首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adhesion and motility of fouling diatoms on a silicone elastomer   总被引:1,自引:0,他引:1  
Recent demands for non-toxic antifouling technologies have led to increased interest in coatings based on silicone elastomers that 'release' macrofouling organisms when hydrodynamic conditions are sufficiently robust. However, these types of coatings accumulate diatom slimes, which are not released even from vessels operating at high speeds (>30 knots). In this study, adhesion strength and motility of three common fouling diatoms (Amphora coffeaeformis var. perpusilla (Grunow) Cleve, Craspedostauros australis Cox and Navicula perminuta Grunow) were measured on a poly-dimethylsiloxane elastomer (PDMSE) and acid-washed glass. Adhesion of the three species was stronger to PDMSE than to glass but the adhesion strengths varied. The wall shear stress required to remove 50% of cells from PDMSE was 17 Pa for Craspedostauros, 24 Pa for Amphora and >53 Pa for Navicula; the corresponding values for glass were 3, 10 and 25 Pa. In contrast, the motility of the three species showed little or no correlation between the two surfaces. Craspedostauros moved equally well on glass and PDMSE, Amphora moved more on glass initially before movement ceased and Navicula moved more on PDMSE before movement ceased. The results show that fouling diatoms adhere more strongly to a hydrophobic PDMSE surface, and this feature may contribute to their successful colonization of low surface energy, foul-release coatings. The results also indicate that diatom motility is not related to adhesion strength, and motility does not appear to be a useful indicator of surface preference by diatoms.  相似文献   

2.
A novel quartz crystal microbalance (QCM) technique was used to study the adhesion of nonfimbriated and fimbriated Escherichia coli mutant strains to hydrophilic and hydrophobic surfaces at different ionic strengths. This technique enabled us to measure both frequency shifts (Deltaf), i.e., the increase in mass on the surface, and dissipation shifts (DeltaD), i.e., the viscoelastic energy losses on the surface. Changes in the parameters measured by the extended QCM technique reflect the dynamic character of the adhesion process. We were able to show clear differences in the viscoelastic behavior of fimbriated and nonfimbriated cells attached to surfaces. The interactions between bacterial cells and quartz crystal surfaces at various ionic strengths followed different trends, depending on the cell surface structures in direct contact with the surface. While Deltaf and DeltaD per attached cell increased for nonfimbriated cells with increasing ionic strengths (particularly on hydrophobic surfaces), the adhesion of the fimbriated strain caused only low-level frequency and dissipation shifts on both kinds of surfaces at all ionic strengths tested. We propose that nonfimbriated cells may get better contact with increasing ionic strengths due to an increased area of contact between the cell and the surface, whereas fimbriated cells seem to have a flexible contact with the surface at all ionic strengths tested. The area of contact between fimbriated cells and the surface does not increase with increasing ionic strengths, but on hydrophobic surfaces each contact point seems to contribute relatively more to the total energy loss. Independent of ionic strength, attached cells undergo time-dependent interactions with the surface leading to increased contact area and viscoelastic losses per cell, which may be due to the establishment of a more intimate contact between the cell and the surface. Hence, the extended QCM technique provides new qualitative information about the direct contact of bacterial cells to surfaces and the adhesion mechanisms involved.  相似文献   

