首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates aromatase gene polymorphism, which might influence bone strength in terms of mineral density and quality. We explored the relationship between CYP19 polymorphisms and vertebral fractures in postmenopausal Japanese women. In addition, we compared estrogen and testosterone levels in Japanese postmenopausal women with and without fractures. Osteoporotic postmenopausal women showed higher incidences of vertebral fractures than osteopenic women or women with normal lumbar bone mineral density (L2-4 BMD). Estrogen concentrations in postmenopausal women were associated with BMD; however, no association was found between sex hormone levels and the presence of fractures. The C allele rs2470152 was significantly associated with increased risk of vertebral fractures (P = 0.04), whereas none of the CYP19 polymorphisms showed differences in sex steroid levels between subjects with and without fractures. Allelic variants of aromatase genes appear to interact to influence the risk of vertebral fractures in postmenopausal Japanese women.  相似文献   

2.
Polymorphic alleles of CYP17 and CYP19, which are involved in estrogen biosynthesis, were tested for association with breast cancer (BC). Microsatellite (TTTA)n and 3-bp deletion of CYP19 and single-nucleotide polymorphism T27C of CYP17 were analyzed in 123 BC patients and 119 healthy women. Of the six (TTTA)n alleles observed, allele (TTTA)8 proved to be associated with BC (11.8% vs. 6.3%, P = 0.04). Genotype A2/A2 of CYP17 was also associated with BC (32.5% vs. 20.2%, P = 0.04). Risk of BC was especially high in the presence of both factors (7.3% vs. 0%, P < 0.01). Allele (TTTA)8 and genotype A2/A2 were assumed to be risk factors of BC.  相似文献   

3.
耿力  姚珍薇  骆建云  韩力力  卢起 《遗传》2007,29(11):1345-1350
探讨细胞色素P450 19 (CYP19) 基因Val80多态性及护骨素(OPG) 基因A163G多态性与绝经后女性骨密度 (BMD) 的关系。随机选择居住在重庆的绝经后女性200例, 采用多聚酶链反应-限制性片段长度多态性法检测Val80及A163G多态性, 采用Norland公司XR-46系列双能X线骨密度仪测量股骨近端及腰椎BMD。 200名绝经后女性中Val80基因型GG、GA及AA的频率分别为19.5%、44.5%及36.0%; A163G基因型GG、GC 及CC的频率分别为: 13.0%, 42.0%及45.0%; 基因型频率分布均符合Hardy-Weinberg平衡 (P>0.05)。协方差分析及多元逐步回归分析显示CYP19基因第3外显子Val80多态性与绝经后女性BMD无相关性 (P>0.05)。除大转子外, A163G位点AG/GG/AG+GG基因型者股骨颈、Ward’s三角及腰椎BMD均较AA基因型者低, A163G基因型与股骨颈、Ward’s三角及腰椎BMD有相关性 (P<0.05)。OPG基因启动子区A163G多态性分布存在明显的种族差异, 且与绝经后女性BMD有一定关联, AA型对BMD具有一定的保护作用, G等位基因是BMD降低的危险因素。  相似文献   

4.
Yamada Y  Ando F  Shimokata H 《Genomics》2005,86(1):76-85
We examined whether a -34T --> C polymorphism of the gene for cytochrome P450, family 17, subfamily A, polypeptide 1 (CYP17A1), a -493G --> T polymorphism of the microsomal triglyceride transfer protein gene (MTP), and a CGG repeat polymorphism of the very low density lipoprotein receptor gene (VLDLR) were associated with bone mineral density (BMD) in community-dwelling Japanese women and men. The -34T --> C polymorphism of CYP17A1 was associated with BMD in postmenopausal women, with the CC genotype being related to increased BMD. The -493G --> T polymorphism of MTP was associated with BMD in premenopausal women, with the TT genotype being related to increased BMD. The CGG repeat polymorphism of VLDLR was associated with BMD in men, with two (CGG)(n > or= 8) alleles being related to increased BMD. These results suggest that CYP17A1 and MTP are susceptibility loci for increased BMD in postmenopausal and premenopausal Japanese women, respectively, and that VLDLR constitutes such a locus in Japanese men.  相似文献   

