首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G protein-coupled receptor kinase (GRK)-mediated receptor phosphorylation and beta-arrestin binding uncouple G protein-coupled receptors (GPCRs) from their respective G proteins and initiates the process of receptor internalization. In the case of the beta(2)-adrenergic receptor and lysophosphatidic acid receptor, these processes can lead to ERK activation. Here we identify a novel mechanism whereby the activity of GRK2 is regulated by feedback inhibition. GRK2 is demonstrated to be a phosphoprotein in cells. Mass spectrometry and mutational analysis localize the site of phosphorylation on GRK2 to a carboxyl-terminal serine residue (Ser(670)). Phosphorylation at Ser(670) impairs the ability of GRK2 to phosphorylate both soluble and membrane-incorporated receptor substrates and dramatically attenuates Gbetagamma-mediated activation of this enzyme. Ser(670) is located in a peptide sequence that conforms to an ERK consensus phosphorylation sequence, and in vitro, in the presence of heparin, ERK1 phosphorylates GRK2. Inhibition of ERK activity in HEK293 cells potentiates GRK2 activity, whereas, conversely, ERK activation inhibits GRK2 activity. The discovery that ERK phosphorylates and inactivates GRK2 suggests that ERK participates in a feedback regulatory loop. By negatively regulating GRK-mediated receptor phosphorylation, beta-arrestin-mediated processes such as Src recruitment and clathrin-mediated internalization, which are required for GPCR-mediated ERK activation, are inhibited, thus dampening further ERK activation.  相似文献   

2.
We describe the 2.6-A crystal structure of human G protein-coupled receptor kinase (GRK)-6, a key regulator of dopaminergic signaling and lymphocyte chemotaxis. GRK6 is a member of the GRK4 subfamily of GRKs, which is represented in most, if not all, metazoans. Comparison of GRK6 with GRK2 confirms that the catalytic core of all GRKs consists of intimately associated kinase and regulator of G protein signaling (RGS) homology domains. Despite being in complex with an ATP analog, the kinase domain of GRK6 remains in an open, presumably inactive conformation, suggesting that G protein-coupled receptors activate GRKs by inducing kinase domain closure. The structure reveals a putative phospholipid-binding site near the N terminus of GRK6 and structural elements within the kinase substrate channel that likely influence G protein-coupled receptor access and specificity. The crystalline GRK6 RGS homology domain forms an extensive dimer interface using conserved hydrophobic residues distinct from those in GRK2 that bind Galpha(q), although dimerization does not appear to occur in solution and is not required for receptor phosphorylation.  相似文献   

3.
G protein-coupled receptor kinases (GRKs) phosphorylate agonist-occupied G protein-coupled receptors, leading to receptor desensitization. Seven GRKs, designated GRK1 through 7, have been characterized. GRK5 is negatively regulated by protein kinase C. We investigated whether human substance P receptor (hSPR) is a substrate of GRK5. We report that membrane-bound hSPR is phosphorylated by purified GRK5, and that both the rate and extent of phosphorylation increase dramatically in the presence of substance P. The phosphorylation has a high stoichiometry (20+/-4 mol phosphate/mol hSPR) and a low K(m) (1.7+/-0.1 nM). These data provide the first evidence that hSPR is a substrate of GRK5.  相似文献   

4.
G protein-coupled receptor kinases (GRKs) are important regulators of G protein-coupled receptor function and mediate receptor desensitization, internalization, and signaling. While GRKs also interact with and/or phosphorylate many other proteins and modify their function, relatively little is known about the cellular localization of endogenous GRKs. Here we report that GRK5 co-localizes with γ-tubulin, centrin, and pericentrin in centrosomes. The centrosomal localization of GRK5 is observed predominantly at interphase and although its localization is not dependent on microtubules, it can mediate microtubule nucleation of centrosomes. Knockdown of GRK5 expression leads to G2/M arrest, characterized by a prolonged G2 phase, which can be rescued by expression of wild type but not catalytically inactive GRK5. This G2/M arrest appears to be due to increased expression of p53, reduced activity of aurora A kinase and a subsequent delay in the activation of polo-like kinase 1. Overall, these studies demonstrate that GRK5 is localized in the centrosome and regulates microtubule nucleation and normal cell cycle progression.  相似文献   