3.
The quartz crystal microbalance (QCM) technique has been applied to the real time monitoring of endothelial cell (EC) adhesion and spreading on the QCM gold surface. We previously showed that the measured QCM Deltaf and DeltaR shifts were due to cells adhering to the gold crystal surface, requiring proteolytic enzyme treatment to be removed from the surface, in order for the Deltaf and DeltaR shifts to return to zero. In the present report, we demonstrate the quantitative dependence and saturation of the measured Deltaf and DeltaR shifts on the number of firmly attached ECs as measured by electronic counting of the cells. We demonstrate through a light microscope simulation experiment that the different Deltaf and DeltaR regions of the QCM temporal response curve correspond to the incident ECs contacting the surface, followed by their adhesion and spreading, which reflect cellular mass distribution and cytoskeletal viscoelasticity changes. Also, we demonstrate that the dose response curve of Deltaf and DeltaR values versus attached EC number is more sensitive and possesses less scatter for the hydrophilically treated surface compared to the native gold surface of the QCM. For both surfaces, a Deltaf and DeltaR versus trypsinized, attached EC number plot 1 h post-seeding exhibits a sigmoid curve shape whereas a similar plot 24 h post-seeding exhibits a hyperbolic curve shape. This number dependence suggests cell-cell cooperativity in the initial cell adhesion and spreading processes. These QCM data and our interpretation are corroborated by differences in cell appearance and spreading behavior we observed for ECs in a light microscope fluorescence simulation experiment of the cell density effect. For a stably attached EC monolayer at 24 h post-addition, steady-state Deltaf and DeltaR values are higher and exhibit saturation behavior for both the hydrophilically treated gold surface as compared to the untreated surface. The steady-state 24 h Deltaf and DeltaR values of stably attached ECs are shifted from the 1 h attached ECs. The 24 h values are characteristic of a more energy-dissipative structure. This is consistent with the time-dependent elaboration of surface contacts in anchorage-dependent ECs via the attachment of intregrins to underlying extracellular matrix. It is also in agreement with the known energy dissipation function of the ECs that cover the interior of blood vessels and are exposed to continuous pulsatile blood flow.  相似文献   

4.
The hypothesis that exposure to a certain combination of static and alternating electromagnetic fields (EMFs) results in an increase in motility of the marine diatom Amphora coffeaeformis was tested. Diatom motility in three strains of A. coffeaeformis was positively correlated with extracellular calcium ion (Ca2+) concentration. The test apparatus consisted of two pairs of Helmholtz coils supported around the stage of a microscope linked to a video recorder and monitor. This system allowed real-time in vivo recordings of diatom speed under EMF and control exposures. The EMFs were calculated at calcium resonance values, previously found to cause enhanced motility. Computerised image analysis was used to calculate the distance moved by individual diatoms in 2-min periods before, during and after EMF or sham-EMF (control) exposure. The addition of EMF caused no significant increase in diatom motility. The results are discussed in relation to the use of diatom motility to measure EMF exposure effects.  相似文献   

5.
Epipelic diatoms are important components of microphytobenthic biofilms. Cultures of four diatom species (Amphora coffeaeformis, Cylindrotheca closterium, Navicula perminuta and Nitzschia epithemioides) and assemblages of mixed diatom species collected from an estuary were exposed to elevated levels of ultraviolet-B (UV-B) radiation. Short exposures to UV-B resulted in decreases in photosystem II (PSII) photochemistry, photosynthetic electron transport, photosynthetic carbon assimilation and changes in the pattern of allocation of assimilated carbon into soluble colloidal, extracellular polysaccharides (EPS) and glucan pools. The magnitude of the effects of the UV-B treatments varied between species and was also dependent upon the photosynthetically active photon flux density (PPFD) to which the cells were also exposed, with effects being greater at lower light levels. Both increases in nonphotochemical quenching of excitation energy in the pigment antennae and photodamage to the D1 reaction centres contributed to decreases in PSII photochemistry. All species demonstrated a rapid ability to recover from perturbations of PSII photochemistry, with some species recovering during the UV-B exposure period. Some of the perturbations induced in carbon metabolism were independent of effects on PSII photochemistry and photosynthetic electron transport. Elevated UV-B can significantly inhibit photosynthetic performance, and modify carbon metabolism in epipelic diatoms. However, the ecological effects of UV-B at the community level are difficult to predict as large variations occur between species.  相似文献   

6.
Extracellular adhesives from the diatoms Achnanthes longipes, Amphora coffeaeformis, Cymbella cistula, and Cymbella mexicana were characterized by monosaccharide and methylation analysis, lectin-fluorescein isothiocyanate localization, and cytochemical staining. Polysaccharide was the major component of adhesives formed during cell motility, synthesis of a basal pad, and/or production of a highly organized shaft. Hot water-insoluble/hot 0.5 M NaHCO3-soluble anionic polysaccharides from A. longipes and A. coffeaeformis adhesives were primarily composed of galactosyl (64-70%) and fucosyl (32-42%) residues. In A. longipes polymers, 2,3-, t-, 3-, and 4-linked/substituted galactosyl, t-, 3-, 4-, and 2-linked fucosyl, and t- and 2-linked glucuronic acid residues predominated. Adhesive polysaccharides from C. cistula were EDTA-soluble, sulfated, consisted of 83% galactosyl (4-, 4,6-, and 3,4-linked/substituted) and 13% xylosyl (t-, 4f/5p-, and 3p-linked/substituted) residues, and contained no uronosyl residues. Ulex europaeus agglutinin uniformly localized [alpha](1,2)-L-fucose units in C. cistula and Achnanthes adhesives formed during motility and in the pads of A. longipes. D-Galactose residues were localized throughout the shafts of C. cistula and capsules of A. coffeaeformis. D-Mannose and/or D-glucose, D-galactose, and [alpha](t)-L-fucose residues were uniformly localized in the outer layers of A. longipes shafts by Cancavalia ensiformis, Abrus precatorius, and Lotus tetragonolobus agglutinin, respectively. A model for diatom cell adhesive structure was developed from chemical characterization, localization, and microscopic observation of extracellular adhesive components formed during the diatom cell-attachment process.  相似文献   

