首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vernalization gene 2 (VRN2), is a major flowering repressor in temperate cereals that is regulated by low temperature and photoperiod. Here we show that the gene from Triticum aestivum (TaVRN2) is also regulated by salt, heat shock, dehydration, wounding and abscissic acid. Promoter analysis indicates that TaVRN2 regulatory region possesses all the specific responsive elements to these stresses. This suggests pleiotropic effects of TaVRN2 in wheat development and adaptability to the environment. To test if TaVRN2 can act as a flowering repressor in species different from the temperate cereals, the gene was ectopically expressed in the model plant Arabidopsis. Transgenic plants showed no alteration in morphology, but their flowering time was significantly delayed compared to controls plants, indicating that TaVRN2, although having no ortholog in Brassicaceae, can act as a flowering repressor in these species. To identify the possible mechanism by which TaVRN2 gene delays flowering in Arabidopsis, the expression level of several genes involved in flowering time regulation was determined. The analysis indicates that the late flowering of the 35S::TaVRN2 plants was associated with a complex pattern of expression of the major flowering control genes, FCA, FLC, FT, FVE and SOC1. This suggests that heterologous expression of TaVRN2 in Arabidopsis can delay flowering by modulating several floral inductive pathways. Furthermore, transgenic plants showed higher freezing tolerance, likely due to the accumulation of CBF2, CBF3 and the COR genes. Overall, our data suggests that TaVRN2 gene could modulate a common regulator of the two interacting pathways that regulate flowering time and the induction of cold tolerance. The results also demonstrate that TaVRN2 could be used to manipulate flowering time and improve cold tolerance in other species.  相似文献   

2.
3.
TERMINAL FLOWER 1 (TFL1) homologs play critical roles in regulating flowering time and/or maintaining flowering of meristems. In this study, the gene of maize TFL1 ortholog ZmTFL1 (ZCN1) was cloned from both the tropical inbred line CML288 and temperate inbred line Huangzao 4, and the function of ZmTFL1 (ZCN1) was determined during different periods of floral development. Spatial and temporal expression patterns revealed that ZCN1 was predominantly localized in shoot apical meristems that develop into flowers, and only at low levels in leaves. To further identify the role of ZCN1 in floral development of maize, the morphology of shoot apices in maize during floral development was investigated using laser scanning confocal microscopy. Moreover, the relative levels of expression of ZCN1, ZCN8, DLF1, and ZAP1 genes were determined. Over-expression of ZCN1 partially complemented the late flowering phenotype in the tfl1-14 Arabidopsis mutant. Moreover, transgenic Arabidopsis plants exhibited indeterminate inflorescence with increased shoot length and higher numbers of trichomes on leaves. In addition, expression levels of AP1 were significantly down-regulated in 35S::ZCN1 transgenic Arabidopsis plants. These results indicated that ZCN1 as well as its homolog TFL1 in Arabidopsis are involved in the regulation of floral transition in maize.  相似文献   

4.
5.
6.
Kawanabe T  Fujimoto R 《Plant science》2011,181(4):496-503
Arabidopsis thaliana is a quantitative long-day plant with the timing of the floral transition being regulated by both endogenous signals and multiple environmental factors. fwa is a late-flowering mutant, and this phenotype is due to ectopic FWA expression caused by hypomethylation at the FWA locus. The floral transition results in the activation of the floral development process, the key regulators being the floral meristem identity genes, AP1 (APETALA1) and LFY (LEAFY). In this study, we describe inflorescence abnormalities in plants overexpressing the Arabidopsis lyrata FT (AlFT) and A. thaliana FWA (AtFWA) genes simultaneously. The inflorescence abnormality phenotype was present in only a proportion of plants. All plants overexpressing both AlFT and AtFWA flowered earlier than fwa, suggesting that the inflorescence abnormality and earlier flowering time are caused independently. The inflorescence abnormality phenotype was similar to that of the double mutant of ap1 and lfy, and AP1 and LFY genes were down-regulated in the abnormal inflorescences. From these results, we suggest that not only does ectopic AtFWA expression inhibit AtFT/AlFT function to delay flowering but that overexpression of AtFWA and AlFT together inhibits AP1 and LFY function to produce abnormal inflorescences.  相似文献   