5.
Polymorphic alleles of CYP17 and CYP19, which are involved in estrogen biosynthesis, were tested for association with breast cancer (BC). Microsatellite (TTTA)n and 3-bp deletion of CYP19 and single-nucleotide polymorphism T27C of CYP17 were analyzed in 123 BC patients and 119 healthy women. Of the six (TTTA)n alleles observed, allele (TTTA)8 proved to be associated with BC (11.8% vs. 6.3%, P = 0.04). Genotype A2/A2 of CYP17 was also associated with BC (32.5% vs. 20.2%, P = 0.04). Risk of BC was especially high in the presence of both factors (7.3% vs. 0%, P < 0.01). Allele (TTTA)8 and genotype A2/A2 were assumed to be risk factors of BC.  相似文献   

6.
The aim of the present study was to examine the impact of polymorphisms in prostate-specific antigen (PSA) and androgen-related genes (AR, CYP17, and CYP19) on prostate cancer (PCa) risk in selected high-risk patients who underwent prostate biopsy. Blood samples and prostate tissues were obtained for DNA analysis. Single-nucleotide polymorphisms in the 50-untranslated regions (UTRs) of the PSA (substitution A>G at position-158) and CYP17 (substitution T>C at 50-UTR) genes were detected by polymerase chain reaction (PCR)-restriction fragment length polymorphism assays. The CAG and TTTA repeats in the AR and CYP19 genes, respectively, were genotyped by PCR-based GeneScan analysis. Patients with the GG genotype of the PSA gene had a higher risk of PCa than those with the AG or AA genotype (OR=3.79, p=0.00138). The AA genotype was associated with lower PSA levels (6.44 +/- 1.64 ng=mL) compared with genotypes having at least one G allele (10.44 +/- 10.06 ng=mL) ( p=0.0687, 95% CI=0.3146 to 8.315, unpaired t-test). The multivariate analysis confirmed the association between PSA levels and PSA genotypes (AA vs. AG+ GG; chi2=0.0482) and CYP19 (short alleles homozygous vs. at least one long allele; chi2=0.0110) genotypes. Genetic instability at the AR locus leading to somatic mosaicism was detected in one PCa patient by comparing the length of AR CAG repeats in matched peripheral blood and prostate biopsy cores. Taken together, these findings suggest that the PSA genotype should be a clinically relevant biomarker to predict the PCa risk.  相似文献   

7.
We aimed to identify genetic variants associated with cortical bone thickness (CBT) and bone mineral density (BMD) by performing two separate genome-wide association study (GWAS) meta-analyses for CBT in 3 cohorts comprising 5,878 European subjects and for BMD in 5 cohorts comprising 5,672 individuals. We then assessed selected single-nucleotide polymorphisms (SNPs) for osteoporotic fracture in 2,023 cases and 3,740 controls. Association with CBT and forearm BMD was tested for ~2.5 million SNPs in each cohort separately, and results were meta-analyzed using fixed effect meta-analysis. We identified a missense SNP (Thr>Ile; rs2707466) located in the WNT16 gene (7q31), associated with CBT (effect size of -0.11 standard deviations [SD] per C allele, P = 6.2 × 10(-9)). This SNP, as well as another nonsynonymous SNP rs2908004 (Gly>Arg), also had genome-wide significant association with forearm BMD (-0.14 SD per C allele, P = 2.3 × 10(-12), and -0.16 SD per G allele, P = 1.2 × 10(-15), respectively). Four genome-wide significant SNPs arising from BMD meta-analysis were tested for association with forearm fracture. SNP rs7776725 in FAM3C, a gene adjacent to WNT16, was associated with a genome-wide significant increased risk of forearm fracture (OR = 1.33, P = 7.3 × 10(-9)), with genome-wide suggestive signals from the two missense variants in WNT16 (rs2908004: OR = 1.22, P = 4.9 × 10(-6) and rs2707466: OR = 1.22, P = 7.2 × 10(-6)). We next generated a homozygous mouse with targeted disruption of Wnt16. Female Wnt16(-/-) mice had 27% (P<0.001) thinner cortical bones at the femur midshaft, and bone strength measures were reduced between 43%-61% (6.5 × 10(-13)相似文献   