5.
G protein-coupled receptor kinases (GRKs) mediate desensitization of agonist-occupied G protein-coupled receptors (GPCRs). Here we report that GRK5 contains a DNA-binding nuclear localization sequence (NLS) and that its nuclear localization is regulated by GPCR activation, results that suggest potential nuclear functions for GRK5. As assessed by fluorescence confocal microscopy, transfected and endogenous GRK5 is present in the nuclei of HEp2 cells. Mutation of basic residues in the catalytic domain of GRK5 (between amino acids 388 and 395) results in the nuclear exclusion of the mutant enzyme (GRK5(Delta)(NLS)), demonstrating that GRK5 contains a functional NLS. The nuclear localization of GRK5 is subject to dynamic regulation. Calcium ionophore treatment or activation of Gq-coupled muscarinic-M3 receptors promotes the nuclear export of the kinase in a Ca(2+)/calmodulin (Ca(2+)/CaM)-dependent fashion. Ca(2+)/CaM binding to the N-terminal CaM binding site of GRK5 mediates this effect. Furthermore, GRK5, but not GRK5(Delta)(NLS) or GRK2, binds specifically and directly to DNA in vitro. Consistent with their presence in the nuclei of transfected cells, all the GRK4, but not GRK2, subfamily members contain putative NLSs. These results suggest that the GRK4 subfamily of GRKs may play a signaling role in the nucleus and that GRK4 and GRK2 subfamily members perform divergent cellular functions.  相似文献   

6.
G protein-coupled receptor kinases (GRKs) are well characterized regulators of G protein-coupled receptors, whereas regulators of G protein signaling (RGS) proteins directly control the activity of G protein alpha subunits. Interestingly, a recent report (Siderovski, D. P., Hessel, A., Chung, S., Mak, T. W., and Tyers, M. (1996) Curr. Biol. 6, 211-212) identified a region within the N terminus of GRKs that contained homology to RGS domains. Given that RGS domains demonstrate AlF(4)(-)-dependent binding to G protein alpha subunits, we tested the ability of G proteins from a crude bovine brain extract to bind to GRK affinity columns in the absence or presence of AlF(4)(-). This revealed the specific ability of bovine brain Galpha(q/11) to bind to both GRK2 and GRK3 in an AlF(4)(-)-dependent manner. In contrast, Galpha(s), Galpha(i), and Galpha(12/13) did not bind to GRK2 or GRK3 despite their presence in the extract. Additional studies revealed that bovine brain Galpha(q/11) could also bind to an N-terminal construct of GRK2, while no binding of Galpha(q/11), Galpha(s), Galpha(i), or Galpha(12/13) to comparable constructs of GRK5 or GRK6 was observed. Experiments using purified Galpha(q) revealed significant binding of both Galpha(q) GDP/AlF(4)(-) and Galpha(q)(GTPgammaS), but not Galpha(q)(GDP), to GRK2. Activation-dependent binding was also observed in both COS-1 and HEK293 cells as GRK2 significantly co-immunoprecipitated constitutively active Galpha(q)(R183C) but not wild type Galpha(q). In vitro analysis revealed that GRK2 possesses weak GAP activity toward Galpha(q) that is dependent on the presence of a G protein-coupled receptor. However, GRK2 effectively inhibited Galpha(q)-mediated activation of phospholipase C-beta both in vitro and in cells, possibly through sequestration of activated Galpha(q). These data suggest that a subfamily of the GRKs may be bifunctional regulators of G protein-coupled receptor signaling operating directly on both receptors and G proteins.  相似文献   

