首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a novel photochemical sterilization system in which Escherichia coli cells were sterilized with photosemiconductor powders (titanium oxide). For sterilization that could be used in practice, it was necessary to separate the TiO2 powders from the cell suspension. Therefore, semiconductor powders were immobilized on acetylcellulose membranes. We constructed a continuous-sterilization system consisting of a TiO2-immobilized acetylcellulose membrane reactor, a mercury lamp, and a masterflex pump. As a result, under the various sterilization conditions examined, E. coli (10(2) cells per ml) was sterilized to less than 1% survival when the cell suspension flowed in this system at a mean residence time of 16.0 min under irradiation (1,800 microeinsteins/m2 per s). We found that this system was reusable.  相似文献   

2.
A novel electrochemical reactor employing carbon-cloth electrodes was constructed for disinfection of drinking water. Escherichia coli K-12 (10(2) cells per cm3) was sterilized when a cell suspension was passed through the reactor at a dilution rate of 6.0 h-1, and a potential of 0.7 V versus a saturated calomel electrode was applied to an electrode. The survival ratio increased with increasing dilution rate but was less than 0.1% at dilution rates of less than 6.0 h-1. Although the survival ratio increased with increasing cell concentration above 10(3) cells per cm3, the disinfection rate also increased. The disinfection rate was 6.0 x 10(2) cells per cm3 per h at a cell concentration of 10(2) cells per cm3. Continuous sterilization of E. coli cells was carried out for 24 h. Sterilization is based on an electrochemical reaction between the electrode and the cell which is mediated by intracellular coenzyme A. Sterilization of drinking water by using this reactor was successfully performed, demonstrating the potential of such a reactor for clean and efficient water purification.  相似文献   

3.
A novel electrochemical reactor employing carbon-cloth electrodes was constructed for disinfection of drinking water. Escherichia coli K-12 (10(2) cells per cm3) was sterilized when a cell suspension was passed through the reactor at a dilution rate of 6.0 h-1, and a potential of 0.7 V versus a saturated calomel electrode was applied to an electrode. The survival ratio increased with increasing dilution rate but was less than 0.1% at dilution rates of less than 6.0 h-1. Although the survival ratio increased with increasing cell concentration above 10(3) cells per cm3, the disinfection rate also increased. The disinfection rate was 6.0 x 10(2) cells per cm3 per h at a cell concentration of 10(2) cells per cm3. Continuous sterilization of E. coli cells was carried out for 24 h. Sterilization is based on an electrochemical reaction between the electrode and the cell which is mediated by intracellular coenzyme A. Sterilization of drinking water by using this reactor was successfully performed, demonstrating the potential of such a reactor for clean and efficient water purification.  相似文献   

4.
Photoelectrochemical sterilization of microbial cells by semiconductor powders   总被引:20,自引:0,他引:20  
Abstract We report the novel concept of photochemical sterilization. Microbial cells were killed photoelectrochemically with semiconductor powder (platinum-loaded titanium oxide, TiO2/Pt). Coenzyme A, (CoA) in the whole cells was photo-electrochemically oxidized and, as a result, the respiration of cells was inhibited. Inhibition of respiratory activity caused death of the cells. Lactobacillus acidophilus, Saccharomyces cerevisiae and Escherichia coli (103 cells/ml respectively) were completely sterilized when they were incubated with TiO2/Pt particles under metal halide lamp irradiation for 60–120 min.  相似文献   

5.
AIMS: The aim of this study was to deterimine the survival of an enteric bacterium in anaerobic groundwater and effluent microcosms using the green fluorescent protein (GFP) marker gene in combination with the viability indicator propidium iodide (PI). METHODS AND RESULTS: The pEGFP vector (Clontech) was transformed into Escherichia coli DH5alpha and was stable for at least 100 generations of growth in nonselective medium at 28 degrees C and 37 degrees C. Using an epifluorescent microscope, GFP cells could be detected under blue light (450-490 nm) and the numbers of PI-positive GFPs could be detected under green light (530-560 nm). GFP-tagged E. coli could be detected for at least 132 d in sterilized water microcosms. GFP fluorescence was not lost from the culturable cell population for the duration of the experiment. However, a slow decline in the number of GFP-fluorescent cells in sterilized groundwater was observed. Escherichia coli die-off and loss of green fluorescence was more rapid in nonsterilized waters than in sterilized. Viable numbers of the GFP-tagged E. coli determined by PI counterstaining were compatible with numbers of colony-forming units. CONCLUSIONS: The long-term survival of E. coli and maintainance of GFP-conferred fluorescence in these cells was demonstrated in both groundwater and effluent, under sterilized conditions. However, severe starvation and/or the presence of indigenous microorganisms were found to be factors affecting the maintenance of fluorescence in dead or dying cells. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates the successful application of PI with GFP-tagging to monitor long-term bacterial survival in nutrient-limited conditions and mixed microbial populations.  相似文献   

