首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A soluble porcine H,K-ATPase preparation was obtained with the nonionic detergent, C12E8. ATP hydrolysis by the soluble H,K-ATPase was stimulated with respect to the native preparation at pH 6.1, while the K(+)-phosphatase activity was comparable to the native enzyme. The soluble enzyme demonstrated characteristic ligand-dependent effects on ATP hydrolysis, including ATP activation of K(+)-stimulated hydrolysis with a K0.5 of 28 +/- 4 microM ATP, and inhibition with an IC50 of 2.1 mM ATP. The activation and inhibition of ATP hydrolysis by K+ was also observed with a K0.5 for activation of 2.8 +/- 0.4 mM KCl at 2.0 mM ATP (pH 6.1) and inhibition with an IC50 of 135 mM KCl at 0.05 mM ATP. 2-Methyl-8-(phenylmethoxy)imidazo[1,2a]pyridine-3-acetonitrile (SCH 28080), a specific inhibitor of the native H,K-ATPase, competitively inhibited the K(+)-stimulated activity with a Ki of 0.035 microM. The soluble enzyme was stable with a t0.5 for ATPase activity of 6 h between 4 and 11 degrees C. The demonstration of these related ligand responses in the catalytic reactions of the soluble preparation indicates that it is an appropriate medium for investigation of the subunit associations of the functional H,K-ATPase. Subunit associations of the active soluble enzyme were assessed following treatment with the crosslinking reagent, glutaraldehyde. The distribution of crosslinked particles was independent of the soluble protein concentration in the crosslinking buffer within the protein range 0.3 to 2.0 mg/ml or the detergent to protein ratio varied from 1 to 15 (w/w). The crosslinked pattern was unaffected by the presence or absence of K during crosslinking or nucleotide concentration. These observations suggest that crosslinking occurs in associated subunits that do not undergo rapid associations dependent upon enzyme turnover. Phosphorylation of the soluble enzyme with 0.1 mM MgATP produced a phosphoprotein at 94 kDa. A phosphoprotein obtained after glutaraldehyde treatment exhibited identical electrophoretic mobility to the crosslinked particle identified by silver stain. Glutaraldehyde treatment of soluble protein fractions resolved on a linear 10-35% glycerol gradient revealed several smaller peptides partially resolved from the crosslinked pump particle, but no active fraction enriched in the monomeric H,K-ATPase. This data indicates that the functional porcine gastric H,K-ATPase is organized as a structural dimer.  相似文献   

2.
We describe and compare the main kinetic characteristics of rabbit kidney Na,K-ATPase incorporated inside-out in DPPC:DPPE-liposomes with the C(12)E(8) solubilized and purified form. In proteoliposomes, we observed that the ATP hydrolysis of the enzyme is favored and also its affinity for Na(+)-binding sites increases, keeping the negative cooperativity with two classes of hydrolysis sites: one of high affinity (K(0.5)=6 microM and 4 microM for reconstituted enzyme and purified form, respectively) and another of low affinity (K(0.5)=0.4 mM and 1.4 mM for reconstituted enzyme and purified form, respectively). Our data showed a biphasic curve for ATP hydrolysis, suggesting the presence of (alphabeta)(2) oligomer in reconstituted Na,K-ATPase similar to the solubilized enzyme. The Mg(2+) concentration dependence in the proteoliposomes stimulated the Na,K-ATPase activity up to 476 U/mg with a K(0.5) value of 0.4 mM. The Na(+) ions also presented a single saturation curve with V(M)=551 U/mg and K(0.5)=0.2 mM with cooperative effects. The activity was also stimulated by K(+) ions through a single curve of saturation sites (K(0.5)=2.8 mM), with cooperative effects and V(M)=641 U/mg. The lipid microenvironment close to the proteic structure and the K(+) internal to the liposome has a key role in enzyme regulation, affecting its kinetic parameters while it can also modulate the enzyme's affinity for substrate and ions.  相似文献   