7.
G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors, leading to their desensitization and endocytosis. GRKs have also been implicated in phosphorylating other classes of proteins and can localize in a variety of cellular compartments, including the nucleus. Here, we attempted to identify potential nuclear substrates for GRK5. Our studies reveal that GRK5 is able to interact with and phosphorylate nucleophosmin (NPM1) both in vitro and in intact cells. NPM1 is a nuclear protein that regulates a variety of cell functions including centrosomal duplication, cell cycle control, and apoptosis. GRK5 interaction with NPM1 is mediated by the N-terminal domain of each protein, and GRK5 primarily phosphorylates NPM1 at Ser-4, a site shared with polo-like kinase 1 (PLK1). NPM1 phosphorylation by GRK5 and PLK1 correlates with the sensitivity of cells to undergo apoptosis with cells having higher GRK5 levels being less sensitive and cells with lower GRK5 being more sensitive to PLK1 inhibitor-induced apoptosis. Taken together, our results demonstrate that GRK5 phosphorylates Ser-4 in nucleophosmin and regulates the sensitivity of cells to PLK1 inhibition.  相似文献   

8.
To investigate functions of the consensus amino terminus of G protein-coupled receptor kinases (GRKs), two amino terminus-truncated mutants (delta30 or delta15) and two single-amino-acid mutants of conserved acidic residues (D2A or E7A) of human GRK1 were constructed and expressed in human embryonic kidney 293 cells. It was shown that truncated mutations and one single-point mutation (E7A) greatly decreased GRK1's activity to phosphorylate photoactivated rhodopsin (Rho*), whereas the abilities of these mutants to phosphorylate a synthetic peptide substrate and to translocate from cytosol to rod outer segments on light activation were unaffected. Further experiments demonstrated that the same truncated mutations (delta30 or delta15) of GRK2, representative of another GRK subfamily, also abolished the kinase's activity toward Rho*. The similar single-point mutation (E5A) of GRK2 heavily impaired its phosphorylation of Rho* but did not alter its ability to phosphorylate the peptide, and the G329-rhodopsin-augmented peptide phosphorylation by GRK2 (E5A) remained unchanged. Our data, taken together, suggest that the amino terminus as well as a conserved glutamic acid in the region of GRKs appears essential for their ability to functionally interact with G protein-coupled receptors.  相似文献   

9.
G protein-coupled receptor kinases (GRKs) specifically recognize and phosphorylate the agonist-occupied form of numerous G protein-coupled receptors (GPCRs), ultimately resulting in desensitization of receptor signaling. Until recently, GPCRs were considered to be the only natural substrates for GRKs. However, the recent discovery that GRKs also phosphorylate tubulin raised the possibility that additional GRK substrates exist and that the cellular role of GRKs may be much broader than just GPCR regulation. Here we report that synucleins are a novel class of GRK substrates. Synucleins (alpha, beta, gamma, and synoretin) are 14-kDa proteins that are highly expressed in brain but also found in numerous other tissues. alpha-Synuclein has been linked to the development of Alzheimer's and Parkinson's diseases. We found that all synucleins are GRK substrates, with GRK2 preferentially phosphorylating the alpha and beta isoforms, whereas GRK5 prefers alpha-synuclein as a substrate. GRK-mediated phosphorylation of synuclein is activated by factors that stimulate receptor phosphorylation, such as lipids (all GRKs) and Gbetagamma subunits (GRK2/3), suggesting that GPCR activation may regulate synuclein phosphorylation. GRKs phosphorylate synucleins at a single serine residue within the C-terminal domain. Although the function of synucleins remains largely unknown, recent studies have demonstrated that these proteins can interact with phospholipids and are potent inhibitors of phospholipase D2 (PLD2) in vitro. PLD2 regulates the breakdown of phosphatidylcholine and has been implicated in vesicular trafficking. We found that GRK-mediated phosphorylation inhibits synuclein's interaction with both phospholipids and PLD2. These findings suggest that GPCRs may be able to indirectly stimulate PLD2 activity via their ability to regulate GRK-promoted phosphorylation of synuclein.  相似文献   