6.
In order to obtain a basic information of plant cell suspension culture as a step toward the development of large scale culture, culture conditions of crown gall cells (auxin non-requiring cells) were investigated. Addition of yeast extract to culture medium was significantly effective for the growth and cell dispersion.

In experiments on the ability of the cultured cells to utilize sugars as the carbon source, it was observed that galactose, added to the culture medium, markedly inhibited the cell growth.

Pasteurization of the medium containing fructose as carbon source made it brownish by Maillard reaction and the medium apparently restrained the cell growth. However, the fructose medium sterilized by filtration was excellent for the cell growth as well as sucrose or glucose medium. In a jar fermentor, even the glucose medium became brownish by heat sterilization and the brown colored medium restrained the cell growth. Under optimum conditions, the doubling time was 1.1 day in exponential phase and 2.0 g of cell (dry weight) per 100 ml culture was obtained as the maximum yield.  相似文献   

7.
When titanium dioxide (TiO(2)) is irradiated with near-UV light, this semiconductor exhibits strong bactericidal activity. In this paper, we present the first evidence that the lipid peroxidation reaction is the underlying mechanism of death of Escherichia coli K-12 cells that are irradiated in the presence of the TiO(2) photocatalyst. Using production of malondialdehyde (MDA) as an index to assess cell membrane damage by lipid peroxidation, we observed that there was an exponential increase in the production of MDA, whose concentration reached 1.1 to 2.4 nmol. mg (dry weight) of cells(-1) after 30 min of illumination, and that the kinetics of this process paralleled cell death. Under these conditions, concomitant losses of 77 to 93% of the cell respiratory activity were also detected, as measured by both oxygen uptake and reduction of 2,3,5-triphenyltetrazolium chloride from succinate as the electron donor. The occurrence of lipid peroxidation and the simultaneous losses of both membrane-dependent respiratory activity and cell viability depended strictly on the presence of both light and TiO(2). We concluded that TiO(2) photocatalysis promoted peroxidation of the polyunsaturated phospholipid component of the lipid membrane initially and induced major disorder in the E. coli cell membrane. Subsequently, essential functions that rely on intact cell membrane architecture, such as respiratory activity, were lost, and cell death was inevitable.  相似文献   

8.
Proton translocation, coupled to formate oxidation and hydrogen evolution, was studied in anaerobically grown fermenting Escherichia coli JW136 carrying hydrogenase 1 (hya) and hydrogenase 2 (hyb) double deletions. Rapid acidification of the medium by EDTA-treated anaerobic suspension of the whole cells or its alkalization by inverted membranes was observed in response to application of formate. The formate-dependent proton translocation and 2H(+)-K(+) exchange coupled to H(2) evolution were sensitive to the uncoupler, carbonylcyanide-m-chlorophenylhydrazone, and to copper ions, inhibitors of hydrogenases. No pH changes were observed in a suspension of formate-pulsed aerobically grown ("respiring") cells. The apparent H(+)/formate ratio of 1.3 was obtained in cells oxidizing formate. The 2H(+)-K(+) exchange of the ATP synthase inhibitor N,N'-dicyclohexylcarbodiimide-sensitive ion fluxes does take place in JW136 cell suspension. Hydrogen formation from formate by cell suspensions of E. coli JW136 resulted in the formation of a membrane potential (Deltapsi) across the cytoplasmic membrane of -130 mV (inside negative). This was abolished in the presence of copper ions, although they had little effect on the value of Deltapsi generated by E. coli under respiration. We conclude that the hydrogen production by hydrogenase 3 is coupled to formate-dependent proton pumping that regulates 2H(+)-K(+) exchange in fermenting bacteria.  相似文献   