3.
Direct dose-dependent effects of angiotensin II on renal tubular sodium reabsorption have been demonstrated. Alterations in tubular sodium reabsorption may occur via modulation of renal Na,K-ATPase activity. Thus, these experiments were undertaken to ascertain whether angiotensin II could influence renal cortical Na,K-ATPase activity. Angiotensin II, 495 ng/microliters/h, or vehicle (controls) was infused for 24 h via miniosmotic pumps 48 h after rats were adrenalectomized and implanted with osmotic pumps containing 12.5 micrograms/microliters corticosterone (Treatment I) or both corticosterone and 0.2 microgram/microliter aldosterone (Treatment II), and in rats receiving 3% NaCl in their food (sodium loaded, Treatment III). Rats receiving Treatments I and III received saline to drink. Renal cortical microsomal membranes were prepared, and the effects of angiotensin II infusion on the K1/2 and Vmax for Na, K, and ATP determined. Angiotensin II infusions were associated with (i) a decrease (P less than 0.001) in the K1/2 for Na activation of Na,K-ATPase from 14 +/- 3 to 6 +/- 1 (n = 4 experiments), 16 +/- 1 to 12 +/- 1 (n = 5), and 12 +/- 3 to 7 +/- 1 (n = 5) mM (means +/- SE) for treatments I, II, and III, respectively; (ii) no changes in the K1/2 for K activation or the Km for ATP; (iii) no changes in the Vmax for Na, K, or ATP; and (iv) no change in Mg-ATPase activity. We conclude that angiotensin II infusion is associated with a decrease in the K1/2 of renal cortical Na,K-ATPase activity for sodium. This action of angiotensin II on the enzyme activity may contribute to the regulation of tubular sodium transport.  相似文献   

4.
Fluid production in Locusta Malpighian tubules was stimulated by corpora cardiaca extract (c. 100%) and dibutyryl cAMP (c. 50%). Chelerythrine and staurosporine (Protein kinase C, PKC inhibitors) inhibited it in the range 0.07-60&mgr;M (IC(50)3&mgr;M), whereas Rp-cAMP (Protein kinase A, PKA inhibitor) caused inhibition over the concentration range 10-1000&mgr;M (IC(50)264&mgr;M). The protein phosphatase inhibitor, okadaic acid, was also inhibitory over the concentration range 0.1-1000nM (IC(50) 91nM). CC extract stimulation increased fluid [Na(+)] from 41 to 59mM and decreased [K(+)] from 127 to 107mM; stimulation with cAMP had no such effect. The PKC inhibitors reduced the [K(+)] in the secreted fluid from 126 to 107mM but had no effect on the [Na(+)]. Subsequent addition of CC extract stimulated fluid production and caused an increase in [Na(+)] from 41 to about 50mM. The addition of Rp-cAMP reduced fluid production but caused a decrease in [Na(+)] from 37 to 28mM and an increase in its [K(+)] from 124 to 148mM. Fluid production by Rp-cAMP inhibited tubules was not stimulated by corpora cardiaca extract or cAMP, but [Na(+)] rose to 36mM. Protein phosphorylation plays a role in the regulation of fluid production probably via the apical and basal membrane cation transporters.  相似文献   

