首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eucalyptus applied genomics: from gene sequences to breeding tools   总被引:1,自引:1,他引:0  
Eucalyptus is the most widely planted hardwood crop in the tropical and subtropical world because of its superior growth, broad adaptability and multipurpose wood properties. Plantation forestry of Eucalyptus supplies high-quality woody biomass for several industrial applications while reducing the pressure on tropical forests and associated biodiversity. This review links current eucalypt breeding practices with existing and emerging genomic tools. A brief discussion provides a background to modern eucalypt breeding together with some current applications of molecular markers in support of operational breeding. Quantitative trait locus (QTL) mapping and genetical genomics are reviewed and an in-depth perspective is provided on the power of association genetics to dissect quantitative variation in this highly diverse organism. Finally, some challenges and opportunities to integrate genomic information into directional selective breeding are discussed in light of the upcoming draft of the Eucalyptus grandis genome. Given the extraordinary genetic variation that exists in the genus Eucalyptus, the ingenuity of most breeders, and the powerful genomic tools that have become available, the prospects of applied genomics in Eucalyptus forest production are encouraging.  相似文献   

2.
Regions of the genome affecting physical and chemical wood properties (quantitative trait loci (QTL)), as well as growth, were identified using a clonally replicated, outbred F2 family (112 genotypes, each with two ramets) of Eucalyptus globulus, planted in a field trial in north-west Tasmania. Traits studied were growth (assessed by stem diameter), wood density, cellulose content, pulp yield and lignin content. These traits are important in breeding for pulpwood, and will be important in breeding for carbon sequestration and biofuel production. Between one and four QTL were located for each trait, with each QTL explaining between 4% and 12% of the phenotypic variation. Several QTL for chemical wood properties were co-located, consistent with their high phenotypic correlations, and may reflect pleiotropic effects of the same genes. In contrast, QTL for density and lignin content with overlapping confidence intervals were considered to be due to independent genes, since the QTL effects were inherited from different parents. The inclusion of fully informative microsatellites on the linkage map allowed the determination of homology at the linkage group level between QTL and candidate genes in different pedigrees of E. globulus and different eucalypt species. None of the candidate genes mapped in comparable studies co-located with our major QTL for wood chemical properties, arguing that there are important candidate genes yet to be discovered.  相似文献   

3.
Eucalyptus nitens plantations are generally established for pulpwood production but an increasing area is being managed for solid wood. Genetic variation in, and correlations among, three Kraft pulpwood traits (diameter at breast height, basic density and near-infrared-predicted cellulose content) and three 12-mm wood-core shrinkage traits (recoverable collapse, net shrinkage and gross shrinkage) were examined, utilising data from two 9-year-old first-generation progeny trials in Tasmania. These trials contained approximately 400 open-pollinated families (over 100 of which were sampled for wood properties) representing three central-Victorian E. nitens races. Significant genetic variation at the race and/or within-race level was identified in all traits. Within races, relative levels of additive genetic variation were higher for shrinkage traits, although narrow-sense heritabilities were lower and the expression of genetic variation less stable across sites than for other wood property traits. Heterogeneous intertrait genetic correlations were identified across sites between growth and some wood property traits. However, where significant, genetic correlations indicated that within-race selection for growth would adversely affect core basic density and all core shrinkage traits. Furthermore, results based on cores suggested that within-race selection for higher basic density would favourably impact on cellulose content and collapse but selection for either higher basic density or cellulose content would adversely affect net shrinkage. Most within-race genetic variation in gross shrinkage appeared to be due to genetic variation in collapse. The implications of these results for sawn timber breeding will depend on the strength of genetic correlations between core traits and rotation-age objective traits and objective trait economic weights.  相似文献   

4.
单核苷酸多态性在林木中的研究进展   总被引:4,自引:0,他引:4  
褚延广  苏晓华 《遗传》2008,30(10):1272-1278
摘要: 单核苷酸多态性(Single nucleotide polymorphisms, SNPs)是许多生物体最丰富的遗传变异形式。林木是重要的植物类群和陆地植物生态系统的重要组成部分, SNP作为新的分子标记已应用于松、杨、黄杉、桉和云杉等属的多个树种的遗传育种学研究, 获得了包括核苷酸多样性、连锁不平衡及群体结构等相关的遗传信息, 这些研究主要建立在对候选基因序列进行测序分析的基础上。基于SNP的关联遗传学分析或连锁不平衡(Linkage disequilibrium, LD)作图, 已成为研究林木复杂数量性状的理想工具, 对桉树和火炬松的关联遗传学研究发现, 多个基因内的SNP位点与不同的木材性状相关联。利用SNP标记对林木遗传参数的估算从不同程度上揭示了林木群体进化规律及其生态学意义。SNP标记在林木中应用的不断深入, 必将极大地推动林木遗传育种学研究的发展。  相似文献   