9.
A photocatalyst was applied to a lancet for pricking the finger to obtain an antibacterial property. A photocatalytic and uniform nano-layer of titanium dioxide (TiO2) on the surface of the lancet (0.36 mm x 24.5 mm) was formed by sputtering and annealed for crystallization of the TiO2 layer. By elementary analysis of the TiO2 layer, titanium and oxygen were detected. Next, for the estimation of the antibacterial properties resulting from the photocatalytic effect, the lancet was packed into a capillary tube filled with a suspension of Escherichia coli K-12 (non-spore-forming bacterium), and was continuously rolled in a continuous UV-irradiation system under black-light irradiation. Distinct antibacterial effects after irradiation at 0.5 mW cm(-2) for 45 min were observed in the crystallized TiO2 layer on the lancet. Finally, lancing resistances obtained by pricking an artificial skin sheet were examined using control lancets, and lancets with an unannealed TiO2 layer or an annealed TiO2 layer. The results showed almost the same lancing resistances for the control (0.53+/-0 N, n=3) and the lancet with an annealed TiO2 layer (0.51+/-0.018 N), while the lancet with an unannealed TiO2 layer showed a high lancing resistance compared with the other lancets (0.62+/-0.05 N). In conclusion, the lancet coated with a crystallized, velvety nano-layer of TiO2 obtained by annealing had antibacterial properties and a similar lancing resistance compared with the bare lancet, and showed potential for application in monitoring blood glucose in diabetes.  相似文献   

10.
三种寡糖素,即来自人参(Panax ginseng)培养细胞的人参寡糖素、红花(Carthamus tinctorius)培养细胞的红花寡糖素、黑节草(Dendrobium candidum)植物的黑节草寡糖素对红花及三七 (Panax notoginseng)的培养细胞的生长及代谢产物的含量均有显著的促进作用。寡糖素可耐高温高压(121℃、1.2bs/cm2)灭菌15分钟而不失活,其对植物培养细胞的影响与利用过滤方法灭菌的效果相似。红花寡糖素对红花悬浮培养细胞作用的适宜浓度是5-10mg/L,而在愈伤组织中为15mg/L,在三七培养细胞进入生长旺盛(培养至22天)时加入黑节草寡糖素,再培养2天后其生长即提高。黑节草寡糖素均能缩短红花及三七培养细胞生长的延缓期,提前进入对数生长期及指数生长期。并且使红花培养细胞中a-生育酚在细胞生长最活跃的指数生长期大量积累,最终增加了培养细胞及代谢产物的产率。  相似文献   

11.
AIMS: The aim of this study was to optimize conditions to separate extracellular carbohydrate complexes (ECC) produced by Escherichia coli O157:H7 and to standardize the amount of ECC produced on a per cell basis. METHODS AND RESULTS: ECC fraction I was removed from E. coli O157:H7 cells produced on tryptic soya agar and lettuce juice agar by centrifugation. To remove ECC fraction II, cells were heated at 100 degrees C for 10 min, then centrifuged. The sum of ECC fractions I and II was considered as the total ECC produced by E. coli O157:H7. A correlation between cell mass and turbidity (O.D. 750 nm) of cell suspensions was determined. Cell mass has a linear relationship (R2 = 0.93) with turbidity of cell suspensions from which ECC is removed. The amount of ECC produced on a per cell basis was calculated by dividing total amount of ECC (microgram ml-1) produced by the turbidity (O.D. 750 nm) of heated cell suspension after removal ECC fractions I and II. CONCLUSIONS: A method for separating ECC from cells of E. coli O157:H7 has been developed and conditions have been optimized. A standard method to estimate the amount of ECC produced on a per cell basis was also developed. SIGNIFICANCE AND IMPACT OF THE STUDY: Using these procedures to prepare extract of ECC from E. coli O157:H7 and to standardize values, production of ECC on a per cell basis can be estimated and a comparison of the amount of ECC produced by the pathogen grown under different environmental conditions can be accurately measured.  相似文献   

