首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
McDoom I  Ma X  Kirabo A  Lee KY  Ostrov DA  Sayeski PP 《Biochemistry》2008,47(32):8326-8334
Jak2 is a 130 kDa tyrosine kinase that is important in a number of cellular signaling pathways. Its function is intrinsically regulated by the phosphorylation of a handful of its 49 tyrosines. Here, we report that tyrosine 972 (Y972) is a novel site of Jak2 phosphorylation and, hence, autoregulation. Specifically, we found that Y972 is phosphorylated and confirmed that this residue resides on the surface of the protein. Using expression plasmids that expressed either wild-type Jak2 or a full-length Jak2 cDNA containing a single Y972F substitution mutation, we investigated the consequences of losing Y972 phosphorylation on Jak2 function. We determined that the loss of Y972 phosphorylation significantly reduced the levels of both Jak2 total tyrosine phosphorylation and phosphorylation of Y1007/Y1008. Additionally, Y972 phosphorylation was shown to be important for maximal kinase function. Interestingly, in response to classical cytokine activation, the Jak2 Y972F mutant exhibited a moderately impaired level of activation when compared to the wild-type protein. However, when Jak2 was activated via a GPCR ligand, the ability of the Y972F mutant to be activated was completely lost, therefore suggesting a differential role of Y972 in Jak2 activation. Finally, we found that phosphorylation of Y972 enhances Jak2 kinase function via a mechanism that appears to stabilize the active conformation of the protein. Collectively, our results suggest that Y972 is a novel site of Jak2 phosphorylation and plays an important differential role in ligand-dependent Jak2 activation via a mechanism that involves stabilization of the Jak2 active conformation.  相似文献   

3.
4.
The interaction of the chemokine stromal cell-derived factor 1 (SDF-1) with its receptor CXCR4 is vital for cell trafficking during development, is capable of inhibiting human immunodeficiency virus type 1 (HIV-1) utilization of CXCR4 as a coreceptor, and has been implicated in delaying disease progression to AIDS in vivo. Because of the importance of this chemokine-chemokine receptor pair to both development and disease, we investigated the molecular basis of the interaction between CXCR4 and its ligands SDF-1 and HIV-1 envelope. Using CXCR4 chimeras and mutants, we determined that SDF-1 requires the CXCR4 amino terminus for binding and activates downstream signaling pathways by interacting with the second extracellular loop of CXCR4. SDF-1-mediated activation of CXCR4 required the Asp-Arg-Tyr motif in the second intracellular loop of CXCR4, was pertussis toxin sensitive, and did not require the distal C-terminal tail of CXCR4. Several CXCR4 mutants that were not capable of binding SDF-1 or signaling still supported HIV-1 infection, indicating that the ability of CXCR4 to function as a coreceptor is independent of its ability to signal. Direct binding studies using the X4 gp120s HXB, BH8, and MN demonstrated the ability of HIV-1 gp120 to bind directly and specifically to the chemokine receptor CXCR4 in a CD4-dependent manner, using a conformationally complex structure on CXCR4. Several CXCR4 variants that did not support binding of soluble gp120 could still function as viral coreceptors, indicating that detectable binding of monomeric gp120 is not always predictive of coreceptor function.  相似文献   

5.
WWP2 is a HECT‐type E3 ubiquitin ligase that regulates various physiological and pathological activities by binding to different substrates, but its function and regulatory mechanism in vascular smooth muscle cells (VSMCs) are still unknown. Here, we clarified the role of WWP2 in the regulation of SIRT1‐STAT3 and the impact of this regulatory process in VSMCs. We demonstrated that WWP2 expression was significantly increased in angiotensin II‐induced VSMCs model. Knockdown of WWP2 significantly inhibited angiotensin II‐induced VSMCs proliferation, migration and phenotypic transformation, whereas overexpression of WWP2 had opposite effects. In vivo experiments showed that vascular smooth muscle‐specific WWP2 knockout mice significantly relieved angiotensin II‐induced hypertensive angiopathy. Mechanistically, mass spectrometry and co‐immunoprecipitation assays identified that WWP2 is a novel interacting protein of SIRT1 and STAT3. Moreover, WWP2 formed a complex with SIRT1‐STAT3, inhibiting the interaction between SIRT1 and STAT3, then reducing the inhibitory effect of SIRT1 on STAT3, ensuing promoting STAT3‐K685 acetylation and STAT3‐Y705 phosphorylation in angiotensin II‐induced VSMCs and mice. In conclusion, WWP2 modulates hypertensive angiopathy by regulating SIRT1‐STAT3 and WWP2 suppression in VSMCs can alleviate hypertensive angiopathy vitro and vivo. These findings provide new insights into the treatment of hypertensive vascular diseases.  相似文献   

