首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pattern formation along the anterior-posterior axis of the vertebrate limb is established upon activation of Sonic Hedgehog (SHH) in the zone of polarizing activity (ZPA). Since many mouse mutants with preaxial polydactyly show ectopic expression of Shh at the anterior margin of the limb buds, it has been thought to be a primary defect caused by these mutations. We show here that the mouse mutation luxate (lx) exhibits dose-dependent reduction in the size of the Fgf8 expression domain in the ectoderm from the initial stage of limb development. This aberration was independent of Fgf10 expression in the limb mesenchyme. Shh was induced in the mesenchyme underlying the posterior end of the Fgf8 expression domain, indicating an anterior shift of Shh expression in lx hindlimb buds. Prior to the ectopic induction of Shh, the expression domains of genes downstream from Shh, namely dHAND, Gli1, Ptc and Gre, which are normally expressed in posterior mesenchyme of limb buds, expanded anteriorly on the lx hindlimb buds. Conversely, the expression domains of anterior mesenchymal markers such as Gli3and Alx4 decreased in size. Thus, ectopic Shh is not a primary defect of the lx mutation. Rather, our results indicate that the lx mutation affects the positioning of the anteroposterior border in developing hindlimb buds.  相似文献   

2.
Mutations in a conserved non-coding region in intron 5 of the Lmbr1 locus, which is 1 Mb away from the sonic hedgehog (Shh) coding sequence, are responsible for mouse and human preaxial polydactyly with mirror-image digit duplications. In the mouse mutants, ectopic Shh expression is observed in the anterior mesenchyme of limb buds. Furthermore, a transgenic reporter gene flanked with this conserved non-coding region shows normal polarized expression in mouse limb buds. This conserved sequence has therefore been proposed to act as a long-range, cis-acting regulator of limb-specific Shh expression. Previous phylogenetic studies have also shown that this sequence is highly conserved among tetrapods, and even in teleost fishes. Paired fins of teleost fishes and tetrapod limbs have evolved from common ancestral appendages, and polarized Shh expression is commonly observed in fins. In this study, we first show that this conserved sequence motif is also physically linked to the Shh coding sequence in a teleost fish, the medaka, by homology search of a newly available genomic sequence database. Next, we show that deletion of this conserved intronic sequence by targeted mutation in the mouse results in a complete loss of Shh expression in the limb bud and degeneration of skeletal elements distal to the stylopod/zygopod junction. This sequence contains a major limb-specific Shh enhancer that is necessary for distal limb development. These results suggest that the conserved intronic sequence evolved in a common ancestor of fishes and tetrapods to control fin and limb development.  相似文献   

3.
4.
The mouse mutants of the hemimelia-luxate group (lx, lu, lst, Dh, Xt, and the more recently identified Hx, Xpl and Rim4; [1] [2] [3] [4] [5]) have in common preaxial polydactyly and longbone abnormalities. Associated with the duplication of digits are changes in the regulation of development of the anterior limb bud resulting in ectopic expression of signalling components such as Sonic hedgehog (Shh) and fibroblast growth factor-4 (Fgf4), but little is known about the molecular causes of this misregulation. We generated, by a transgene insertion event, a new member of this group of mutants, Sasquatch (Ssq), which disrupted aspects of both anteroposterior (AP) and dorsoventral (DV) patterning. The mutant displayed preaxial polydactyly in the hindlimbs of heterozygous embryos, and in both hindlimbs and forelimbs of homozygotes. The Shh, Fgf4, Fgf8, Hoxd12 and Hoxd13 genes were all ectopically expressed in the anterior region of affected limb buds. The insertion site was found to lie close to the Shh locus. Furthermore, expression from the transgene reporter has come under the control of a regulatory element that directs a pattern mirroring the endogenous expression pattern of Shh in limbs. In abnormal limbs, both Shh and the reporter were ectopically induced in the anterior region, whereas in normal limbs the reporter and Shh were restricted to the zone of polarising activity (ZPA). These data strongly suggest that Ssq is caused by direct interference with the cis regulation of the Shh gene.  相似文献   