7.
8.
Various environmental signals integrate into a network of floral regulatory genes leading to the final decision on when to flower. Although a wealth of qualitative knowledge is available on how flowering time genes regulate each other, only a few studies incorporated this knowledge into predictive models. Such models are invaluable as they enable to investigate how various types of inputs are combined to give a quantitative readout. To investigate the effect of gene expression disturbances on flowering time, we developed a dynamic model for the regulation of flowering time in Arabidopsis thaliana. Model parameters were estimated based on expression time-courses for relevant genes, and a consistent set of flowering times for plants of various genetic backgrounds. Validation was performed by predicting changes in expression level in mutant backgrounds and comparing these predictions with independent expression data, and by comparison of predicted and experimental flowering times for several double mutants. Remarkably, the model predicts that a disturbance in a particular gene has not necessarily the largest impact on directly connected genes. For example, the model predicts that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC1) mutation has a larger impact on APETALA1 (AP1), which is not directly regulated by SOC1, compared to its effect on LEAFY (LFY) which is under direct control of SOC1. This was confirmed by expression data. Another model prediction involves the importance of cooperativity in the regulation of APETALA1 (AP1) by LFY, a prediction supported by experimental evidence. Concluding, our model for flowering time gene regulation enables to address how different quantitative inputs are combined into one quantitative output, flowering time.  相似文献   

9.
Heading date is one of most important agronomic traits in rice. Flowering regulatory mechanisms have been elucidated in many cultivars through various approaches. Although study about flowering has been extensively examined in rice, but contributions of floral regulators had been poorly understood in a common genetic background for rice grown under paddy conditions. Thus, we compared the expression of 10 flowering-time genes — OsMADS50, OsMADS51, OsVIL2, OsPhyA, OsPhyB, OsPhyC, Ghd7, Hd1, OsGI, and OsTrx1 — in the same genetic background for ‘Dongjin’ rice (Oryza sativa) grown under paddy conditions when days were longer than 13.5 h. Whereas the wild type (WT) rice flowered 105 days after sowing, the latest mutant to do so was ostrx1, flowering 53 d later. This indicated that the gene is the strongest inducer among all of those examined. Mutations in OsMADS50 delayed flowering by 45 d when compared with the WT, suggesting that this MADS gene is another strong positive element. The third positive element was OsVIL2; mutations in the gene caused plants to flower 27 d late. In contrast, the double phytochrome mutant osphyA osphyB flowered 44 d earlier than the WT. The single mutant osphyB and the double mutant osphyB osphyC did the same, although not as early as the osphyA osphyB double mutant. These results demonstrated that phytochromes are major inhibitors under paddy conditions. Mutations in Ghd7 accelerated flowering by 34 d, indicating that the gene is also a major inhibitor. The hd1 mutants flowered 16 d earlier than the WT while a mutation in OsGI hastened flowering by 10 d, suggesting that both are weak flowering repressors. Of the two florigen genes (Hd3a being the other one), RFT1 played a major role under paddy conditions. Its expression was strongly promoted by Ehd1, which was negatively controlled by Ghd7. Here we show that phytochromes strongly inhibit flowering and OsTrx1 and OsMADS50 significantly induce flowering under paddy conditions through Ghd7-Ehd1-RFT1 pathway. Thus, we may be able to control heading date under paddy conditions through manipulating those genes, Ghd7, Ehd1 and RFT1.  相似文献   