6.
7.
The JAK/STAT signal transduction pathway regulates many developmental processes in Drosophila. However, the functional mechanism of this pathway is poorly understood. In this report, we identify the Drosophila cyclin-dependent kinase 4 (Cdk4), which exhibits embryonic mutant phenotypes identical to those in the Hopscotch/JAK kinase and stat92E/STAT mutations. Specific genetic interactions between Cdk4 and hop mutations suggest that Cdk4 functions downstream of the HOP tyrosine kinase. We further show that Cyclin D-Cdk4 (as well as Cyclin E-Cdk2) binds and regulates STAT92E protein stability. STAT92E regulates gene expression for various biological processes, including the endocycle S phase. These data suggest that Cyclin D-Cdk4 and Cyclin E-Cdk2 play more versatile roles in Drosophila development.  相似文献   

8.
9.
Development of a lead series of piperidinylurea CXCR3 antagonists has led to the identification of molecules with alternative linkages which retain good potency. A novel 5-(piperidin-4-yl)amino-1,2,4-thiadiazole derivative was found to have satisfactory in vitro metabolic stability and to be orally bioavailable in mice, giving high plasma concentrations and a half life of 5.4 h.  相似文献   

10.
11.
Jak family tyrosine kinases mediate signaling by cytokine receptors to regulate diverse biological processes. Although Jak2 and other Jak kinase family members are phosphorylated on numerous sites during cytokine signaling, the identity and function of most of these sites remains unknown. Using tandem mass spectroscopic analysis of activated Jak2 protein from intact cells, we identified Tyr(221) and Tyr(570) as novel sites of Jak2 phosphorylation. Phosphorylation of both sites was stimulated by cytokine treatment of cultured cells, and this stimulation required Jak2 kinase activity. While we observed no gross alteration of signaling upon mutation of Tyr(221), Tyr(570) lies within the inhibitory JH2 domain of Jak2, and mutation of this site (Jak2(Y570F)) results in constitutive Jak2-dependent signaling in the absence of cytokine stimulation and enhances and prolongs Jak2 activation during cytokine stimulation. Mutation of Tyr(570) does not alter the ability of SOCS3 to bind or inhibit Jak2, however. Thus, the phosphorylation of Tyr(570) in vivo inhibits Jak2-dependent signaling independently of SOCS3-mediated inhibition. This Tyr(570)-dependent mechanism of Jak2 inhibition likely represents an important mechanism by which cytokine function is regulated.  相似文献   

12.
13.
14.
Tec family protein tyrosine kinases (TFKs) play a central role in hematopoietic cellular signaling. Initial activation takes place through specific tyrosine phosphorylation situated in the activation loop. Further activation occurs within the SH3 domain via a transphosphorylation mechanism, which for Bruton's tyrosine kinase (Btk) affects tyrosine 223. We found that TFKs phosphorylate preferentially their own SH3 domains, but differentially phosphorylate other member family SH3 domains, whereas non-related SH3 domains are not phosphorylated. We demonstrate that SH3 domains are good and reliable substrates. We observe that transphosphorylation is selective not only for SH3 domains, but also for dual SH3SH2 domains. However, the dual domain is phosphorylated more effectively. The major phosphorylation sites were identified as conserved tyrosines, for Itk Y180 and for Bmx Y215, both sites being homologous to the Y223 site in Btk. There is, however, one exception because the Tec-SH3 domain is phosphorylated at a non-homologous site, nevertheless a conserved tyrosine, Y206. Consistent with these findings, the 3D structures for SH3 domains point out that these phosphorylated tyrosines are located on the ligand-binding surface. Because a number of Tec family kinases are coexpressed in cells, it is possible that they could regulate the activity of each other through transphosphorylation.  相似文献   

