似文献   

5.
A Survey of Plants for Leaf Peroxisomes   总被引:28,自引:20,他引:8       下载免费PDF全文
Leaves of 10 plant species, 7 with photorespiration (spinach, sunflower, tobacco, pea, wheat, bean, and Swiss chard) and 3 without photorespiration (corn, sugarcane, and pigweed), were surveyed for peroxisomes. The distribution pattern for glycolate oxidase, glyoxylate reductase, catalase, and part of the malate dehydrogenase indicated that these enzymes exist together in this organelle. The peroxisomes were isolated at the interface between layers of 1.8 to 2.3 m sucrose by isopycnic nonlinear sucrose density gradient centrifugation or in 1.95 m sucrose on a linear gradient. Chloroplasts, located by chlorophyll, and mitochondria by cytochrome c oxidase, were in 1.3 to 1.8 m sucrose.In leaf homogenates from the first 7 species with photorespiration, glycolate oxidase activity ranged from 0.5 to 1.5 mumoles x min(-1) x g(-1) wet weight or a specific activity of 0.02 to 0.05 mumole x min(-1) x mg(-1) protein. Glyoxylate reductase activity was comparable with glycolate oxidase. Catalase activity in the homogenates ranged from 4000 to 12,000 mumoles x min(-1) x g(-1) wet weight or 90 to 300 mumoles x min(-1) x mg(-1) protein. Specific activities of malate dehydrogenase and cytochrome oxidase are also reported. In contrast, homogenates of corn and sugarcane leaves, without photorespiration, had 2 to 5% as much glycolate oxidase, glyoxylate reductase, and catalase activity. These amounts of activity, though lower than in plants with photorespiration, are, nevertheless, substantial.Peroxisomes were detected in leaf homogenates of all plants tested; however, significant yields were obtained only from the first 5 species mentioned above. From spinach and sunflower leaves, a maximum of about 50% of the marker enzyme activities was found to be in these microbodies after homogenization. The specific activity for peroxisomal glycolate oxidase and glyoxylate reductase was about 1 mumole x min(-1) x mg(-1) protein; for catalase. 8000 mumoles x min(-1) x mg(-1) protein, and for malate dehydrogenase, 40 mumoles x min(-1) x mg(-1) protein. Only small to trace amounts of marker enzymes for leaf peroxisomes were recovered on the sucrose gradients from the last 5 species of plants. Bean leaves, with photorespiration, had large amounts of these enzymes (0.57 mumole of glycolate oxidase x min(-1) x g(-1) tissue) in the soluble fraction, but only traces of activity in the peroxisomal fraction. Low peroxisome recovery from certain plants was attributed to particle fragility or loss of protein as well as to small numbers of particles in such plants as corn and sugarcane.Homogenates of pigweed leaves (no photorespiration) contained from one-third to one-half the activity of the glycolate pathway enzymes as found in comparable preparations from spinach leaves which exhibit photorespiration. However, only traces of peroxisomal enzymes were separated by sucrose gradient centrifugation of particles from pigweed. Data from pigweed on the absence of photorespiration yet abundance of enzymes associated with glycolate metabolism is inconsistent with current hypotheses about the mechanism of photorespiration.Most of the catalase and part of the malate dehydrogenase activity was located in the peroxisomes. Contrary to previous reports, the chloroplast fractions from plants with photo-respiration did not contain a concentration of these 2 enzymes, after removal of peroxisomes by isopycnic sucrose gradient centrifugation.  相似文献   

6.
Inducible beta-oxidation pathway in Neurospora crassa.   总被引:5,自引:2,他引:3       下载免费PDF全文
An inducible beta-oxidation system was demonstrated in a particulate fraction from Neurospora crassa. The activities of all individual beta-oxidation enzymes were enhanced in cells after a shift from a sucrose to an acetate medium. The induction was even more pronounced in transfer to a medium containing oleate as sole carbon and energy source. Since an acyl-coenzyme A (CoA) dehydrogenase was detected instead of acyl-CoA oxidase, the former enzyme seems to catalyze the first step of the beta-oxidation sequence in N. crassa. After isopycnic centrifugation in a linear sucrose gradient, the intracellular organelles housing the fatty acid degradation pathway cosedimented (1.21 g/cm3) with the glyoxylate bypass enzymes isocitrate lyase and malate synthase and were clearly resolved from both mitochondrial marker enzymes (1.19 g/cm3) and catalase (1.26 g/cm3). On the basis of biochemical as well as morphological properties, these particles from N. crassa have recently been designated as glyoxysome-like particles (G. Wanner and T. Theimer, Ann. N.Y. Acad. Sci. 386:269-284, 1982). The failure to detect catalase, urate oxidase, and acyl-CoA oxidase indicate that these glyoxysome-like microbodies in N. crassa lack peroxisomal function and thus are clearly different from the various microbodies reported so far to contain a beta-oxidation pathway.  相似文献   