5.
Polarized expression of the Sonic hedgehog (Shh) gene in the posterior mesenchyme is essential for pattern formation in the appendages of higher vertebrates, from teleost fins to tetrapod limb buds. We report on a sequence in intron 5 of the Lmbr1 gene, which resides approximately 1 Mb from the Shh coding region in the mouse genome and is highly conserved among teleost fishes and throughout the tetrapod lineage. Positional cloning revealed that two mouse mutations, Hx and M100081, characterized by mirror-image digit duplication and ectopic anterior Shh expression, have base substitutions in this sequence. Absence of the conserved sequence in limbless reptiles and amphibians and a cis-trans test using the Hx and Shh KO alleles suggest that the sequence is a cis-acting regulator that controls the polarized expression of Shh. The nucleotide sequence data reported in this paper have been submitted to GenBank and have been assigned the accession number: AB092986 to AB093004, AB093207, and AB114903.  相似文献   

6.
The role of the aristaless-related homeobox gene Alx4 in antero-posterior (AP-) patterning of the developing vertebrate limb has remained somewhat elusive. Polydactyly of Alx4 mutant mice is known to be accompanied by ectopic anterior expression of genes like Shh, Fgf4 and 5'Hoxd. We reported previously that polydactyly in Alx4 mutant mice requires SHH signaling, but we now show that in early Alx4-/- limb buds the anterior ectopic expression of Fgf4 and Hoxd13, and therefore disruption of AP-patterning, occurs independently of SHH signaling. To better understand how Alx4 functions in the pathways that regulate AP-patterning, we also studied genomic regulatory sequences that are capable of directing expression of a reporter gene in a pattern corresponding to endogenous Alx4 expression in anterior limb bud mesenchyme. We observed, as expected for authentic Alx4 expression, expansion of reporter construct expression in a Shh-/- background. Total lack of reporter expression in a Gli3-/- background confirms the existence of Gli3-dependent and -independent Alx4 expression in the limb bud. Apparently, these two modules of Alx4 expression are linked to dissimilar functions.  相似文献   

7.
We have examined the dynamic expression of Sonic hedgehog (Shh) in limb buds of the Hemimelic extra-toes (Hx) mutant. An ectopic domain of expression appears in the limb bud at embryonic day 11.5, which is not restricted to the anterior mesenchyme as in other polydactylous mutants, but extends along the entire apical ectodermal ridge. No difference in expression was observed between heterozygotes and homozygotes. This ectopic expression domain forms later and is maintained longer than the normal one. We verified that the Shh signal is properly transduced in the ectopic expression domain by analysing the expression of downstream target genes and provide evidence that the ectopic domain is functional. Interactions between Msx1 and Hx were investigated by constructing a double mutant strain. Embryos from this strain exhibit little difference in Shh expression compared to Hx simple mutants. However, homozygous Msx1/Hx double mutants exhibit a postaxial polydactyly at birth, demonstrating that the two genes interact.  相似文献   

8.
Members of bone morphogenetic proteins (BMPs) play important roles in many aspects of vertebrate embryogenesis. In developing limbs, BMPs have been implicated in control of anterior-posterior patterning, outgrowth, chondrogenesis, and apoptosis. These diverse roles of BMPs in limb development are apparently mediated by different BMP receptors (BMPR). To identify the developmental processes in mouse limb possibly contributed by BMP receptor-IB (BMPR-IB), we generated transgenic mice misexpressing a constitutively active Bmpr-IB (caBmpr-IB). The transgene driven by the mouse Hoxb-6 promoter was ectopically expressed in the posterior mesenchyme of the forelimb bud, the lateral plate mesoderm, and the whole mesenchyme of the hindlimb bud. While the forelimbs appeared normal, the transgenic hindlimbs exhibited several phenotypes, including bifurcation, preaxial polydactyly, and posterior transformation of the anterior digit. However, the size of bones in the transgenic limbs seemed unaltered. Defects in sternum and ribs were also found. The bifurcation in the transgenic hindlimb occurred early in the limb development (E10.5) and was associated with extensive cell death in the mesenchyme and occasionally in the apical ectodermal ridge (AER). Sonic hedgehog (Shh) and Patched (Ptc) expression appeared unaffected in the transgenic limb buds, suggesting that the BMPR-IB mediated signaling pathway is downstream from Shh. However, ectopic Fgf4 expression was found in the anterior AER, which may account for the duplication of the anterior digit. An ectopic expression of Gremlin found in the transgenic limb bud would be responsible for the ectopic Fgf4 expression. The observations that Hoxd-12 and Hoxd-13 expression patterns were extended anteriorly provide a molecular basis for the posterior transformation of the anterior digit. Together these results suggest that BMPR-IB is the endogenous receptor to mediate the role of BMPs in anterior-posterior patterning and apoptosis in mouse developing limb. In addition, BMPR-IB may represent a critical component in the Shh/FGF4 feedback loop by regulating Gremlin expression.  相似文献   