5.
The traits of cultured fish must continually be genetically improved to supply high-quality animal protein for human consumption.Economically important fish traits are controlled by multiple gene quantitative trait loci(QTL),most of which have minor effects,but a few genes may have major effects useful for molecular breeding.In this review,we chose relevant studies on some of the most intensively cultured fish and concisely summarize progress on identifying and verifying QTLs for such traits as growth,disease and stress resistance and sex in recent decades.The potential applications of these major-effect genes and their associated markers in marker-assisted selection and molecular breeding,as well as future research directions are also discussed.These genetic and genomic analyses will be valuable for elucidating the mechanisms modulating economically important traits and to establish more effective molecular breeding techniques in fish.  相似文献   

6.
Currently, optimization of feed efficiency is one of the main challenges in improvement programs of livestock and poultry genetics. The objective of this review is to present the genetic aspects of feed efficiency related traits in meat-type chicken and possible ways to reduce the environmental impact of poultry meat production with effective breeding. Basic measures of feed efficiency are defined and the genetic background of these traits, including a review of heritabilities is described. Moreover, a number of genomic regions and candidate genes determining feed efficiency traits of broilers that were detected over the past decades are described. Classical and genomic selection strategies for feed efficiency in the context of its relationships with other performance traits are discussed as well. Finally, future strategies to improve feed digestibility are described as it is expected that they will decrease wastes and greenhouse gas emission. Further genetic improvement of feed efficiency, should be examined jointly with appropriate feeding strategies in broilers.  相似文献   

7.
To identify the chromosomal regions affecting wood quality traits, we conducted a genome-wide quantitative trait locus (QTL) analysis of wood quality traits in Eucalyptus nitens. This information is important to exploit the full potential of the impending Eucalyptus genome sequence. A three generational mapping population consisting of 296 progeny trees was used to identify QTL associated with several wood quality traits in E. nitens. Thirty-six QTL positions for cellulose content, pulp yield, lignin content, density, and microfibril angle (MFA) were identified across different linkage groups. On linkage groups (LG)2 and 8, cellulose QTL cluster with pulp yield and extractives QTL while on LG4 and 10 cellulose and pulp yield QTLs cluster together. Similarly, on LG4, 5, and 6 QTL for lignin traits were clustered together. At two positions, QTL for MFA, a physical trait related to wood stiffness, were clustered with QTL for lignin traits. Several cell wall candidate genes were co-located to QTL positions affecting different traits. Comparative QTL analysis with Eucalyptus globulus revealed two common QTL regions for cellulose and pulp yield. The QTL positions identified in this study provide a resource for identifying wood quality genes using the impending Eucalyptus genome sequence. Candidate genes identified in this study through co-location to QTL regions may be useful in association studies.  相似文献   

8.
9.
In recent years developments in plant phenomic approaches and facilities have gradually caught up with genomic approaches. An opportunity lies ahead to dissect complex, quantitative traits when both genotype and phenotype can be assessed at a high level of detail. This is especially true for the study of natural variation in photosynthetic efficiency, for which forward genetics studies have yielded only a little progress in our understanding of the genetic layout of the trait. High‐throughput phenotyping, primarily from chlorophyll fluorescence imaging, should help to dissect the genetics of photosynthesis at the different levels of both plant physiology and development. Specific emphasis should be directed towards understanding the acclimation of the photosynthetic machinery in fluctuating environments, which may be crucial for the identification of genetic variation for relevant traits in food crops. Facilities should preferably be designed to accommodate phenotyping of photosynthesis‐related traits in such environments. The use of forward genetics to study the genetic architecture of photosynthesis is likely to lead to the discovery of novel traits and/or genes that may be targeted in breeding or bio‐engineering approaches to improve crop photosynthetic efficiency. In the near future, big data approaches will play a pivotal role in data processing and streamlining the phenotype‐to‐gene identification pipeline.  相似文献   