7.
Although the preparation of rat liver Golgi apparatus isolated by our method contains appreciable activities of NADH- and NADPH-cytochrome c reductases and glucose-6-phosphatase, these enzymes as well as thiamine pyrophosphatase of the extensively fragmented Golgi fraction are partitioned in aqueous polymer two-phase systems quite differently from those associated with microsomes. Similarly, the partition patterns of acid phosphatase and 5'-nucleotidase of the Golgi fragments differ from those of homogenized lysosomes and plasma membrane, respectively. It is concluded that most, if not all, of these marker enzymes in the Golgi fraction cannot be ascribed to contamination by the non-Golgi organelles. In sucrose density gradient centrifugation the NADH- and NADPH-cytochrome c reductase activities of the Golgi fraction behave identically with galactosyltransferase but differently from the reductase activities of microsomes, again indicating that the reductases are inherently associated with the Golgi apparatus. NADPH-cytochrome c reductase of the Golgi preparation is immunologically identical with that of microsomes. The marker enzymes mentioned above and galactosyltransferase behave differently from one another when the Golgi fragments are subjected to partitioning in aqueous polymer two-phase systems, suggesting that these enzymes are not uniformly distributed in the Golgi apparatus structure.  相似文献   

8.
A detailed subfractionation of the non-pregnant porcine corpus luteum (CL) was performed employing differential centrifugation. Marker enzyme assays (i.e., lactate dehydrogenase for the cytosol, NADPH-cytochrome P450 reductase for the endoplasmatic reticulum, catalase (CAT) for peroxisomes, glutamate dehydrogenase for the mitochondrial matrix and acid phosphatase for lysosomes) in all subfractions obtained exhibited a pattern of distribution similar to that observed with rat liver. These subfractions should be useful in connection with many types of future studies. In disagreement with previous biochemical and morphological studies, peroxisomes (identified on the basis of catalase activity and by Western blotting of catalase and of the major peroxisomal membrane protein (PMP-70)) sedimented together with mitochondria (i.e., at 5000 x g(av) for 10 min) and not in the post-mitochondrial fraction prepared at 30,000 x g(av) for 20 min by Peterson and Stevensson. No other classical peroxisomal enzymes were detectable in the porcine ovary, raising questions concerning the function of peroxisomes in this organ. Furthermore, UDP-glucuronosyltransferase (UGT), generally considered to be an integral membrane protein anchored in the endoplasmatic reticulum, was recovered in both the cytosolic (i.e., the supernatant after centrifugation at 50,000 x g(av) for 1h) and the microsomal fraction of the porcine corpus luteum, even upon further centrifugation of the former. In contrast, UGT sediments exclusively in the microsomal fraction upon subfractionation of the liver and ovary from rat.  相似文献   

9.
The present study has confirmed previous findings of long-chain acyl-CoA hydrolase activities in the mitochondrial and microsomal fractions of the normal rat liver. In addition, experimental evidence is presented in support of a peroxisomal localization of long-chain acyl-CoA hydrolase activity. (a) Analytical differential centrifugation of homogenates from normal rat liver revealed that this activity (using palmitoyl-CoA as the substrate) was also present in a population of particles with an average sedimentation coefficient of 6740 S, characteristic of peroxisomal marker enzymes. (b) The subcellular distribution of the hydrolase activity was greatly affected by administration of the peroxisomal proliferators clofibrate and tiadenol. The specific activity was enhanced in the mitochondrial fraction and in a population of particles with an average sedimentation coefficient of 4400 S, characteristic of peroxisomal marker enzymes. Three populations of particles containing lysosomal marker enzymes were found by analytical differential centrifugation, both in normal and clofibrate-treated rats. Our data do not support the proposal that palmitoyl-CoA hydrolase and acid phosphatase belong to the same subcellular particles. In livers from rats treated with peroxisomal proliferators, the specific activity of palmitoyl-CoA hydrolase was also enhanced in the particle-free supernatant. Evidence is presented that this activity at least in part, is related to the peroxisomal proliferation.  相似文献   