10.
Barker BL  Benovic JL 《Biochemistry》2011,50(32):6933-6941
Regulation of the magnitude, duration, and localization of G protein-coupled receptor (GPCR) signaling responses is controlled by desensitization, internalization, and downregulation of the activated receptor. Desensitization is initiated by the phosphorylation of the activated receptor by GPCR kinases (GRKs) and the binding of the adaptor protein arrestin. In addition to phosphorylating activated GPCRs, GRKs have been shown to phosphorylate a variety of additional substrates. An in vitro screen for novel GRK substrates revealed Hsp70 interacting protein (Hip) as a substrate. GRK5, but not GRK2, bound to and stoichiometrically phosphorylated Hip in vitro. The primary binding domain of GRK5 was mapped to residues 303-319 on Hip, while the major site of phosphorylation was identified to be Ser-346. GRK5 also bound to and phosphorylated Hip on Ser-346 in cells. While Hip was previously implicated in chemokine receptor trafficking, we found that the phosphorylation of Ser-346 was required for proper agonist-induced internalization of the chemokine receptor CXCR4. Taken together, Hip has been identified as a novel substrate of GRK5 in vitro and in cells, and phosphorylation of Hip by GRK5 plays a role in modulating CXCR4 internalization.  相似文献   

11.
G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in homologous desensitization of GPCRs. It is widely assumed that most GRKs selectively phosphorylate only active GPCRs. Here, we show that although this seems to be the case for the GRK2/3 subfamily, GRK5/6 effectively phosphorylate inactive forms of several GPCRs, including β2-adrenergic and M2 muscarinic receptors, which are commonly used as representative models for GPCRs. Agonist-independent GPCR phosphorylation cannot be explained by constitutive activity of the receptor or membrane association of the GRK, suggesting that it is an inherent ability of GRK5/6. Importantly, phosphorylation of the inactive β2-adrenergic receptor enhanced its interactions with arrestins. Arrestin-3 was able to discriminate between phosphorylation of the same receptor by GRK2 and GRK5, demonstrating preference for the latter. Arrestin recruitment to inactive phosphorylated GPCRs suggests that not only agonist activation but also the complement of GRKs in the cell regulate formation of the arrestin-receptor complex and thereby G protein-independent signaling.  相似文献   

12.
Chemical genetic engineering of G protein-coupled receptor kinase 2   总被引:2,自引:0,他引:2  
G protein-coupled receptor kinases (GRKs) play a pivotal role in receptor regulation. Efforts to study the acute effects of GRKs in intact cells have been limited by a lack of specific inhibitors. In the present study we have developed an engineered version of GRK2 that is specifically and reversibly inhibited by the substituted nucleotide analog 1-naphthyl-PP1 (1Na-PP1), and we explored GRK2 function in regulated internalization of the mu-opioid receptor (muOR). A previously described method that conferred analog sensitivity on various kinases, by introducing a space-creating mutation in the conserved active site, failed when applied to GRK2 because the corresponding mutation (L271G) rendered the mutant kinase (GRK2-as1) catalytically inactive. A sequence homology-based approach was used to design second-site suppressor mutations. A C221V second-site mutation produced a mutant kinase (GRK2-as5) with full functional activity and analog sensitivity as compared with wild-type GRK2 in vitro and in intact cells. The role of GRK2-as5 activity in the membrane trafficking of the muOR was also characterized. Morphine-induced internalization was completely blocked when GRK2-as5 activity was inhibited before morphine application. However, inhibition of GRK2-as5 during recycling and reinternalization of the muOR did not attenuate these processes. These results suggest there is a difference in the GRK requirement for initial ligand-induced internalization of a G protein-coupled receptor compared with subsequent rounds of reinternalization.  相似文献   