5.
Uptake of 22Na+ by liver plasma membrane vesicles, reflecting Na+ transport by (Na+, K+)ATPase or Na+/H+ exchange was studied. Membrane vesicles were isolated from rat liver homogenates or from freshly prepared rat hepatocytes incubated in the presence of [Arg8]vasopressin or pervanadate and insulin. The ATP dependence of (Na+, K+)ATPase-mediated transport was determined from initial velocities of vanadate-sensitive uptake of 22Na+, the Na(+)-dependence of Na+/H+ exchange from initial velocities of amiloride-sensitive uptake. By studying vanadate-sensitive Na+ transport, high-affinity binding sites for ATP with an apparent Km(ATP) of 15 +/- 1 microM were observed at low concentrations of Na+ (1 mM) and K+ (1mM). At 90 mM Na+ and 60 mM K+ the apparent Km(ATP) was 103 +/- 25 microM. Vesiculation of membranes and loading of the vesicles prepared from liver homogenates in the presence of vasopressin increased the maximal velocities of vanadate-sensitive transport by 3.8-fold and 1.9-fold in the presence of low and high concentrations of Na+ and K+, respectively. The apparent Km(ATP) was shifted to 62 +/- 7 microM and 76 +/- 10 microM by vasopressin at low and high ion concentrations, respectively, indicating that the hormone reduced the influence of Na+ and K+ on ATP binding. In vesicles isolated from hepatocytes preincubated with 10 nM vasopression the hormone effect was conserved. Initial velocities of Na+ uptake (at high ion concentrations and 1 mM ATP) were increased 1.6-1.7-fold above control, after incubation of the cells with vasopressin or by affinity labelling of the cells with a photoreactive analogue of the hormone. The velocity of amiloride-sensitive Na+ transport was enhanced by incubating hepatocytes in the presence of 10 nM insulin (1.6-fold) or 0.3 mM pervanadate generated by mixing vanadate plus H2O2 (13-fold). The apparent Km(Na+) of Na+/H+ exchange was increased by pervanadate from 5.9 mM to 17.2 mM. Vesiculation and incubation of isolated membranes in the presence of pervanadate had no effect on the velocity of amiloride-sensitive Na+ transport. The results show that hormone receptor-mediated effects on (Na+, K+)ATPase and Na+/H+ exchange are conserved during the isolation of liver plasma membrane vesicles. Stable modifications of the transport systems or their membrane environment rather than ionic or metabolic responses requiring cell integrity appear to be involved in this regulation.  相似文献   

6.
The effects of Mg2+, K+ and ATP on a H-ATPase activity from a native plasmalemma fraction of oat roots were explored at 20 degrees C and pH 6.5. In the presence of 3 mM ATP and no K+, H-ATPase activity vs. [Mg2+] approached a monotonic activation but it became biphasic, with a decline above 3 mM Mg2+, in the presence of 20 mM K+. Mg2+ inhibition occurred also in K-free solutions when [ATP] was lowered to 0.05 mM. Also, an apparent monotonic H-ATPase activation by [K+] at 3.0 mM ATP was transformed in biphasic (inhibition by high [K+]) when [ATP] was reduced to 0.05 mM. The best fits of the ATP stimulation curves of hydrolysis satisfied the sum of two Michaelian functions where that with higher affinity had lower Vmx. Taking into consideration all conditions of activity assay, the high-affinity component (1) had a Km about 11-16 microM and a Vmx around 0.14-0.28 mumol Pi/mg per min whereas that with lower affinity (2) had a Km of 220-540 microM and a Vmx of 0.5-1.0 mumol Pi/mg per min. Km2 was markedly affected by the [K+] and [Mg2+]; at optimal concentrations of these cations (1 mM Mg2+ and 10 mM K+) it had a value of 235 +/- 24 microM which was increased to 540 +/- 35 microM at 20 mM [Mg2+] and 60 mM [K+]. In addition, Vmx1 was reduced to about a half when the concentrations of Mg2+ and K+ were increased to inhibitory levels. These results could be explained by the existence of two different enzymes or one enzyme with two ATP sites. In the second case, we could not tell at this stage if both are catalytic or one is regulatory.  相似文献   