7.
Atomic Force Microscopy (AFM) resolved the topography and mechanical properties of two distinct adhesive mucilages secreted by the marine, fouling diatom Craspedostauros australis. Tapping mode images of live cells revealed a soft and cohesive outer mucilage layer that encased most of the diatom's siliceous wall, and force curves revealed an adhesive force of 3.58 nN. High loading force, contact mode imaging resulted in cantilever 'cleaned' cell walls, which enabled the first direct observation of the active secretion of soft mucilage via pore openings. A second adhesive mucilage consisted of strands secreted at the raphe, a distinct slit in the silica wall involved in cell-substratum attachment and motility. Force measurements revealed a raphe adhesive strand(s) resistant to breaking forces up to 60 nN, and these strands could only be detached from the AFM cantilever probe using the manual stepper motor.  相似文献   

8.
Biofilms dominated by pennate diatoms are important in fields as diverse as ship biofouling and marine littoral sediment stabilization. The architecture of a biofilm depends on the fact that much of its mass consists of extracellular polymers. Although most illuminated biofilms in nature are dominated by phototrophs, they also contain heterotrophic bacteria. Given the close spatial association of the two types of organisms, cell-cell interaction is likely. Fluorophore-conjugated lectins were used to demonstrate the sites of the various extracellular polymers in three species of diatoms. Based on their lectin staining properties, the polymers in different species appeared to be similar, but their involvement in the process of attachment to a surface differed. In a coculture Pseudoalteromonas sp. strain 4 or its sterilized spent medium reduced the ability of Amphora coffeaeformis and Navicula sp. strains 1 and D to adhere, inhibited motility, and caused agglutination and eventually diatom cell lysis. Diatoms could be protected from the negative effects of the bacterial spent medium if D-galactose or mannan was included in the incubation medium. The active principle of the spent medium is probably a lectin/agglutinin that is able to bind to the extracellular polymers of the diatoms that are involved in adhesion and motility. Awareness of interactions of this type is important in the study of natural biofilms.  相似文献   

9.
The coagulation of blood plasma and whole blood was studied with a surface plasmon resonance (SPR) based device and a quartz crystal microbalance instrument with energy dissipation detection (QCM-D). The SPR and QCM-D response signals were similar in shape but differing in time scales, reflecting differences in detection mechanisms. The QCM-D response time was longer than SPR, as a physical coupling of the sample to the substrate is required for molecules to be detected by the QCM-method. Change of sample properties within the evanescent field is sufficient for detection with SPR. Both the SPR signals and the QCM-D frequency and dissipation shifts showed dependency on concentrations of coagulation activator and sensitivity to heparin additions. The ratio of dissipation to frequency shifts, commonly considered to reflect viscoelastic properties of the sample, varied with the concentration of activator in blood plasma but not in whole blood. Additions of heparin to the thromboplastin activated whole blood sample, however, made the ratio variation reoccur. Implications of these observations for the understanding of the blood coagulation processes as well as the potential of the two methods in the clinic and in research are discussed.  相似文献   