12.
The mutagenic potential of titanium dioxide nanoparticles (TiO(2)-NPs) of an average size 30.6nm was investigated using β-galactosidase (lacZ) gene complementation in plasmid pUC19/lacZ(-)Escherichia coli DH5α system. Plasmid pUC19 was treated with varying concentrations of TiO(2)-NPs and allowed to transfect the CaCl(2)-induced competent DH5α cells. The data revealed loss in transformation efficiency of TiO(2)-NPs treated plasmids as compared to untreated plasmid DNA in DH5α host cells. Induction of multiple mutations in α-fragment of lacZ gene caused synthesis of non-functional β-galactosidase enzyme, which resulted in a significant number of white (mutant) colonies of transformed E. coli cells. Screening of mutant transformants based on blue:white colony assay and DNA sequence analysis of lacZ gene fragment clearly demonstrated TiO(2)-NPs induced mutagenesis. Multiple alignment of selectable marker lacZ gene sequences from randomly selected mutants and control cells provided a gene specific map of TiO(2)-NPs induced mutations. Mutational analysis suggested that all nucleotide changes were point mutations, predominantly transversions (TVs) and transitions (TSs). A total of 32 TVs and 6 TSs mutations were mapped within 296 nucleotides (nt) long partial sequence of lacZ gene. The region between 102 and 147nt within lacZ gene sequence was found to be most susceptible to mutations with nine detectable point mutations (8 TVs and 1 TSs). Guanine base was determined to be more prone to TiO(2)-NPs induced mutations. This study suggested the pUC19/E. coli DH5αlacZ gene α-complementation system, as a novel genetic approach for determining the mutagenic potential, and specificity of manufactured NPs and nanomaterials.  相似文献   

13.
Visible light induced photocatalytic inactivation of bacteria (Escherichia coli, Staphylococcus aureus, Enterococcus faecalis) and fungi (Candida albicans, Aspergillus niger) was tested. Carbon-doped titanium dioxide and TiO2 modified with platinum(IV) chloride complexes were used as suspension or immobilised at the surface of plastic plates. A biocidal effect was observed under visible light irradiation in the case of E. coli in the presence of both photocatalysts. The platinum(IV) modified titania exhibited a higher inactivation effect, also in the absence of light. The mechanism of visible light induced photoinactivation is briefly discussed. The observed detrimental effect of photocatalysts on various microorganism groups decreases in the order: E. coli > S. aureus approximately E. faecalis>C. albicans approximately A. niger. This sequence results most probably from differences in cell wall or cell membrane structures in these microorganisms and is not related to the ability of catalase production.  相似文献   

14.
AIMS: To improve solar water disinfection using a photocatalysing semi-conductor and to study the mechanisms involved in this process. METHODS AND RESULTS: Cells of Escherichia coli were used as the microbiological indicator to study the possibility of improving the efficiency of solar water disinfection using titanium dioxide (TiO2) as a photooxidizing semi-conductor. TiO2 was used either as a suspended powder or in an immobilized form. Both applications improved the efficiency of solar disinfection. TiO2 in suspension was more effective than the immobilized form, producing enhancement factors of 1.62 and 1.34, respectively. The concentration of TiO2 greatly affected efficiency, with a maximum effect at 1 mg ml(-1). Higher TiO2 concentrations reduced the efficiency. Dimethyl sulphoxide (DMSO) and cysteamine (Cys), hydroxyl radical (OH.) scavengers, were used to elucidate the mechanisms involved in the presence of TiO2. Both DMSO and Cys totally abolished the enhancing effect produced by the presence of TiO2. CONCLUSIONS: Sunlight has a potential water disinfecting capacity. The use of TiO2 greatly improved this efficiency. The effect of TiO2 was mainly concentration-dependent, giving maximum efficiency at 1 mg ml(-1). The presence of DMSO and Cys removed the TiO2-induced enhancement, indicating that OH. may be involved in the process of cell killing. SIGNIFICANCE AND IMPACT OF THE STUDY: The efficiency of solar disinfection is limited and time-consuming and needs to be improved. The use of a semi-conductor is promising as it reduces the time of exposure and therefore increases the efficiency of solar disinfection. This would allow for the availability of good quality water, and hence would improve the quality of life.  相似文献   

15.
Degradation products of titanium implants include free ions, organo-metallic complexes, and particles, ranging from nano to macro sizes. The biological effects, especially of nanoparticles, is yet unknown. The main objective of this study was to develop Ti-protein antigens in physiological solutions that can be used in testing of cellular responses. For this purpose, 0.1% TiO2 nanoparticles less than 100 nm were mixed with human serum albumin (HSA), 0.1% and 1%, in cell culture medium (DMEM, pH 7.2). The Ti concentrations in the resulting solutions were analyzed by inductively coupled plasma mass spectrometry. The stability of the nanoparticles in suspension was analyzed by UV-vis spectrophotometer and Dynamic Light Scattering. The concentration of Ti in suspension was dependent on the presence and concentration of HSA. Albumin prevented high aggregation rate of TiO2 nanoparticles in cell culture medium. It is shown that nano TiO2-protein stable aggregates can be produced under physiological conditions at high concentrations, and are candidates for use in cellular tests.  相似文献   