7.
ATP and GTP have been compared as substrates for (Na+ + K+)-ATPase in Na+-activated hydrolysis, Na+-activated phosphorylation, and the E2K----E1K transition. Without added K+ the optimal Na+-activated hydrolysis rates in imidazole-HCl (pH 7.2) are equal, but are reached at different Na+ concentrations: 80 mM Na+ for GTP, 300 mM Na+ for ATP. The affinities of the substrates for the enzyme are widely different: Km for ATP 0.6 microM, for GTP 147 microM. The Mg-complexed nucleotides antagonize activation as well as inhibition by Na+, depending on the affinity and concentration of the substrate. The optimal 3-s phosphorylation levels in imidazole-HCl (pH 7.0) are equally high for the two substrates (3.6 nmol/mg protein). The Km value for ATP is 0.1-0.2 microM and for GTP it ranges from 50 to 170 microM, depending on the Na+ concentration. The affinity of Na+ for the enzyme in phosphorylation is lower with the lower affinity substrate: Km (Na+) is 1.1 mM with ATP and 3.6 mM with GTP. The GTP-phosphorylated intermediate exists, like the ATP-phosphorylated intermediate, in the E2P conformation. Addition of K+ increases the optimal hydrolytic activity 30-fold for ATP (at 100 mM Na+ + 10 mM K+) and 2-fold for GTP (at 100 mM Na+ + 0.16 mM K+). K+ greatly increases the Km values for both substrates (to 430 microM for ATP and 320 microM for GTP). Above 0.16 mM K+ inhibits GTP hydrolysis. GTP does not reverse the quenching effect of K+ on the fluorescence of the 5-iodoacetamidofluorescein-labeled enzyme. ATP fully reverses this effect, which represents the transition from E1K to E2K. Hence GTP is unable to drive the E2K----E1K transition.  相似文献   

8.
The protein and lipid composition of Na,K-ATPase from duck salt glands were characterized. A kinetic analysis of hydrolysis of two substrates, one of which (ATP) provides and the other (ITP) does not provide for cation active transport was carried out. In both cases two Km values were obtained and were found equal to 10 and 330 microM for ATP and 35 and 710 microM for ITP, respectively. This suggests the existence of substrate sites with high and low affinities. The Hill coefficient for the ATP hydrolysis was equal to 1.4-1.6; the ITP hydrolysis was non-cooperative. It was assumed that positive cooperative interactions between Na,K-ATPase protomers are necessary for active translocation of Na+ and K+.  相似文献   

9.
We previously demonstrated that the alpha-subunit of human nongastric H,K-ATPase (Atp1al1) can assemble with the gastric H,K-ATPase beta-subunit (betaHK) into an active ion pump upon coexpression in Xenopus oocytes. To gain insight into enzymatic functions, we have analyzed the Atp1al1-betaHK complex using a baculovirus expression system. The efficient formation of the functional Atp1al1-betaHK complex in membranes of Sf-21 insect cells was obtained upon co-infection with recombinant baculoviruses expressing Atp1al1 and betaHK. Expression of either protein alone did not produce active ATPase. The effects of K(+), Na(+), pH, and ATP and inhibitors on ATPase activity of the recombinant Atp1al1-betaHK complex were analyzed. The Atp1al1-betaHK complex was shown to exhibit significant ATPase activity in nominally K(+)-free medium. The addition of K(+) stimulated the ATP hydrolysis up to 3-fold with K(m) approximately 116 microM K(+). The ATPase activity was moderately sensitive to ouabain and to SCH 28080 with apparent K(i) values in K(+)-free medium of approximately 64 microM and approximately 93 microM, respectively. Potassium exhibited strong antagonism toward both inhibitors. Assays of the ouabain-sensitive ATPase activity revealed inhibitory effects of Na(+) with the apparent K(i) of approximately 24 mM in the absence of added K(+) and with K(i) within the range of 60-70 mM in the presence of > or = 1 mM K(+). Thus, the human nongastric H,K-ATPase represented by the recombinant Atp1al1-betaHK complex exhibits enzymatic properties of K(+)-dependent ATPase sensitive to ouabain, SCH 28080, and Na(+). It differs from Na,K-ATPase in cation dependence and differs from gastric H,K-ATPase and Na,K-ATPase in sensitivity to inhibitors.  相似文献   