8.
9.
10.
The allele and genotype distribution of two alcohol dehydrogenase genes ADH1B (exon 3 polymorphism A/G (47His)), ADH7 (intron 5 polymorphism G/C) and cytochrome P450 2E1 gene (CYP2E1; 5'-flanking region G/C and intron 6 T/A polymorphisms) were examined in Russian (Tomsk, n = 125) healthy population and in coronary atherosclerosis patients (CA, n = 92). The genotype frequencies followed the Hardy-Weinberg equilibrium and the alleles were in linkage equilibrium or gametic equilibrium in the control sample. Only two CYP2E1 gene polymorphisms were in linkage disequilibrium. The frequencies of the derived alleles at ADH1B (*G (+MslI) allele), CYP2E1 (**C2 (+PstI) allele) and CYP2E1 (*C (-Dra I)2 allele) were 8.48 +/- 1.86%; 1.20 +/- 0.69% and 10.00 +/- 1.90%, respectively. The 2ADH7 gene polymorphism showed a high level of heterozygosity; the frequency of the ADH7*C (-Sty I) allele was 44.58 +/- 3.21%. A significantly higher frequency of CYP2E1 (*C2 (+Pst I)) allele has been revealed in the CA group (P = 0.043; OR = 4.23; 95% CI 1.03-20.01). The tendency to significant effect of A1A2 genotype in ADH1B Msl 1 polymorphism was observed for systolic blood pressure in the control group (P = 0.068). The statistically significant two-way interaction effects of ADH7 StyI and CYP2E1 DraI on diastolic blood pressure (P = 0.029) and on the serum high density lipoprotein level (P = 0,042) were also revealed. Association of A1A2 genotype in ADHIB Msl I polymorphism with reduced amount in a serum of a very low density lipoprotein level (P = 0.045) have also been shown. This may result from multifunctional activity of alcohol metabolizing enzymes and their involvement in many metabolic and free radical reactions in the body.  相似文献   

11.
Chromosomal mapping of the human estrogen receptor beta (ERbeta) gene by fluorescence in situ hybridization (FISH) reveals that ERbeta is located at human chromosome 14, region q23-24.1, where the aberration of DNA copy number in the bone disorders is frequently involved. Then, we investigated the association between dinucleotide (cytosine-adenine; CA) repeat polymorphism located in the flanking region of ERbeta gene and bone mineral density (BMD) in 204 healthy postmenopausal Japanese women. The genotype was classified into "A" through "O" according to the number of the repeats, from 18 to 32. BMD was expressed in Z score (a deviation from the weight-adjusted average BMD of each age using the standard deviation as a unit). When we separate the subjects into two groups bearing at least one I allele (26 CA repeats) and those who did not, the former subjects had significantly higher Z score of L2-4 BMD (mean +/- standard deviation; 0.674 +/- 1.53 vs 0.128 +/- 1.38; P = 0.027). These data suggest that genetic variation at the ERbeta locus may be associated with some determinants for BMD and the possible involvements of this polymorphism in the cause of postmenopausal osteoporosis in Japanese women.  相似文献   