10.
3-Hydroxy-3-methylglutaryl coenzyme A reductase from seedlings of Pisum sativum L. is localized in the plastids, mitochondria, and microsomes. Separation of the microsomal fraction into heavy and light subfractions shows that 95% of the microsomal activity is associated with the light subfraction. Definitive localization was achieved by showing that reductase activity comigrated with organelle markers on sucrose density gradients. Differential centrifugation studies showed that the microsomal fraction contained 80% of the total cellular activity, and the mitochondrial and plastid fractions each contained about 10%.The results suggest the existence of three parallel biosynthetic pathways which may be important in regulating the synthesis of isoprenoids characteristic of the individual organelles.  相似文献   

11.
Using the Hep G2 cell line as a model for the human hepatocyte the question was studied whether Hep G2-peroxisomes could be able to synthesize cholesterol. Hep G2 cell homogenates were applied to density gradient centrifugation on Nycodenz, resulting in good separation between the organelles. The different organelle fractions were characterized by assaying the following marker enzymes: catalase for peroxisomes, glutamate dehydrogenase for mitochondria and esterase for endoplasmic reticulum. Squalene synthase activity was not detectable in the peroxisomal fraction. Incubation of Hep G2 cells with U18666A, an inhibitor of the cholesterol synthesis at the site of oxidosqualene cyclase, together with heavy high density lipoprotein, which stimulates the efflux of cholesterol, led to a marked increase in the activity of squalene synthase as well as HMG-CoA reductase, whereas no significant effect on the marker enzymes was observed. Neither enzyme activity was detectable in the peroxisomal density gradient fraction, suggesting that in Hep G2-peroxisomes cholesterol synthesis from the water-soluble early intermediates of the pathway cannot take place. Both stimulated and non-stimulated cells gave rise to preparations where squalene synthase activity was comigrating with the reductase activity at the lower density side of the microsomal fraction; however, it was also present at the high density side of the microsomal peak, where reductase activity was not detected.  相似文献   

12.
1. Analytical differential centrifugation of rat heart homogenates revealed a single population of mitochondria and microperoxisomes. Using cytochorme c oxidase, malate dehydrogenase and amine oxidase as mitochondrial marker enzymes, the -value of mitochondria was estimated to = 10326 ± 406 S (average for the three marker enzymes). The −s-value of microperoxisomes was found to be −s = 1381 ± 40 S using catalase as the marker enzyme. The −s-value for the two orgenelles did not change significantly when the isoosmotic sucrose medium was substituted by an isoosmotic mannitol medium. 2. Analytical differential centrifugation revealed a polydispercity of the microsomal fraction using glucose-6-phosphatase and NADPH-cytochrome c reductase as the marker enzymes. The -values were found to be −sH1 = 1569 ± 412 S (NADPH-cytochrome c reductase), (glucose-6-phosphatase) and (NADPH-cytochrome c reductase and glucose-6-phosphatase). The recovery of marker enzymes in the isolated subcellular fractions was in the range of 84–94%. 3. When the mitochondrial and microperoxisomal fractions were subjected to isopycnic gradient centrifugation, using a self-generating gradient of polyvinylpyrrolidone-coated colloidal silica particles (Percoll) in 0.25 M sucrose medium, buoyant densities of 1.10 g/cm3 (main fraction of mitochondria) and 1.06 g/cm3 (main fraction of microperixosomes) were obtained. The density gradient centrifugation separated microperoxisomes from contaminating lysosomes of high specific activity in acid phosphatase. A value 1.04 g/cm3 was foung for the density of the microsomal fraction. 4. Based on the estimated -values, an optimal procedure is described for the isolattion of mitochondrial and microperoxisomal fractions from rat heart muscle.  相似文献   

13.
Enzymes of the β-oxidation pathway in rice ( Oryza sativa L., cv. Arborio) coleoptiles were investigated. The coleoptiles contain acyl-CoA oxidase (EC 1.3.99.3), 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35), enoyl-CoA hydratase (EC 4.2.1.17) and thiolase (EC 2.3.1.9). Analysis of coleoptile homogenates by sucrose density fractionation showed a preferential distribution of these enzymes in the unspecialized peroxisomes. The enzymatic activity found in the mitochondrial fraction was due to peroxisomal contamination since electron micrographs show the peroxisomes to be intact and pure whereas the mitochondrial fraction was contaminated by other organelles. It appears that the β-oxidation pathway is localized in the unspecialized peroxisomes of rice coleoptiles, extending the number of plant species in which such a localization has been observed.  相似文献   