10.
Lysine 480 has been suggested to be essential for ATP binding and hydrolysis by Na,K-ATPase because it is labeled by reagents that are thought to react with the ATPase from within the ATP binding site. In order to test this hypothesis, Lys-480 was changed to Ala, Arg, or Glu by site-directed mutagenesis, and the resultant Na,K-ATPase molecules were expressed in yeast cells. The ATPase activity of each of the mutants was similar to the activity of the wild type enzyme indicating that Lys-480 is not essential for ATP hydrolysis. The binding of [3H]ouabain in both ATP-dependent and inorganic phosphate-dependent reactions was used to determine the apparent affinity of each mutant for ATP or Pi. The K0.5(ATP) for ouabain binding to phosphoenzyme formed from ATP was 1-3 microM for Lys-480, Arg-480, and Ala-480, whereas for Glu-480 the K0.5(ATP) was 18 microM. The K0.5(Pi) for ouabain binding to phosphoenzyme formed from inorganic phosphate was 16-28 microM for Lys-480, Arg-480, and Ala-480, but was 74 microM for Glu-480. The Kd for ouabain binding was similar for both the wild type and mutant Na,K-ATPase molecules (3-6 nM). These data indicate that the substitution of an acidic amino acid for lysine at position 480 appears to reduce the affinity of the Na,K-ATPase for both ATP and phosphate. It is concluded that Lys-480 is not essential for ATP binding or hydrolysis or for phosphate binding by Na,K-ATPase but is likely to be located within the ATP binding site of the Na,K-ATPase.  相似文献   

11.
AMP-activated protein kinase (AMPK), activated by an increase in intracellular AMP-to-ATP ratio, stimulates pathways that can restore ATP levels. We tested the hypothesis that AMPK activation influences extracellular fluid (ECF) K(+) homeostasis. In conscious rats, AMPK was activated with 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) infusion: 38.4 mg x kg bolus then 4 mg x kg(-1) x min(-1) infusion. Plasma [K(+)] and [glucose] both dropped at 1 h of AICAR infusion and [K(+)] dropped to 3.3 +/- 0.04 mM by 3 h, linearly related to the increase in muscle AMPK phosphorylation. AICAR treatment did not increase urinary K(+) excretion. AICAR lowered [K(+)] whether plasma [K(+)] was chronically elevated or lowered. The K(+) infusion rate needed to maintain baseline plasma [K(+)] reached 15.7 +/- 1.3 micromol K(+) x kg(-1) x min(-1) between 120 and 180 min AICAR infusion. In mice expressing a dominant inhibitory form of AMPK in the muscle (Tg-KD1), baseline [K(+)] was not different from controls (4.2 +/- 0.1 mM), but the fall in plasma [K(+)] in response to AICAR (0.25 g/kg) was blunted: [K(+)] fell to 3.6 +/- 0.1 in controls and to 3.9 +/- 0.1 mM in Tg-KD1, suggesting that ECF K(+) redistributes, at least in part, to muscle ICF. In summary, these findings illustrate that activation of AMPK activity with AICAR provokes a significant fall in plasma [K(+)] and suggest a novel mechanism for redistributing K(+) from ECF to ICF.  相似文献   