16.
Whole cells of Escherichia coli containing aspartase activity were immobilized by mixing a cell suspension with a liquid isocyanate-capped polyurethane prepolymer (Hypol). The immobilized cell preparation was used to convert ammonium fumarate to l-aspartic acid. Properties of the immobilized E. coli cells containing aspartase were investigated with a batch reactor. A 1.67-fold increase in the l-aspartic acid production rate was observed at 37 degrees C as compared to 25 degrees C operating temperature. The pH optimum was broad, ranging from 8.5 to 9.2. Increasing the concentration of ammonium fumarate to 1.5 M from 1.0 M negatively affected the reaction rate. l-Aspartic acid was produced at an average rate of 2.18 x 10 mol/min per g (wet weight) of immobilized E. coli cells with a 37 degrees C substrate solution consisting of 1.0 M ammonium fumarate with 1 mM Mg (pH 9.0).  相似文献   

17.
Abstract We have proposed that guanosine tetraphosphate produced in Escherichia coli cells subjected to an isoleucine limitation inhibits pBR322 DNA replication [1]. In E. coli relA which cannot synthesize guanosine tetraphosphate (ppGpp) upon amino acid limitation pBR322 DNA is amplified after arginine starvation. The yield of plasmid DNA amplified either by chloramphenicol (Cm) or by arginine limitation is compared. The plasmid yield per cell is equal in amino acid-starved cells and in cells treated with Cm. To increase the plasmid content per ml of cell suspension the growth medium was supplemented with increasing amounts of nutrients. Plasmid DNA can be isolated in large quantities by this procedure. This simple method can be used for the enrichment of pBR325 DNA which cannot be amplified by Cm treatment. Our results indicate that E. coli relA strains might be suitable hosts for the amplification of pBR322 and related plasmids in E. coli .  相似文献   

18.
AIMS: The goal of this study was to determine whether any specific bacterial processes (biochemical or genetic) or cell surface moieties were required for the interaction between Escherichia coli O157:H7 and lettuce plant tissue. METHODS AND RESULTS: Escherichia coli O157:H7 and Fluospheres (fluorescent polystyrene microspheres) were used in experiments to investigate interactions with lettuce. Fluospheres were used as they are a non-biological material, of similar size and shape to a bacterial cell, but lack bacterial cell surface moieties and the ability to respond genetically. Live and glutaraldehyde-killed E. coli O157:H7 attached at levels of c. 5.8 log(10) cells per cm(2) following immersion of lettuce pieces into a suspension containing c. 8 log(10) CFU ml(-1). In a separate experiment, numbers of bacteria or Fluospheres associated with lettuce decreased by c. 1.5 log cm(-2) following a 1-min wash. Exposure times of 1 min, 1 h, or 6 h had little effect on the level of attachment for Fluospheres, and live or killed cells of E. coli O157:H7 to lettuce tissue. SIGNIFICANCE: These results indicate that bacterial processes and cell surface moieties are not required for the initial interaction of E. coli O157:H7 to lettuce plant tissue.  相似文献   

19.
SUMMARY

The design and use of a 601 all-glass culture system for the mass production of Microcystis (or other unicellular algae) under sterile conditions, are described. Bleaching and lysis of the cells could be prevented by controlling the pH and CO2 concentration of the cell suspension. The cell yield obtained within a week was 8,5 g l?1 fresh mass (total yield: 507,9 g) and 1,02 g l?1 dry mass (total yield: 60,9 g). Fe-free medium was sterilized by filtration before addition of autoclaved FeSO4.  相似文献   

20.
Continuous culture for the production of ethanol from wood hydrolysate was carried out in an internal membrane-filtration bioreactor. The hydrolysate medium was sterilized at a relatively low temperature of 60 degrees C with the intention of reducing the formation of inhibitory compounds during the sterilization. The maximum ethanol concentration and productivity obtained in this study were 76.9 g/L and 16.9 g/L-h, respectively, which were much higher than those (57.2-67 g/L and 0.3-1.0 g/L-h) obtained in batch cultures using hydrolysate media sterilized at 60 degrees C. The productivity was also found to be much higher than that (6.7 g/L-h) obtained in a continuous cell retention culture using a wood hydrolysate sterilized at 121 degrees C. These results show that the internal membrane-filtration bioreactor in combination with low-temperature sterilization could be very effective for ethanol production from wood hydrolysate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号