12.
13.
Vitamin D binding protein (DBP)/group-specific component (Gc), correlates positively with serum vitamin D metabolites, and phenotype influences serum 25-hydroxyvitamin D (S-25(OH)D) concentration. The protein isoform has been associated with decreased bone mineral density (BMD) and increased fracture risk. We examined the role of GC genotypes in S-25(OH)D status and BMD in 231 Finnish children and adolescents aged 7−19 yr. BMD was measured with DXA from lumbar spine (LS), total hip, and whole body, and for 175 subjects, radial volumetric BMD was measured with pQCT. Background characteristic and total dietary intakes of vitamin D and calcium were collected. The concentrations of 25(OH)D, parathyroid hormone (PTH), calcium and other markers of calcium homeostasis were determined from blood and urine. Genotyping was based on single-nucleotide polymorphism (rs4588) in the GC gene. The genotype distribution was: GC 1/1 68%, GC 1/2 26% and GC 2/2 6%. A significant difference emerged in 25(OH)D and PTH concentrations between the genotypes, (p = 0.001 and 0.028 respectively, ANCOVA). There was also a linear trend in: Gc 2/2 had the lowest 25(OH)D and PTH concentrations (p = 0.025 and 0.012, respectively). Total hip bone mineral content was associated with GC genotype (BMC) (p = 0.05, ANCOVA) in boys. In regression analysis, after adjusting for relevant covariates, GC genotype was associated with LS BMC and strength and strain index (SSI) Z-score in both genders, and LS BMD in boys. In conclusion, the present study demonstrates the association between GC genotypes and S-25(OH)D and PTH concentrations. The results show the influence of DBP genetic variation on bone mass accrual in adolescence.  相似文献   

14.
研究组前期的全基因组关联研究发现PHACTR3基因与骨折关联,为了检测该基因与骨密度的关联关系,采用精细定位关联研究来检测PHACTR3基因内及其附近的SNPs与骨密度的关系。首先在中国样本(1627个不相关的汉族样本)和美国样本(2286个不相关高加索样本)中对PHACTR3基因的140个SNPs进行基因分型,然后采用Plink软件检测PHACTR3基因与腰椎和髋部骨密度的关联关系。发现研究组以前报道的与骨折关联的SNPs rs1555364和rs6064822与腰椎和髋部骨密度关联(P=4.89×10^-2-1.26×10^-2)。另外还发现位于PHACTR3基因内含子中3个SNPs位点(rs6027138,rs1182531和rs1182532)与中国人群和白人腰椎骨密度均显著关联,将中国人与白人样本合并起来进行荟萃分析(Meta—analysis),得到合并P值为1.40×10^-3到4.00×10^-4,另外发现rs6064820与髋部BMD相关联,合并P值为6.70×10^-3。本研究进一步证实了PHACTR3基因在骨密度变异中的作用,对骨质疏松发病机制的认识提供了新的理论依据。  相似文献   

15.
Objective: Elevated androgens in women are associated with type 2 diabetes and are dependent on the conversion to estrogens by aromatase cytochrome P450. Polymorphisms of a tetranucleotide repeat [TTTA]n in the fourth intron of the CYP19 gene are associated with endocrine‐dependent diseases and were examined in relation to hormone levels and disease risk factors in premenopausal women. Research Methods and Procedures: A population sample of women born in 1956 (n = 270) were genotyped for this polymorphism and the results set in relation to steroid hormones, including saliva cortisol, anthropometric variables, estimates of insulin, glucose and lipid metabolism, and blood pressure. Results: Seven tetranucleotide repeat [TTTA]n alleles were detected with allelic sizes of 168 to 195 bp, with a TCT deletion/insertion (168/171 bp) upstream of this microsatellite. Smoking was associated with elevated androgens (p = 0.005 to 0.019). Using the median (average stretch, 177.5 bp) as a dividing line, nonsmoking women with the shorter microsatellite had higher free testosterone (p = 0.018) and lower sex hormone binding globulin (p = 0.033). These differences were pronounced with the 168‐bp allele. Such women were also characterized by a less‐substantial decrease of morning cortisols (“unwinding”; p = 0.035) and central obesity (abdominal sagittal diameter, p = 0.049) and had waist/hip circumference ratios of borderline significance (p = 0.064). Discussion: The results indicate that, in premenopausal women, a short microsatellite in the fourth intron of the CYP19 gene, caused by a TCT deletion upstream the [TTTA]n tract, is associated with elevated androgens, perturbed regulation of the hypothalamic‐pituitary‐adrenal axis, and abdominal obesity.  相似文献   