12.
The stoichiometry and voltage dependence of the Na/K pump were studied in internally dialyzed, voltage-clamped squid giant axons by simultaneously measuring, at various membrane potentials, the changes in Na efflux (delta phi Na) and holding current (delta I) induced by dihydrodigitoxigenin (H2DTG). H2DTG stops the Na/K pump without directly affecting other current pathways: (a) it causes no delta I when the pump lacks Na, K, Mg, or ATP, and (b) ouabain causes no delta I or delta phi Na in the presence of saturating H2DTG. External K (Ko) activates Na efflux with Michaelis-Menten kinetics (Km = 0.45 +/- 0.06 mM [SEM]) in Na-free seawater (SW), but with sigmoid kinetics in approximately 400 mM Na SW (Hill coefficient = 1.53 +/- 0.08, K1/2 = 3.92 +/- 0.29 mM). H2DTG inhibits less strongly (Ki = 6.1 +/- 0.3 microM) in 1 or 10 mM K Na-free SW than in 10 mM K, 390 mM Na SW (1.8 +/- 0.2 microM). Dialysis with 5 mM each ATP, phosphoenolpyruvate, and phosphoarginine reduced Na/Na exchange to at most 2% of the H2DTG-sensitive Na efflux. H2DTG sensitive but nonpump current caused by periaxonal K accumulation upon stopping the pump, was minimized by the K channel blockers 3,4-diaminopyridine (1 mM), tetraethylammonium (approximately 200 mM), and phenylpropyltriethylammonium (20-25 mM) whose adequacy was tested by varying [K]o (0-10 mM) with H2DTG present. Two ancillary clamp circuits suppressed stray current from the axon ends. Current and flux measured from the center pool derive from the same membrane area since, over the voltage range -60 to +20 mV, tetrodotoxin-sensitive current and Na efflux into Na-free SW, under K-free conditions, were equal. The stoichiometry and voltage dependence of pump Na/K exchange were examined at near-saturating [ATP], [K]o and [Na]i in both Na-free and 390 mM Na SW. The H2DTG-sensitive F delta phi Na/delta I ratio (F is Faraday's constant) of paired measurements corrected for membrane area match, was 2.86 +/- 0.09 (n = 8) at 0 mV and 3.05 +/- 0.13 (n = 6) at -60 to -90 mV in Na-free SW, and 2.72 +/- 0.09 (n = 7) at 0 mV and 2.91 +/- 0.21 (n = 4) at -60 mV in 390 mM Na SW. Its overall mean value was 2.87 +/- 0.07 (n = 25), which was not significantly different from the 3.0 expected of a 3 Na/2 K pump.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
K(+)- and Na(+)-selective double-barrelled microelectrodes were used for intracellular and luminal measurements in salivary ducts of Periplaneta americana. The salivary ducts were stimulated with dopamine (10(-6) mol l(-1)). Dopamine decreased intracellular [K(+)] from 112+/-17 mmol l(-1) to 40+/-13 mmol l(-1) (n=6) and increased intracellular [Na(+)] from 22+/-19 mmol l(-1) to 92+/-4 mmol l(-1) (n=6). Luminal [K(+)] was 15+/-3 mmol l(-1) in the unstimulated salivary ducts and increased to 26+/-11 mmol l(-1) upon stimulation with dopamine (n=10). Luminal [Na(+)] was insignificantly increased from 105+/-25 mmol l(-1) to 116+/-22 mmol l(-1) (n=12) by stimulation with dopamine. The potential difference across the basolateral membrane (PD(b)) was depolarized from -65+/-6 mV to -31+/-13 mV (n=12) and the transepithelial potential difference (PD(t)) was hyperpolarized from -13+/-6 mV to -22+/-7 mV (n=22, lumen negative) upon stimulation with dopamine. The re-establishment of prestimulus values of intracellular [K(+)] and [Na(+)] and PD(b) was inhibited by basolateral addition of ouabain (10(-4) mol l(-1)). Furosemide (10(-4) mol l(-1)) in the bath inhibited the dopamine-induced increase in intracellular [Na(+)], the decrease in intracellular [K(+)] and the depolarization of PD(b). We propose a model for dopamine-stimulated ion transport in the salivary ducts involving basolateral Na(+)-K(+)-2Cl(-) cotransport and active extrusion of K(+) via the apical membrane.  相似文献   

14.
L D Faller 《Biochemistry》1989,28(16):6771-6778
ATP and the fluorescent substrate analogue TNP-ATP bind competitively to the gastric H,-K-ATPase. Substrate and product completely reverse the fluorescence enhancement caused by TNP-ATP binding to the enzyme. The fluorophore is displaced monophasically from apoenzyme. However, ATP displaces TNP-ATP from the Mg2+-quenched state in two steps of equal amplitude. The midpoints of the titrations differ by more than 2 orders of magnitude. The estimated substrate constants are in reasonable agreement with published Michaelis constants. TNP-ATP is not a substrate for the H,K-ATPase. The fluorophore prevents phosphorylation by ATP and competitively inhibits the K+-stimulated pNPPase and ATPase activities of the enzyme. Ki is approximately the same for both hydrolytic activities and consistent with the Kd of TNP-ATP measured directly. Km for pNPP is 1.48 +/- 0.15 mM. Two Michaelis constants are required to fit the ATPase data: Km1 = 0.10 +/- 0.01 mM and Km2 = 0.26 +/- 0.05 mM.  相似文献   