13.
G protein-coupled receptor kinases (GRKs) specifically bind and phosphorylate the agonist-occupied form of G protein-coupled receptors. To further characterize the mechanism of GRK/receptor interaction, we developed a yeast-based bioassay using strains engineered to functionally express the somatostatin receptor subtype 2 and exhibit agonist-dependent growth. Here, we demonstrate that agonist-promoted growth was effectively inhibited by co-expression with either wild type GRK2 or GRK5, whereas catalytically inactive forms of these kinases were without effect. In an effort to identify residues involved in receptor interaction, we generated a pool of GRK5 mutants and then utilized the bioassay to identify mutants selectively deficient in inhibiting agonist-promoted growth. This resulted in the identification of a large number of mutants, several of which were expressed, purified, and characterized in more detail. Two of the mutants, GRK5-L3Q/K113R and GRK5-T10P, were defective in receptor phosphorylation and also exhibited a partial defect in phospholipid binding and phospholipid-stimulated autophosphorylation of the kinase. In contrast, these mutants had wild type activity in phosphorylating the non-receptor substrate tubulin. To further characterize the function of the NH2-terminal region of GRK5, we generated a deletion mutant lacking residues 2-14 and found that this mutant was also severely impaired in receptor phosphorylation and phospholipid-promoted autophosphorylation. In addition, an NH2-terminal 14-amino acid peptide from GRK5 selectively inhibited receptor phosphorylation by GRK5 but had minimal effect on GRK2 activity. Based on these findings, we propose a model whereby the extreme NH2 terminus of GRK5 mediates phospholipid binding and is required for optimal receptor phosphorylation.  相似文献   

14.
Metabotropic glutamate receptors (mGluRs) constitute a unique subclass of G protein-coupled receptors (GPCRs) that bear little sequence homology to other members of the GPCR superfamily. The mGluR subtypes that are coupled to the hydrolysis of phosphoinositide contribute to both synaptic plasticity and glutamate-mediated excitotoxicity in neurons. In the present study, the expression of mGluR1a in HEK 293 cells led to agonist-independent cell death. Since G protein-coupled receptor kinases (GRKs) desensitize a diverse variety of GPCRs, we explored whether GRKs contributed to the regulation of both constitutive and agonist-stimulated mGluR1a activity and thereby may prevent mGluR1a-mediated excitotoxicity associated with mGluR1a overactivation. We find that the co-expression of mGluR1a with GRK2 and GRK5, but not GRK4 and GRK6, reduced both constitutive and agonist-stimulated mGluR1a activity. Agonist-stimulated mGluR1a phosphorylation was enhanced by the co-expression of GRK2 and was blocked by two different GRK2 dominant-negative mutants. Furthermore, GRK2-dependent mGluR1a desensitization protected against mGluR1a-mediated cell death, at least in part by blocking mGluR1a-stimulated apoptosis. Our data indicate that as with other members of the GPCR superfamily, a member of the structurally distinct mGluR family (mGluR1a) serves as a substrate for GRK-mediated phosphorylation and that GRK-dependent "feedback" modulation of mGluR1a responsiveness protects against pathophysiological mGluR1a signaling.  相似文献   

15.
The G protein-coupled receptor kinases (GRKs) are important enzymes in the desensitization of activated G protein-coupled receptors (GPCR). Seven members of the GRK family have been identified to date. Among these enzymes, GRK1 is involved in phototransduction and is the most specialized kinase of the family. GRK1 phosphorylates photoactivated rhodopsin (Rho*), initiating steps in its deactivation. In this study, we found that chicken retina and pineal gland express a novel form of GRK that has sequence features characteristic of GRK1. However, unlike bovine GRK1 which is farnesylated, chicken GRK1 contains a consensus sequence for geranylgeranylation. Peptides corresponding to the C-terminal sequence of chicken GRK1 are geranylgeranylated by a cytosolic extract of chicken liver. Based on results of molecular cloning and immunolocalization, it appears that both rod and cone photoreceptors express this novel GRK1. These data indicate a larger sequence diversity of photoreceptor GRKs than anticipated previously.  相似文献   

16.
G protein-coupled receptor kinases (GRKs) and arrestins are key participants in the canonical pathways leading to phosphorylation-dependent GPCR desensitization, endocytosis, intracellular trafficking and resensitization as well as in the modulation of important intracellular signaling cascades by GPCR. Novel studies have revealed a phosphorylation-independent desensitization mechanism operating through their RGS-homology (RH) domain and the recent determination of the crystal structures of GRK2 and GRK6 has uncovered interesting details on the structure-function relationships of these kinases. Emerging evidence indicates that the activity of GRKs is tightly modulated by mechanisms including phosphorylation by different kinases and interaction with several cellular proteins such as calmodulin, caveolin or RKIP. In addition, GRKs are involved in multiple interactions with non-receptor proteins (PI3K, Akt, GIT or MEK) that point to novel GRK cellular roles. In this article, our purpose is to describe the ever increasing map of functional interactions for GRK proteins as a basis to better understand its contribution to cellular processes.  相似文献   