10.
In this research, through the analyzing of the Triticum aestivum salt-tolerant mutant gene expression profile, under salt stress. A brand new gene with unknown functions induced by salt was cloned. The cloned gene was named Triticum aestivum salt stress protein (TaSST). GenBank accession number of TaSST is ACH97119. Quantitative polymerase chain reaction (qPCR) results exhibited that the expression TaSST was induced by salt, abscisic acid (ABA), and polyethylene glycol (PEG). TaSST could improve salt tolerance of Arabidopsis-overexpressed TaSST. After salt stress, physiological indexes of transgenic Arabidopsis were better compared with WT (wild-type) plants. TaSST was mainly located in the cytomembrane. qPCR analyzed the expression levels of nine tolerance-related genes of Arabidopsis in TaSST-overexpressing Arabidopsis. Results showed that the expression levels of SOS3, SOS2, KIN2, and COR15a significantly increased, whereas the expression of the five other genes showed no obvious change. OsI_01272, the homologous gene of TaSST in rice, was interfered using RNA interference (RNAi) technique. RNAi plants became more sensitive to salt than control plants. Thus, we speculate that TaSST can improve plant salt tolerance.  相似文献   

11.
In Arabidopsis, AP1 is a floral meristem identity gene and plays an important role in floral organ development. In this study, PsnAP1-1 and PsnAP1-2 were isolated from the male reproductive buds of poplar (Populus simonii × P. nigra), which are the orthologs of AP1 in Arabidopsis, by sequence analysis. Northern blot and qRT-PCR analysis showed that PsnAP1-1 and PsnAP1-2 exhibited high expression level in early inflorescence development of poplar. Subcellular localization showed the PsnAP1-1 and PsnAP1-2 proteins are localized in the nucleus. Overexpression of PsnAP1-1 and PsnAP1-2 in tobacco under the control of a CaMV 35S promoter significantly enhanced early flowering. These transgenic plants also showed much earlier stem initiation and higher rates of photosynthesis than did wild-type tobacco. qRT-PCR analysis further indicated that overexpression of PsnAP1-1 and PsnAP1-2 resulted in up-regulation of genes related to flowering, such as NtMADS4, NtMADS5 and NtMADS11. Overexpression of PsnAP1-1 and PsnAP1-2 in Arabidopsis also induced early flowering, but did not complement the ap1-10 floral morphology to any noticeable extent. This study indicates that PsnAP1-1 and PsnAP1-2 play a role in floral transition of poplar.  相似文献   

12.
Mutants of Arabidopsis thaliana deficient in gibberellin synthesis (ga1-3 and ga1-6), and a gibberellin-insensitive mutant (gai) were compared to the wild-type (WT) Landsberg erecta line for flowering time and leaf number when grown in either short days (SD) or continuous light (CL). The ga1-3 mutant, which is severely defective in ent-kaurene synthesis because it lacks most of the GA1 gene, never flowered in SD unless treated with exogenous gibberellin. After a prolonged period of vegetative growth, this mutant eventually underwent senescence without having produced flower buds. The gai mutant and the “leaky” ga1-6 mutant did flower in SD, but took somewhat longer than WT. All the mutants flowered readily in CL, although the ga1-3 mutant showed some delay. Unlike WT and ga1-3, the gai mutant failed to respond to gibberellin treatment by accelerating flowering in SD. A cold treatment promoted flowering in the WT and gai, but failed to induce flowering in ga1-3. From these results, it appears that gibberellin normally plays a role in initiating flowering of Arabidopsis.  相似文献   

13.
True day-neutral (DN) plants flower regardless of day-length and yet they flower at characteristic stages. DN Nicotiana tabacum cv. Samsun, makes about forty nodes before flowering. The question still persists whether flowering starts because leaves become physiologically able to export sufficient floral stimulus or the shoot apical meristem (SAM) acquires developmental competence to interpret its arrival. This question was addressed using tobacco expressing the Schizosaccharomyces pombe cell cycle gene, Spcdc25, as a tool. Spcdc25 expression induces early flowering and we tested a hypothesis that this phenotype arises because of premature floral competence of the SAM. Scions of vegetative Spcdc25 plants were grafted onto stocks of vegetative WT together with converse grafts and flowering onset followed (as the time since sowing and number of leaves formed till flowering). Spcdc25 plants flowered significantly earlier with fewer leaves, and, unlike WT, also formed flowers from axillary buds. Scions from vegetative Spcdc25 plants also flowered precociously when grafted to vegetative WT stocks. However, in a WT scion to Spcdc25 stock, the plants flowered at the same time as WT. SAMs from young vegetative Spcdc25 plants were elongated (increase in SAM convexity determined by tracing a circumference of SAM sections) with a pronounced meristem surface cell layers compared with WT. Presumably, Spcdc25 SAMs were competent for flowering earlier than WT and responded to florigenic signal produced even in young vegetative WT plants. Precocious reproductive competence in Spcdc25 SAMs comprised a pronounced mantle, a trait of prefloral SAMs. Hence, we propose that true DN plants export florigenic signal since early developmental stages but the SAM has to acquire competence to respond to the floral stimulus.  相似文献   