15.
The primary sequence of non-gastric H,K-ATPase differs much more between species than that of Na,K-ATPase or gastric H,K-ATPase. To investigate whether this causes species-dependent differences in enzymatic properties, we co-expressed the catalytic subunit of human non-gastric H,K-ATPase in Sf9 cells with the beta(1) subunit of rat Na,K-ATPase and compared its properties with those of the rat enzyme (Swarts et al., J. Biol. Chem. 280, 33115-33122, 2005). Maximal ATPase activity was obtained with NH(4)(+) as activating cation. The enzyme was also stimulated by Na(+), but in contrast to the rat enzyme, hardly by K(+). SCH 28080 inhibited the NH(4)(+)-stimulated activity of the human enzyme much more potently than that of the rat enzyme. The steady-state phosphorylation level of the human enzyme decreased with increasing pH, [K(+)], and [Na(+)] and nearly doubled in the presence of oligomycin. Oligomycin increased the sensitivity of the phosphorylated intermediate to ADP, demonstrating that it inhibited the conversion of E(1)P to E(2)P. All three cations stimulated the dephosphorylation rate dose-dependently. Our studies support a role of the human enzyme in H(+)/Na(+) and/or H(+)/NH(4)(+) transport but not in Na(+)/K(+) transport.  相似文献   

16.
A ouabain-sensitive Na/K-ATPase kinetic assay system based on the hydrolysis of ATP and the oxidation of NADH was adapted in order to characterize enzymatic activity in gills and examine the effects of changing salinity in Macrobrachium rosenbergii. Maximum inhibition by ouabain occurred at a concentration of 1.4 mM, and the K(m) of the reaction was 0.2 mM. In a first experiment, animals were acclimated to freshwater, 1/3 seawater, 2/3 seawater and full seawater for up to 1 week. Na/K-ATPase activity in front gills was 1. 62+/-0.19 micromol ADP/mg protein per h in freshwater, and was seen to increase slightly in 1/3 seawater (1.88+/-0.19 micromol ADP/mg protein per h) and 2/3 seawater (2.09+/-0.24 micromol ADP/mg protein per h), decreasing slightly in full seawater (1.92+/-0.43 micromol ADP/mg protein per h); however, differences were not significant. Back gills showed slightly higher levels, and a similar pattern of Na/K-ATPase activity. In a second experiment, animals were acclimated to 1/3 seawater and 2/3 seawater, and then transferred to freshwater. However, no changes in activity were seen, indicating that exposure to dilute media did not effect enzymatic activity. Whereas Na/K-ATPase is important in osmoregulatory function in marine euryhaline crustaceans, it may not play a significant role in adaptation in freshwater crustaceans that inhabit a more narrow range of salinities.  相似文献   

17.
Na+/K+-ATPase (EC 3.6.1.3) is an important membrane-bound enzyme. In this paper, kinetic studies on Na+/K+-ATPase were carried out under mimetic physiological conditions. By using microcalorimeter, a thermokinetic method was employed for the first time. Compared with other methods, it provided accurate measurements of not only thermodynamic data (deltarHm) but also the kinetic data (Km and Vmax). At 310.15K and pH 7.4, the molar reaction enthalpy (deltarHm) was measured as -40.514 +/- 0.9kJmol(-1). The Michaelis constant (Km) was determined to be 0.479 +/- 0.020 mM and consistent with literature data. The reliability of the thermokinetic method was further confirmed by colorimetric studies. Furthermore, a simple and reliable kinetic procedure was presented for ascertaining the true substrate for Na+/K+-ATPase and determining the effect of free ATP. Results showed that the MgATP complex was the real substrate with a Km value of about 0.5mM and free ATP was a competitive inhibitor with a Ki value of 0.253 mM.  相似文献   