14.
A procedure for the isolation of highly purified lysosomes from normal rat liver is described. The method depends on the swelling of mitochondria when the postnuclear supernatant fraction is incubated with 1 mM Ca2+. The lysosomes can then be separated from the swollen mitochondria by Percoll density gradient centrifugation. The lysosomal fraction obtained by our method was enriched more than 120-fold in terms of the marker enzymes with a yield of 25%. The electron microscopic examination and the measurement of the activities of marker enzymes for various subcellular organelles indicated that our lysosomal preparation was essentially free from contamination by other organelles.  相似文献   

15.
The distribution of divalent cation stimulated ATPase activity in relation to the distribution of other enzyme activities was studied for membrane fractions from wheat roots ( Tritium aestivum L . cv. Svenno). A homogenate from dark grown plants was fractionated by differential centrifugation at 1000 g , 10,000 g , 30,000 g and 60,000 g (1, 10, 30 and 60 KP fractions), followed by partition in an aqueous polymer two-phase system, using polyethylene glycol 4000/dextran T500 concentrations of 5.7/5.7, 5.9/5.9, 6.1/6.1, 6.3/6.3 and 6.5/6.5% (w/w). The 30 KP fraction was also separated by counter-current distribution id a 6.3/6.3% two-phase system. Protein and activities of Ca2+, Mg2+, and Mn2+ stimulated ATPases. cytochrome oxidase, light induced absorbance change (LIAC) related to cyt b reductions, inosine diphosphatase and NADH dependent antimycin A insensitive cytochrome c reductase were measured.
The partition of ATPase activities stimulated by Ca2+, Mg2+ or Mn2+ was similar at all polymer concentrations tested, indicating: a low cation specificity of the dominating ATPases. The distribution of ATPases. agreed with different marker enzymes in different centrifuge fractions. Divalent cation stimulated ATPases were evidently related to several of the organelles. In the different fractions the distribution of ATPase activity should then follow that of the marker enzyme of the dominant organelle. From studies with different polymer concentrations the 6.3/6.3-system was selected for further separation of the membranes in the 30 KP fraction by counter-current distribution. By this method one fraction was obtained, which probably consisted of plasmalemma and was free from mitochondrial material. Indications for plasmalemma in this fraction were a) similar partition as protoplasts and b) high LIAC activity.  相似文献   

16.
Glyoxysomes in megagamethophyte of germinating ponderosa pine seeds   总被引:15,自引:11,他引:4       下载免费PDF全文
Ching TM 《Plant physiology》1970,46(3):475-482
Decoated ponderosa pine (Pinus ponderosa Laws) seeds contained 40% lipids, which were mainly stored in megagametophytic tissue and were utilized or converted to sugars via the glyoxylate cycle during germination. Mitochondria and glyoxysomes were isolated from the tissue by sucrose density gradient centrifugation at different stages of germination. It was found that isocitrate lyase, malate synthase, and catalase were mainly bound in glyoxysomes. Aconitase and fumarase were chiefly localized in mitochondria, whereas citrate synthase was common for both. Both organelles increased in quantity and specific activity of their respective marker enzymes with the advancement of germination. When the megagametophyte was exhausted at the end of germination, the quantity of these organelles and the activity of their marker enzymes decreased abruptly. At the stage of highest lipolysis, the isolated mitochondria and glyoxysomes were able to synthesize protein from labeled amino acids. Both organellar fractions contained RNA and DNA. Some degree of autonomy in glyoxysomes is indicated.  相似文献   

17.
SYNOPSIS. The activity and distribution of 7 enzymes in Ochromonas malhamensis were studied. Subcellular organelles were separated by centrifugation at 648,000 g min to precipitate the larger particles; the resulting supernatant was centrifuged at 5,560,000 g min to separate the microsomal fraction from the supernatant. Sixty-four percent of the cytochrome oxidase (1.9.3.1 ferrocytochrome c:oxygen oxidoreductase, 81% of the catalase (1.11.1.6 hydrogen-peroxide: hydrogen-peroxide oxidoreductase) and 70% of the urate oxidase (1.7.3.3 urate:oxygen oxidoreductase) activity was associated with the larger particles, altho only 20% of the total protein was found in this fraction. Three acid hydrolases, cathepsin (3.4.4.9 cathepsin C, acid phosphatase (3.1.3.2 orthophosphoric monoesterphosphohydrolase) and acid ribonuclease (2.7.7.17 ribonucleate nucleotido-2′-transferase) were found mostly in the supernate (50-60%, yet their latency and their similar subcellular distribution indicated the presence of lysosomes. After 2.5 hr centrifugation in a sucrose density gradient (ρ= 1.08–1.25, the acid hydrolases showed a broad distribution which differed greatly from cytochrome oxidase associated with mitochondria. Catalase, which could not be separated from cytochrome oxidase by centrifuging on this gradient, had a different distribution after centrifugation on a kinetic gradient. Urate oxidase had a similar distribution to catalase and both these enzymes were latent, indicating the presence of peroxisomes.  相似文献   