10.
A quartz crystal microbalance (QCM) cell biosensor utilizing living endothelial cells (ECs) or human breast cancer cells (MCF-7) adhering to the gold QCM surface was used to study the relative contributions of the cells and their underlying extracellular matrix (ECM) to the measured QCM Deltaf and DeltaR shifts. The ECM represents a natural biomaterial that is synthesized by the cells to enable their attachment to surfaces. We followed the detachment of the ECs or MCF-7 cells from their ECM using a nonproteolytic method and were able to apportion the total frequency, Deltaf, decrease of the biosensor into contributions from cell attachment and from the intact underlying ECM. We also demonstrated that the Deltaf shift remaining after EC removal corresponds to ECM as determined by light microscopic visualization of the stained protein. During the process of cell detachment, we observed a novel transient increase in viscoelastic behavior expressed as a transient increase in the motional resistance, DeltaR, parameter. Then we showed via a simulation experiment using ECs stained with fluorescent rhodamine-labeled phalloidin, an actin stain, that the transient viscoelastic increase correlated with cellular stress exhibited by the cells during removal with ethylene glycol bis(2-aminoethyl ether)-N,N,N',N'- tetraacetic acid. Prior to cells lifting from their ECM, the attached ECs rearrange their actin microfilaments first into peripheral stress fibers and second into internal aggregates, to maintain cell-cell connectivity, retain their spread morphology, and attempt to adhere more tightly to their underlying ECM. The decrease in DeltaR following its transient rise corresponds to cells finally losing their attachment focal points and lifting from the ECM. We also characterized the normalized f shifts, -Delta(Deltaf)(ECM)/attached cell and -Delta(Deltaf)(cells)/attached cell, as a function of varying the number of adherent cells. Finally, we demonstrate that the underlying native ECM biomaterial, from which all cells have been removed, does not exhibit any significant level of energy dissipation, in contrast to the cells when they are attached to the ECM.  相似文献   

11.
Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) was used to study compositional characteristics of Extracellular Polymeric Substances (EPS) and compared these to characteristics of the EPS-matrix of intact diatom biofilms. Three benthic diatoms species were investigated, Cylindrotheca closterium, Navicula mutica and Nitzschia cf. brevissima. Comparison of the ToF-SIMS spectra of sequentially extracted EPS-fractions by cluster analysis and multidimensional scaling analysis (MDS) indicated that soluble and bound EPS were not distinguishable based on their ion spectra. On the contrary the water insoluble bicarbonate soluble (WIBS)-EPS-fraction formed a distinct cluster showing that this material was compositionally different from the other EPS-fractions. Ion spectra of the EPS-fractions were dissimilar to results obtained from intact biofilms. This suggested that during the extraction procedure, the structure of the EPS irreversibly changed, which alters the fragmentation patterns of the extracellular surface layer. Furthermore, from the examination of the positive ion spectra it was shown that the overall composition of EPS in the intact biofilms was different between diatom species. In spite of these differences, several common peak patterns were shared between different species. This suggests the presence of common structural components in the EPS of these diatoms that may play a role in building the surface EPS-layer.  相似文献   

12.
Whole cell, strength of adhesion assays of three different isolates of the fouling diatom Amphora coffeaeformis were compared using a hydrophilic surface viz. acid washed glass (AWG), and a hydrophobic surface viz. a self assembled monolayer (SAM) of undecanethiol (UDT). Assays were performed using a newly designed turbulent flow channel that permits direct observation and recording of cell populations on a test surface. Exposure to continuous shear stress over 3?h revealed that the more motile isolate, WIL2, adhered much more strongly to both test surfaces compared to the other two strains. When the response of the isolates to shear stress after 3?h was compared, there was no significant difference in the percentage of cells removed, irrespective of surface wettability. Cells of the three isolates of A. coffeaeformis varied significantly in their response to different surfaces during initial adhesion, indicating the presence of a wide range of 'physiological races' within this species.  相似文献   

13.
Scott C  Fletcher RL  Bremer GB 《Biofouling》1996,10(1-3):161-173
Using scanning electron microscopy (SEM), differential interference contrast microscopy (DICM) and cytochemical staining techniques, preliminary observations have been made on the mechanisms of attachment of some common, marine, benthic fouling blue-green algae ("cyanobacteria") isolated into culture from various toxic and non-toxic surfaces in Langstone Harbour, south coast of England. Blue-green algae investigated included species of Calothrix, Dermocarpa, Plectonema, Phormidium and Xenococcus. The blue-green algae are rapid colonisers and can make an important contribution to the pioneering communities on both toxic and non-toxic surfaces. A characteristic feature of the colonization process is the production of variable quantities of extracellular polymeric substances (EPS) which appear to function as adhesives. Cytochemical staining revealed the EPS to be an acidic polysaccharide and, therefore, chemically similar to the EPS produced by sessile diatoms. It is suggested that the EPS additionally assists in cell motility, acts as an antidesiccant and may influence the fouling process by combining with antifouling paint toxins and modifying the surface energy of substrata.  相似文献   