16.
Hong X  Hsu YH  Terwedow H  Arguelles LM  Tang G  Liu X  Zhang S  Xu X  Xu X 《Human genetics》2007,121(3-4):491-500
Aromatase-dependent biosynthesis of estrogen plays an important role in maintenance of the male skeleton, and Cytochrome p450 aromatase is the key enzyme to catalyze the conversion of androgen precursors to estrogens. We investigated the association of polymorphisms in the CYP19A1 gene and bone mineral density in a Chinese cohort. 2392 extreme low femoral neck BMD cases or extreme high femoral neck BMD controls were selected from a population-based cohort and genotyped for eight SNPs in the CYP19A1 gene. Significant associations for rs17703883, rs12594287 and rs16964201 SNPs with BMD were found in men only. Men with TC/CC genotypes in the rs17703883 SNP had a 1.5 times higher risk of having extreme low femoral neck BMD (P = 0.003, empirical P value = 0.05), and decreased BMDs at total body (P = 0.004, empirical P value = 0.07) and total hip (P = 0.003, empirical P value = 0.05). Men carrying AA/AG genotypes in the rs12594287 SNP had a 30% reduced risk of having extreme low femoral neck BMD (P = 0.007, empirical P value = 0.12), and increased BMDs at total body (P = 0.0009, empirical P value = 0.018) and total hip (P = 0.001, empirical P value = 0.02). Men carrying TT/TC genotypes in the rs16964201 SNP had a 40% reduced risk of having extreme low femoral neck BMD (P = 0.005, empirical P value = 0.087), and increased BMDs at total body (P = 0.0001, empirical P value = 0.002) and total hip (P = 0.0006, empirical P value = 0.012). Haplotype analysis showed that the G-C-T-A-T haplotype was significantly related to higher BMD. Our finding suggests that genetic variations in the CYP19A1 gene are significantly associated with BMD at different skeletal sites in adult men, but not in women.  相似文献   

17.
Osteoporosis is a common and debilitating bone disease characterized by low bone mineral density (BMD), a highly heritable and polygenic trait. Genome-wide linkage studies have identified 3p14-p21 as a quantitative trait locus for BMD. The ARHGEF3 gene is situated within this region and was identified as a strong positional candidate. The aim of this study was to evaluate the role of variation in ARHGEF3 on bone density in women. Sequence variation within ARHGEF3 was analyzed with 17 single-nucleotide polymorphisms (SNPs) in a discovery cohort of 769 female sibs. Significant associations were found with family-based association tests between five SNPs and various measures of age-adjusted BMD (p = 0.0007-0.041) with rs7646054 showing maximal association. Analysis of the data with QPDTPHASE suggested that the more common G allele at rs7646054 is associated with decreased age-adjusted BMD. Significant associations were also demonstrated between 3-SNP haplotypes and age-adjusted spine and femoral-neck BMD (p = 0.002 and 0.003, respectively). rs7646054 was then genotyped in a replication cohort, and significant associations with hip and spine BMD were confirmed (p = 0.003-0.038), as well as an association with fracture rate (p = 0.02). Again, the G allele was associated with a decrease in age-adjusted BMD at each site studied. In conclusion, genetic variation in ARHGEF3 plays a role in the determination of bone density in Caucasian women. This data implicates the RhoGTPase-RhoGEF pathway in osteoporosis.  相似文献   