10.
Conservation of microsatellite loci, heterozygous in Eucalyptus grandis, Eucalyptus urophylla, Eucalyptus tereticornis and Eucalyptus globulus, allowed us to propose homeologies among genetic linkage groups in these species, supported by at least three SSR loci in two different linkage groups. Marker-trait associations for sprouting and adventitious rooting ability were also compared in the four species. Putative quantitative trait loci (QTLs) influencing vegetative propagation traits were located on homeologous linkage groups. Our findings indicate high transferability of microsatellite markers between Eucalyptus species of the Symphyomyrtus subgenus and establish foundations for the use of synteny in the genetic analysis of this genus. Microsatellite markers should help integrate eucalypt genetic linkage maps from various sources. The availability of comparative linkage maps provides a basis of more-efficient use of genetic information for molecular breeding and evolutionary studies in Eucalyptus.  相似文献   

11.
12.
13.
Temperate japonica/geng (GJ) rice yield has significantly improved due to intensive breeding efforts, dramatically enhancing global food security. However, little is known about the underlying genomic structural variations (SVs) responsible for this improvement. We compared 58 long-read assemblies comprising cultivated and wild rice species in the present study, revealing 156 319 SVs. The phylogenomic analysis based on the SV dataset detected the putatively selected region of GJ sub-populations. A significant portion of the detected SVs overlapped with genic regions were found to influence the expression of involved genes inside GJ assemblies. Integrating the SVs and causal genetic variants underlying agronomic traits into the analysis enables the precise identification of breeding signatures resulting from complex breeding histories aimed at stress tolerance, yield potential and quality improvement. Further, the results demonstrated genomic and genetic evidence that the SV in the promoter of LTG1 is accounting for chilling sensitivity, and the increased copy numbers of GNP1 were associated with positive effects on grain number. In summary, the current study provides genomic resources for retracing the properties of SVs-shaped agronomic traits during previous breeding procedures, which will assist future genetic, genomic and breeding research on rice.  相似文献   

14.
15.
Sesame is one of the oldest oilseed crops grown mainly in Africa and Asia. Although genetic and genomic studies on sesame have started late, the past 5 years have witnessed extensive progresses in these areas on this crop. Important genomic sequence resources such as functional markers, genes and QTLs linked to agronomically important traits, have been generated through linkage mapping and association analysis to assist sesame improvement programs. However, most of these data are scattered in different maps making them hard to be exploited efficiently in breeding programs. In this study, we report a comprehensive physical map gathering 151 published genomic sequence resources which highlighted some hotspot functional regions in the sesame genome. Moreover, 83,135 non-redundant SSRs have been supplied along with their physical position and motif composition. This will assist future research in fine mapping or pinpointing more functional genes based on the already published QTLs and functional markers. This physical map represents a good landmark for further non-overlapping genetic and genomic studies working towards sesame improvement.  相似文献   

16.
Thumma BR  Nolan MF  Evans R  Moran GF 《Genetics》2005,171(3):1257-1265
Linkage disequilibrium (LD) mapping using natural populations results in higher resolution of marker-trait associations compared to family-based quantitative trait locus (QTL) studies. Depending on the extent of LD, it is possible to identify alleles within candidate genes associated with a trait. Analysis of a natural mutant in Arabidopsis has shown that mutations in cinnamoyl CoA reductase (CCR), a key lignin gene, affect physical properties of the secondary cell wall such as stiffness and strength. Using this gene, we tested whether LD mapping could identify alleles associated with microfibril angle (MFA), a wood quality trait affecting stiffness and strength of wood. We identified 25 common single-nucleotide polymorphism (SNP) markers in the CCR gene in Eucalyptus nitens. Using single-marker and haplotype analyses in 290 trees from a E. nitens natural population, two haplotypes significantly associated with MFA were found. These results were confirmed in two full-sib families of E. nitens and Eucalyptus globulus. In an effort to understand the functional significance of the SNP markers, we sequenced the cDNA clones and identified an alternatively spliced variant from the significant haplotype region. This study demonstrates that LD mapping can be used to identify alleles associated with wood quality traits in natural populations of trees.  相似文献   