14.
Patil JS  Anil AC 《Biofouling》2005,21(3-4):189-206
Diatoms, which are early autotrophic colonisers, are an important constituent of the biofouling community in the marine environment. The effects of substratum and temporal variations on the fouling diatom community structure in a monsoon-influenced tropical estuary were studied. Fibreglass and glass coupons were exposed every month for a period of 4 days and the diatom population sampled at 24 h intervals, over a period of 14 months. The planktonic diatom community structure differed from the biofilm community. Pennate diatoms dominated the biofilms whilst centric diatoms were dominant in the water column. Among the biofilm diatoms, species belonging to the genera Navicula, Amphora, Nitzschia, Pleurosigma and Thalassionema were dominant. On certain occasions, the influence of planktonic blooms was also seen on the biofilm community. A comparative study of biofilms formed on the two substrata revealed significant differences in density and diversity. However species composition was almost constant. In addition to substratum variations, the biofilm diatom community structure also showed significant seasonal variations, which were attributed to physico-chemical and biological changes in both the water and substratum. Temporal variations in the tychopelagic diatoms of the water were also observed to exert an influence on the biofilm diatom community. Variations in diatom communities may determine the functional ecosystem of the benthic environment.  相似文献   

15.
Recent demands for non-toxic antifouling technologies have led to increased interest in coatings based on silicone elastomers that ‘release’ macrofouling organisms when hydrodynamic conditions are sufficiently robust. However, these types of coatings accumulate diatom slimes, which are not released even from vessels operating at high speeds ( > 30 knots). In this study, adhesion strength and motility of three common fouling diatoms (Amphora coffeaeformis var. perpusilla (Grunow) Cleve, Craspedostauros australis Cox and Navicula perminuta Grunow) were measured on a polydimethylsiloxane elastomer (PDMSE) and acid-washed glass. Adhesion of the three species was stronger to PDMSE than to glass but the adhesion strengths varied. The wall shear stress required to remove 50% of cells from PDMSE was 17 Pa for Craspedostauros, 24 Pa for Amphora and >> 53 Pa for Navicula; the corresponding values for glass were 3, 10 and 25 Pa. In contrast, the motility of the three species showed little or no correlation between the two surfaces. Craspedostauros moved equally well on glass and PDMSE, Amphora moved more on glass initially before movement ceased and Navicula moved more on PDMSE before movement ceased. The results show that fouling diatoms adhere more strongly to a hydrophobic PDMSE surface, and this feature may contribute to their successful colonization of low surface energy, foul-release coatings. The results also indicate that diatom motility is not related to adhesion strength, and motility does not appear to be a useful indicator of surface preference by diatoms.  相似文献   

16.
Diatoms are single-celled microalgae with silica-based cell walls (frustules) that are abundantly present in aquatic habitats, and form the basis of the food chain in many ecosystems. Many benthic diatoms have the remarkable ability to glide on all natural or man-made underwater surfaces using a carbohydrate- and protein-based adhesive to generate traction. Previously, three glycoproteins, termed FACs (F rustule A ssociated C omponents), have been identified from the common fouling diatom Craspedostauros australis and were implicated in surface adhesion through inhibition studies with a glycan-specific antibody. The polypeptide sequences of FACs remained unknown, and it was unresolved whether the FAC glycoproteins are indeed involved in adhesion, or whether this is achieved by different components sharing the same glycan epitope with FACs. Here we have determined the polypeptide sequences of FACs using peptide mapping by LC–MS/MS. Unexpectedly, FACs share the same polypeptide backbone (termed CaFAP1), which has a domain structure of alternating Cys-rich and Pro-Thr/Ser-rich regions reminiscent of the gel-forming mucins. By developing a genetic transformation system for C. australis, we were able to directly investigate the function of CaFAP1-based glycoproteins in vivo. GFP-tagging of CaFAP1 revealed that it constitutes a coat around all parts of the frustule and is not an integral component of the adhesive. CaFAP1-GFP producing transformants exhibited the same properties as wild type cells regarding surface adhesion and motility speed. Our results demonstrate that FAC glycoproteins are not involved in adhesion and motility, but might rather act as a lubricant to prevent fouling of the diatom surface.  相似文献   