15.
Developing drugs that can effectively block STAT3 activation may serve as one of the most promising strategy for cancer treatment. Currently, there is no putative STAT3 inhibitor that can be safely and effectively used in clinic. In the present study, we investigated the potential of dihydroartemisinin (DHA) as a putative STAT3 inhibitor and its antitumor activities in head and neck squamous cell carcinoma (HNSCC). The inhibitory effects of DHA on STAT3 activation along with its underlying mechanisms were studied in HNSCC cells. The antitumor effects of DHA against HNSCC cells were explored both in vitro and in vivo. An investigation on cooperative effects of DHA with cisplatin in killing HNSCC cells was also implemented. DHA exhibited remarkable and specific inhibitory effects on STAT3 activation via selectively blocking Jak2/STAT3 signaling. Besides, DHA significantly inhibited HNSCC growth both in vitro and in vivo possibly through induction of apoptosis and attenuation of cell migration. DHA also synergized with cisplatin in tumor inhibition in HNSCC cells. Our findings demonstrate that DHA is a putative STAT3 inhibitor that may represent a new and effective drug for cancer treatment and therapeutic sensitization in HNSCC patients.  相似文献   

16.
The family of cytoplasmic Janus (Jak) tyrosine kinases plays an essential role in cytokine signal transduction, regulating cell survival and gene expression. Ligand-induced receptor dimerization results in phosphorylation of Jak2 on activation loop tyrosine Y1007 and stimulation of its catalytic activity, which, in turn, results in activation of several downstream signaling cascades. Recently, the catalytic activity of Jak2 has been found to be subject to negative regulation through various mechanisms including association with SOCS proteins. Here we show that the ubiquitin-dependent proteolysis pathway is involved in the regulation of the turnover of activated Jak2. In unstimulated cells Jak2 was monoubiquitinated, and interleukin-3 or gamma interferon stimulation induced polyubiquitination of Jak2. The polyubiquitinated Jak2 was rapidly degraded through proteasomes. By using different Jak2 mutants we show that tyrosine-phosphorylated Jak2 is preferentially polyubiquitinated and degraded. Furthermore, phosphorylation of Y1007 on Jak2 was required for proteasomal degradation and for SOCS-1-mediated downregulation of Jak2. The proteasome inhibitor treatment stabilized the Jak2-SOCS-1 protein complex and inhibited the proteolysis of Jak2. In summary, these results indicate that the ubiquitin-proteasome pathway negatively regulates tyrosine-phosphorylated Jak2 in cytokine receptor signaling, which provides an additional mechanism to control activation of Jak2 and maintain cellular homeostasis.  相似文献   

17.
C(4) photosynthetic NADP-malic enzyme (ME) has evolved from non-C(4) isoforms and gained unique kinetic and structural properties during this process. To identify the domains responsible for the structural and kinetic differences between maize C(4) and non-C(4)-NADP-ME several chimeras between these isoforms were constructed and analyzed. By using this approach, we found that the region flanked by amino acid residues 102 and 247 is critical for the tetrameric state of C(4)-NADP-ME. In this way, the oligomerization strategy of these NADP-ME isoforms differs markedly from the one that present non-plant NADP-ME with known crystal structures. On the other hand, the region from residue 248 to the C-terminal end of the C(4) isoform is involved in the inhibition by high malate concentrations at pH 7.0. The inhibition pattern of the C(4)-NADP-ME and some of the chimeras suggested an allosteric site responsible for such behavior. This pH-dependent inhibition could be important for regulation of the C(4) isoform in vivo, with the enzyme presenting maximum activity while photosynthesis is in progress.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号