18.
The present work attempts to determine the distribution of CYP11A (TTTTA)n genotype and allele frequencies in 10 European and North African populations. This polymorphism has been associated with hyperandrogenism by several association studies. To our knowledge, this is the first study investigating the ethnic variation of this polymorphism. DNA was extracted from 868 whole-blood samples with the standard phenol-chloroform technique, and PCR reactions were carried out using fluorescent primers as described previously. PCR products were analyzed by an ABI 3,730 DNA Analyzer. A total of six alleles were identified, ranging from 220 bp (4 repeats [4R]) to 250 bp (10R). The most frequent allelic fragment size in all populations was 4R, with frequencies ranging from 47.9% (Sicily) to 62.8% (Tuscany and Germany). Allelic frequencies showed high heterogeneity between analyzed populations. We detected a significant gradient for alleles 4R and 8R. In this study, we report the allele frequency distribution of CYP11A (TTTTA)n showing a north-south geographic gradient. This result could be useful for epidemiological studies about hyperandrogenism.  相似文献   

19.
Hsu YH  Niu T  Terwedow HA  Xu X  Feng Y  Li Z  Brain JD  Rosen CJ  Laird N  Xu X 《Human genetics》2006,118(5):568-577
In order to assess the contribution of polymorphisms in the RANKL (TNFSF11), RANK (TNFRSF11A) and OPG (TNFRSF11B) genes to variations in bone mineral density (BMD), a population-based cohort with 1,120 extreme low hip BMD cases or extreme high hip BMD controls was genotyped on five SNPs. We further explored the associations between these genetic variations and forearm BMDs by genotyping 266 offspring and 309 available parents from 160 nuclear families. A family-based association test was used. Significantly positive associations were found for A163G polymorphisms in the promoter regions of the OPG gene, a missense substitution in exon 7 (Ala192Val) of the RANK gene and rs9594782 SNP in the 5′ UTR of the RANKL gene with BMD in men only. Men with TC/CC genotypes of the rs9594782 SNP had a 2.1 times higher risk of extremely low hip BMD (P=0.004), and lower whole body BMD (P<0.001). Subjects with the TC genotype of the Ala192Val polymorphism had a 40% reduced risk of having extremely low hip BMD (P<0.01), and higher whole body BMD (P<0.01). Subjects with the GG genotype of the A163G polymorphism had a 70% reduced risk of having extremely low hip BMD (P<0.05), and higher whole body BMD (P<0.01). Significant gene–gene interactions were also observed among the OPG, RANK and RANKL genes. Our findings suggest that genetic variation in genes involved in the RANKL/RANK/OPG bone remodeling pathway are strongly associated with BMD at different skeletal sites in adult men, but not in women. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

20.
钙敏感受体是钙新陈代谢的一个重要因素,白介素6是参与破骨细胞分化及功能的一种多效细胞因子。因此,钙敏感受体基因和白介素6基因都为骨矿物质代谢的重要候选基因。本研究旨在利用数量性状传递不平衡检测法,检测白介素6基因和钙敏感受体基因与腰椎和髋部骨密度的关联和连锁,以证实它们是否为影响中国人群骨密度的重要候选基因。本研究的样本为来自中国上海的401个中国核心家庭,共1,263个个体,均为汉族。每个核心家庭由父母双亲和至少一个20~45岁的健康绝经前女儿组成。腰椎与髋部的骨密度采用Hologic QDR 2000+双能X射线扫描仪进行了检测。用PE377测序仪及相关软件分别对白介素6和钙敏感受体基因中的一个CA重复多态微卫星位点进行了基因分型。分析结果表明钙敏感受体基因(CA)12等位基因(P=0.006)及(Ca)18等位基因(P=0.02)与股骨颈骨密度之间存在显著的整体关联。白介素6基因的(CA)18等位基因与整个髋部(P=0.021)、股骨颈(P=0.041)以及转子间区(P=0.029)骨密度之间均存在显著的家庭内关联。白介素6基因(CA)n位点与腰椎BMD之间存在显著的连锁(P=0.001)。本研究结果表明白介素6基因和钙敏感受体基因可能为与中国人群骨密度变异相关联的候选基因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号