17.
Diatoms are a major component of microbial biofouling layers that develop on man-made surfaces placed in aquatic environments, resulting in significant economic and environmental impacts. This paper describes surface functionalisation of the inherently conducting polymers (ICPs) polypyrrole (PPy) and polyaniline (PANI) with poly(ethylene glycol) (PEG) and their efficacy as fouling resistant materials. Their ability to resist interactions with the model protein bovine serum albumin (BSA) was tested using a quartz crystal microbalance with dissipation monitoring (QCM-D). The capacity of the ICP-PEG materials to prevent settlement and colonisation of the fouling diatom Amphora coffeaeformis (Cleve) was also assayed. Variations were demonstrated in the dopants used during ICP polymerisation, along with the PEG molecular weight, and the ICP-PEG reaction conditions, all playing a role in guiding the eventual fouling resistant properties of the materials. Optimised ICP-PEG materials resulted in a significant reduction in BSA adsorption, and > 98% reduction in diatom adhesion.  相似文献   

18.

Antarctic sponges are commonly fouled by diatoms, sometimes so heavily as to occlude pores employed in filter feeding and respiration. This fouling becomes heavier during the annual summer microalgal bloom. Polar and non‐polar extracts of eight species of marine sponges from McMurdo Sound, Antarctica were assayed for cytotoxicity against sympatric fouling diatoms. To identify compounds potentially released by sponges as defenses against diatom biofouling, only fractions of crude extracts that were soluble in seawater or 2% methanol in seawater were assayed. Significant bioactivity was present in seven of the eight species. Both Mycale acerata and Homaxinella balfourensis displayed moderate levels of defense against diatoms even though they are not or are only weakly chemically defended against bacteria and predators. Calyx acuarius extracts, which do have antipredator and antibacterial effects, had no effect on diatoms except at levels many fold higher than present in the intact animal. These results strongly suggest some level of specificity for chemical defenses against diatom fouling in antarctic sponges.  相似文献   

19.
This Letter reports on adhesive modular proteins recorded by atomic force microscopy on live cells from the extracellular mucilage secreted from, and deposited around, the motile form of the pennate diatom Phaeodactylum tricornutum. This is the first report of modular proteins and their supramolecular assemblies, called adhesive nanofibers (ANFs), to be found on diatoms that use adhesives not only for substratum adhesion, but as a conduit for cell motility. The permanent adhesive pads secreted by Toxarium undulatum, a sessile centric diatom, were previously shown to possess ANFs with a modular protein backbone. Our results reported here suggest that modular proteins may be an important component of diatom adhesives in general, and that diatoms utilize the tensile strength, toughness, and flexibility of ANFs for multiple functions. Significantly, the genome of P. tricornutum has recently been sequenced; this will allow directed searches of the genome to be made for genes with modular protein homologs, and subsequent detailed studies of their molecular structure and function.  相似文献   

20.
Jagadish S. Patil 《Biofouling》2013,29(3-4):189-206
Abstract

Diatoms, which are early autotrophic colonisers, are an important constituent of the biofouling community in the marine environment. The effects of substratum and temporal variations on the fouling diatom community structure in a monsoon-influenced tropical estuary were studied. Fibreglass and glass coupons were exposed every month for a period of 4 days and the diatom population sampled at 24 h intervals, over a period of 14 months. The planktonic diatom community structure differed from the biofilm community. Pennate diatoms dominated the biofilms whilst centric diatoms were dominant in the water column. Among the biofilm diatoms, species belonging to the genera Navicula, Amphora, Nitzschia, Pleurosigma and Thalassionema were dominant. On certain occasions, the influence of planktonic blooms was also seen on the biofilm community. A comparative study of biofilms formed on the two substrata revealed significant differences in density and diversity. However species composition was almost constant. In addition to substratum variations, the biofilm diatom community structure also showed significant seasonal variations, which were attributed to physico-chemical and biological changes in both the water and substratum. Temporal variations in the tychopelagic diatoms of the water were also observed to exert an influence on the biofilm diatom community. Variations in diatom communities may determine the functional ecosystem of the benthic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号