17.
Molecular tools for breeding basidiomycetes.   总被引:1,自引:0,他引:1  
The industrial production of edible basidiomycetes is increasing every year as a response to the increasing public demand of them because of their nutritional properties. About a dozen of fungal species can be currently produced for food with sound industrial and economic bases. Notwithstanding, this production is threatened by biotic and abiotic factors that make it necessary to improve the fungal strains currently used in industry. Breeding of edible basidiomycetes, however, has been mainly empirical and slow since the genetic tools useful in the selection of the new genetic material to be introduced in the commercial strains have not been developed for these fungi as it was for other organisms. In this review we will discuss the main genetic factors that should be considered to develop breeding approaches and tools for higher basidiomycetes. These factors are (i) the genetic system controlling fungal mating; (ii) the genomic structure and organisation of these fungi; and (iii) the identification of genes involved in the control of quantitative traits. We will discuss the weight of these factors using the oyster mushroom Pleurotus ostreatus as a model organism for most of the edible fungi cultivated industrially.  相似文献   

18.
Wood quality can be defined in terms of particular end use with the involvement of several traits. Over the last fifteen years researchers have assessed the wood quality traits in forest trees. The wood quality was categorized as: cell wall biochemical traits, fibre properties include the microfibril angle, density and stiffness in loblolly pine [1]. The user friendly and an open-access database has been developed named Wood Gene Database (WGDB) for describing the wood genes along the information of protein and published research articles. It contains 720 wood genes from species namely Pinus, Deodar, fast growing trees namely Poplar, Eucalyptus. WGDB designed to encompass the majority of publicly accessible genes codes for cellulose, hemicellulose and lignin in tree species which are responsive to wood formation and quality. It is an interactive platform for collecting, managing and searching the specific wood genes; it also enables the data mining relate to the genomic information specifically in Arabidopsis thaliana, Populus trichocarpa, Eucalyptus grandis, Pinus taeda, Pinus radiata, Cedrus deodara, Cedrus atlantica. For user convenience, this database is cross linked with public databases namely NCBI, EMBL & Dendrome with the search engine Google for making it more informative and provides bioinformatics tools named BLAST,COBALT.

Availability

The database is freely available on www.wgdb.in  相似文献   

19.
Accelerating biomass improvement is a major goal of Miscanthus breeding. The development and implementation of genomic-enabled breeding tools, like marker-assisted selection (MAS) and genomic selection, has the potential to improve the efficiency of Miscanthus breeding. The present study conducted genome-wide association (GWA) and genomic prediction of biomass yield and 14 yield-components traits in Miscanthus sacchariflorus. We evaluated a diversity panel with 590 accessions of M. sacchariflorus grown across 4 years in one subtropical and three temperate locations and genotyped with 268,109 single-nucleotide polymorphisms (SNPs). The GWA study identified a total of 835 significant SNPs and 674 candidate genes across all traits and locations. Of the significant SNPs identified, 280 were localized in mapped quantitative trait loci intervals and proximal to SNPs identified for similar traits in previously reported Miscanthus studies, providing additional support for the importance of these genomic regions for biomass yield. Our study gave insights into the genetic basis for yield-component traits in M. sacchariflorus that may facilitate marker-assisted breeding for biomass yield. Genomic prediction accuracy for the yield-related traits ranged from 0.15 to 0.52 across all locations and genetic groups. Prediction accuracies within the six genetic groupings of M. sacchariflorus were limited due to low sample sizes. Nevertheless, the Korea/NE China/Russia (N = 237) genetic group had the highest prediction accuracy of all genetic groups (ranging 0.26–0.71), suggesting that with adequate sample sizes, there is strong potential for genomic selection within the genetic groupings of M. sacchariflorus. This study indicated that MAS and genomic prediction will likely be beneficial for conducting population-improvement of M. sacchariflorus.  相似文献   

20.
Breeding for abiotic stresses for sustainable agriculture   总被引:1,自引:0,他引:1  
Using cereal crops as examples, we review the breeding for tolerance to the abiotic stresses of low nitrogen, drought, salinity and aluminium toxicity. All are already important abiotic stress factors that cause large and widespread yield reductions. Drought will increase in importance with climate change, the area of irrigated land that is salinized continues to increase, and the cost of inorganic N is set to rise. There is good potential for directly breeding for adaptation to low N while retaining an ability to respond to high N conditions. Breeding for drought and salinity tolerance have proven to be difficult, and the complex mechanisms of tolerance are reviewed. Marker-assisted selection for component traits of drought in rice and pearl millet and salinity tolerance in wheat has produced some positive results and the pyramiding of stable quantitative trait locuses controlling component traits may provide a solution. New genomic technologies promise to make progress for breeding tolerance to these two stresses through a more fundamental understanding of underlying processes and identification of the genes responsible. In wheat, there is a great potential of breeding genetic resistance for salinity and aluminium tolerance through the contributions of wild relatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号