14.
15.
16.
An early flowering mutant of Arabidopsis, elf32-D was isolated from activation tagging screening. The mutant flowered earlier than wild type under both long day and short day conditions. The mutant phenotype was caused by overexpression of a Kunitz-type trypsin inhibitor gene (AtKTI1). The expression of AtKTI1 was detected in leaves, flowers, siliques and roots. In the vegetative state, no change of flowering integrator gene expression was observed for AtKTI1 overexpressing plants. In contrast, at the reproductive stage, its overexpression resulted in the down-regulation of FLC, a strong floral repressor which integrates the autonomous and vernalization pathways and also the up-regulation of FT and AP1, which are downstream floral integrator genes. It is probable that the AtKTI1 overexpression inhibits components of the flowering signaling pathway upstream of FLC, eventually regulating expression of FLC, or causing perturbations in plant metabolism and thus indirectly affecting flowering.  相似文献   

17.
The necrotrophic pathogen Pectobacterium carotovorum ssp. carotovorum (Pcc) causes soft rot in a broad range of plant hosts. Approximately 60,000 independent seeds from Arabidopsis activation tagging lines were inoculated with Pcc and screened for resistant mutants. An Rpe1 (resistance protein to Pectobacterium 1) mutant, which had more resistance to Pcc than wild-type (WT) plants, was selected for further study. The T-DNA inserting locus in Rpe1 was located on the middle of chromosome V by flanking sequence analysis. Through expression analysis with several genes adjacent to the T-DNA tagging region, AtWRKY75 gene was highly up-regulated in the Rpe1 mutant compared to the WT plant. The up-regulation of AtWRKY75 gene was shown to be correlated on the induction of the PDF1.2, VSP1 and PR1 genes compared to the WT plant. AtWRKY75 over-expression lines exhibited reduced Pcc bacterial growth compared to WT. Taken together, our data suggest that AtWRKY75 should be a positive regulator in the JA- or SA-mediated defense signaling responses to Pcc.  相似文献   

18.
19.
20.
Cold stress has been shown to induce the production of reactive oxygen species (ROS), which can elicit a potentially damaging oxidative burden on cellular metabolism. Here, the expression of a metallothionein gene (AtMT2a) was upregulated under low temperature and hydrogen peroxide (H2O2) stresses. The Arabidopsis T-DNA insertion mutant, mt2a, exhibited more sensitivity to cold stress compared to WT plants during the seed germination, and H2O2 levels in mt2a mutant were higher than that in WT plants during the cold stress. Synthetic GFP fused to AtMT2a was observed to be localized in cytosol. These results indicated that AtMT2a functions in tolerance against cold stress by mediating the ROS balance in the cytosol. Interestingly, mRNA level of AtMT2a was increased in seedlings of Arabidopsis cat2 mutant after cold treatment compared to WT seedlings, and overexpression of AtMT2a in cat2 could improve CAT activity under chilling stress. Moreover, the enzymatic activity of CAT in mt2a was higher than that in WT plants after cold treatment, suggesting that AtMT2a and CAT might complement each other in antioxidative process potentially in Arabidopsis. Taken together, our results provided a novel insight into the relationship between MTs and antioxidative enzymes in the ROS-scavenging system in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号