17.
G protein-coupled receptor kinases (GRKs) and arrestins are key participants in the canonical pathways leading to phosphorylation-dependent GPCR desensitization, endocytosis, intracellular trafficking and resensitization as well as in the modulation of important intracellular signaling cascades by GPCR. Novel studies have revealed a phosphorylation-independent desensitization mechanism operating through their RGS-homology (RH) domain and the recent determination of the crystal structures of GRK2 and GRK6 has uncovered interesting details on the structure-function relationships of these kinases. Emerging evidence indicates that the activity of GRKs is tightly modulated by mechanisms including phosphorylation by different kinases and interaction with several cellular proteins such as calmodulin, caveolin or RKIP. In addition, GRKs are involved in multiple interactions with non-receptor proteins (PI3K, Akt, GIT or MEK) that point to novel GRK cellular roles. In this article, our purpose is to describe the ever increasing map of functional interactions for GRK proteins as a basis to better understand its contribution to cellular processes.  相似文献   

18.
G protein-coupled receptor kinases (GRKs) and arrestins mediate desensitization of G protein-coupled receptors (GPCR). Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling.  相似文献   

19.
G protein-coupled receptor (GPCR) kinases (GRKs) play key role in homologous desensitization of GPCRs. GRKs phosphorylate activated receptors, promoting high affinity binding of arrestins, which precludes G protein coupling. Direct binding to active GPCRs activates GRKs, so that they selectively phosphorylate only the activated form of the receptor regardless of the accessibility of the substrate peptides within it and their Ser/Thr-containing sequence. Mammalian GRKs were classified into three main lineages, but earlier GRK evolution has not been studied. Here we show that GRKs emerged at the early stages of eukaryotic evolution via an insertion of a kinase similar to ribosomal protein S6 kinase into a loop in RGS domain. GRKs in Metazoa fall into two clades, one including GRK2 and GRK3, and the other consisting of all remaining GRKs, split into GRK1-GRK7 lineage and GRK4-GRK5-GRK6 lineage in vertebrates. One representative of each of the two ancient clades is found as early as placozoan Trichoplax adhaerens. Several protists, two oomycetes and unicellular brown algae have one GRK-like protein, suggesting that the insertion of a kinase domain into the RGS domain preceded the origin of Metazoa. The two GRK families acquired distinct structural units in the N- and C-termini responsible for membrane recruitment and receptor association. Thus, GRKs apparently emerged before animals and rapidly expanded in true Metazoa, most likely due to the need for rapid signalling adjustments in fast-moving animals.  相似文献   

20.
G protein-coupled receptor kinases (GRKs) desensitize G protein-coupled receptors by phosphorylating activated receptors. The six known GRKs have been classified into three subfamilies based on sequence and functional similarities. Examination of the mouse GRK4 subfamily (GRKs 4, 5, and 6) suggests that mouse GRK4 is not alternatively spliced in a manner analogous to human or rat GRK4, whereas GRK6 undergoes extensive alternative splicing to generate three variants with distinct carboxyl termini. Characterization of the mouse GRK 5 and 6 genes reveals that all members of the GRK4 subfamily share an identical gene structure, in which 15 introns interrupt the coding sequence at equivalent positions in all three genes. Surprisingly, none of the three GRK subgroups (GRK1, GRK2/3, and GRK4/5/6) shares even a single intron in common, indicating that these three subfamilies are distinct gene lineages that have been maintained since their divergence over 1 billion years ago. Comparison of the amino acid sequences of GRKs from various mammalian species indicates that GRK2, GRK5, and GRK6 exhibit a remarkably high degree of sequence conservation, whereas GRK1 and particularly GRK4 have accumulated amino acid changes at extremely rapid rates over the past 100 million years. The divergence of individual GRKs at vastly different rates reveals that strikingly different evolutionary pressures apply to the function of the individual GRKs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号