18.
Pure suspensions of human lymphocytes were separated from peripheral blood by means of nylon wool, homogenized in 0.34 M sucrose-0.01 M EDTA solution, and fractionated by differential centrifugation. The bulk of acid hydrolase activity was found to be concentrated in a 20,000 g x 20 min granular fraction, whereas nuclear, debris, and supernatant fractions contained lesser concentrations of hydrolases. Acid hydrolase activity present in the granular fraction showed appropriate "latency" as judged by its dose-dependent release into the 20,000 g x 20 min supernatant after exposure to membrane-disruptive agents such as streptolysin S, filipin, and lysolecithin. Heparin proved to be necessary in the suspending medium so that reproducible homogenization and cell fractionation could be obtained. Even excessive contamination of lymphocyte suspensions with platelets did not appreciably alter the acid hydrolase activity of lymphocyte homogenates or the distribution of enzymes in subcellular fractions. Discontinuous density-gradient centrifugation of a 500 g x 10 min supernatant, containing both acid hydrolase-rich organelles and mitochondria, resulted in partial resolution of hydrolase-rich organelles from mitochondria. Fine structural studies of the intact lymphocytes showed the presence of acid phosphatase-positive, membrane-bounded organelles. Electron microscopy of the "large granule" (20,000 g x 20 min) fraction of such lymphocytes demonstrated 80–90% mitochondria, 5–10% platelets, and 5–10% membrane-bounded acid phosphatase-positive structures. The data indicate the presence in human peripheral blood lymphocytes of acid hydrolase-rich granules which possess many of the biochemical and structural characteristics of lysosomes in other tissues.  相似文献   

19.
1.
1. A fraction rich in plasma membranes was isolated from the rat liver cell by zonal centrifugation, and the amounts of nitochondria, microsomes, and lysosomes in the fraction were determined by the use of marker enzymes for these organelles. Recovery of the marker enzymes indicated that 94% of the fraction was plasma membranes.  相似文献   

20.
Yeast invertase, when injected into rats, is endocytosed by the liver, mainly by sinusoidal cells. The work reported here aims at investigating the organelles involved in the intracellular journey of this protein. Experiments were performed on rats injected with 125I-invertase (25 micrograms/100 g body wt) and killed at various times after injection. Homogenates were fractioned by differential centrifugation, according to de Duve, Pressman, Gianetto, Wattiaux and Appelmans [(1955) Biochem. J. 63, 604-617]. Early after injection the radioactivity was recovered mainly in the microsomal fraction P; later it was found in the mitochondrial fractions (ML). At all times a peak of relative specific activity was observed in the light mitochondrial fraction L. After isopycnic centrifugation in a sucrose gradient, structures bearing 125I-invertase, present in P, exhibited a relatively flattened distribution with a density of around 1.17 g/ml, relatively similar to that of alkaline phosphodiesterase a plasma membrane marker. The organelles located in ML were endowed with a more homogeneous distribution, their median equilibrium density increasing up to 30 min after injection (1.20 g/ml----1.23 g/ml); with time the radioactivity distribution became more closely related to the distribution of arylsulfatase, a lysosomal enzyme. ML fractions, isolated 10 min and 180 min after 125I-invertase injection, were subjected to isopycnic centrifugation in Percoll gradient with, as solvent, 0.25 M, 0.5 M and 0.75 M sucrose. The change of density of the particles bearing 125I-invertase, as a function of the sucrose concentration, paralleled the change of density of the lysosomes as ascertained by the behaviour of arylsulfatase. The distribution of radioactivity and arylsulfatase in a sucrose gradient was established after isopycnic centrifugation of the ML fraction of rats injected with 125I-invertase, the animals having received or not an injection of 900 micrograms/100 g body weight of unlabelled invertase 15 h before killing. In agreement with our previous results, a shift towards higher densities of about 25% or arylsulfatase takes place in rats pretreated with unlabelled invertase. At 10 min, invertase preinjection did not change the radioactivity distribution curve. Later, it caused a progressive shift of the distribution towards higher-density regions of the gradient where the arylsulfatase, which had been shifted, was located.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号