18.
The kinetic properties of intact and digitonin-treated Na,K-ATPase from bovine brain were studied. The temperature dependence curve for the rate of ATP hydrolysis under optimal conditions (upsilon 0) in the Arrhenius plots shows a break at 19-20 degrees. The temperature dependence curves for Km' and Km" have breaks at the same temperatures, while the Arrhenius plot for V is linear. The value of the Hill coefficient (nH) for ATP at 37 degrees is variable depending on ATP concentration, i. e. it is less than 1 at ATP concentrations below 50 mkM and is increased up to 3.2 at higher concentrations of the substrate. At high ATP concentrations the value of nH depends on temperature, falling down to 2.1 at 23 degrees and then down to 1 within the temperature range of 21-19 degrees. A further decrease in temperature does not significantly affect the nH value. Digitonin irreversibly inhibits Na, K-ATPase. ATP hydrolysis is more sensitive to the effect of the detergent than is nNPP hydrolysis, i. e. after complete inhibition of the ATPase about 40% of the phosphatase activity are retained. Treatment of Na,K-ATPase by digitonin results in elimination of the breaks in the Arrhenius plots for upsilon 0, Km' and Km", whereas the temperature dependence plot of V remains linear. Simultaneously digitonin eliminates the positive cooperativity of the enzyme for ATP. It is assumed that Na, K-ATPase from bovine brain is an oligomer of the (alpha beta) 4 type. Digitonin changes the type of interaction between the protomers within the oligomeric complex by changing the lipid environment of the enzyme or the type of protein -- lipid interactions.  相似文献   

19.
Na,K-ATPase (sodium pumps) provide the primitive driving force for ion transport in branchial epithelial cells. Immunoblots of epithelial homogenates of both seawater (SW)- and freshwater (FW)-adapted tilapia gills as well as rat brain homogenate, a positive control, revealed one major band with a molecular weight of about 100 kDa. SW-adapted tilapia gills possessed larger (about 2-fold) amounts of sodium pumps compared with FW-adapted tilapia gills. (3)H-ouabain binding representing functional binding sites of Na,K-ATPase was also higher (about 3.5-fold) in gills of SW-adapted tilapia compared to that of FW-adapted fish. Moreover, specific activities of SW fish were higher (about 2-fold) than those of FW fish. Double labeling of Na,K-ATPase and Con-A, a fluorescent marker of MR cells, in tilapia gills followed by analysis with confocal microscopy showed that sodium pumps were localized mainly in MR cells, including the SW type and different FW types. Although more-active expression of Na,K-ATPase was demonstrated in gills of SW-adapted tilapia, no significant differences in densities of apical openings of MR cells were found between SW- and FW-adapted fish. These results indicate that, during salinity challenge, tilapia develop more "functional" Na,K-ATPase in SW-type MR cells to meet physiological demands.  相似文献   

20.
Pre-steady-state phosphorylation of purified Na,K-ATPase from red outer medulla of pig kidney was studied at 25 degrees C and an ample range of [tau-32P]ATP concentrations. At 10 microM ATP phosphorylation followed simple exponential kinetics reaching after 40 ms a steady level of 0.76 +/- 0.04 nmol of P/mg of protein with kapp = 73.0 +/- 6.5 s-1. At 500 microM ATP the time course of phosphorylation changed drastically, since the phosphoenzyme reached a level two to four times higher at a much higher rate (kapp greater than or equal to 370 s-1) and in about 40 ms dropped to the same steady level as with 10 microM ATP. This superphosphorylation was not observed in Na,K-ATPase undergoing turnover in a medium with Mg2+, Na+, and ATP, suggesting that it required the enzyme to be at rest. Superphosphorylation depended on Mg2+ and Na+ and was fully inhibited by ouabain and FITC. After denaturation the phosphoenzyme made by superphosphorylation had the electrophoretic mobility of the alpha-subunit of the Na,K-ATPase, and its hydrolysis was accelerated by hydroxylamine. On a molar basis, the stoichiometry of phosphate per ouabain bound was 2.40 +/- 0.60 after phosphorylation with 1000 microM ATP. The results are consistent with the idea that under proper conditions every functional Na,K-ATPase unit can accept two, or more, phosphates of rapid turnover from ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号