9.
10.
The secreted protein encoded by the Sonic hedgehog (Shh) gene is localized to the posterior margin of vertebrate limb buds and is thought to be a key signal in establishing anterior-posterior limb polarity. In the Shh(-/-) mutant mouse, the development of many embryonic structures, including the limb, is severely compromised. In this study, we report the analysis of Shh(-/-) mutant limbs in detail. Each mutant embryo has four limbs with recognizable humerus/femur bones that have anterior-posterior polarity. Distal to the elbow/knee joints, skeletal elements representing the zeugopod form but lack identifiable anterior-posterior polarity. Therefore, Shh specifically becomes necessary for normal limb development at or just distal to the stylopod/zeugopod junction (elbow/knee joints) during mouse limb development. The forelimb autopod is represented by a single distal cartilage element, while the hindlimb autopod is invariably composed of a single digit with well-formed interphalangeal joints and a dorsal nail bed at the terminal phalanx. Analysis of GDF5 and Hoxd11-13 expression in the hindlimb autopod suggests that the forming digit has a digit-one identity. This finding is corroborated by the formation of only two phalangeal elements which are unique to digit one on the foot. The apical ectodermal ridge (AER) is induced in the Shh(-/-) mutant buds with relatively normal morphology. We report that the architecture of the Shh(-/-) AER is gradually disrupted over developmental time in parallel with a reduction of Fgf8 expression in the ridge. Concomitantly, abnormal cell death in the Shh(-/-) limb bud occurs in the anterior mesenchyme of both fore- and hindlimb. It is notable that the AER changes and mesodermal cell death occur earlier in the Shh(-/-) forelimb than the hindlimb bud. This provides an explanation for the hindlimb-specific competence to form autopodial structures in the mutant. Finally, unlike the wild-type mouse limb bud, the Shh(-/-) mutant posterior limb bud mesoderm does not cause digit duplications when grafted to the anterior border of chick limb buds, and therefore lacks polarizing activity. We propose that a prepattern exists in the limb field for the three axes of the emerging limb bud as well as specific limb skeletal elements. According to this model, the limb bud signaling centers, including the zone of polarizing activity (ZPA) acting through Shh, are required to elaborate upon the axial information provided by the native limb field prepattern.  相似文献   

11.
A unique limb phenotype is described in a radiation-induced mutant mouse resulting from an inversion of a proximal segment of chromosome 5. The limb phenotype in the homozygous mutant presents with two anterior skeletal elements in the zeugopod but no posterior bone, hence the name replicated anterior zeugopod, raz. The zeugopod phenotype is accompanied by symmetrical central polydactyly of hand and foot. The chromosomal inversion includes the Shh gene and the regulatory locus, located approximately 1 Mb away, within the Lmbr1 gene. In homozygous mutants, the expression of Shh mRNA and Shh protein is severely downregulated to about 20% of wild-type limb buds, but Shh expression appears normal throughout the remainder of the embryo. Correspondingly, Gli3 expression is upregulated and posteriorly expanded in the raz/raz limb bud. We propose that the double anterior zeugopod and symmetrical central polydactyly are due to an increased and uniform concentration of the Gli3 repressor form because of lowered Shh signaling.  相似文献   

12.
We describe a novel chick WD-protein, cSWiP-1, expressed in somitic mesoderm and developing limb buds as well as in other embryonic structures where Hedgehog signalling has been shown to play a role. Using embryonic manipulations we show that in somites cSWiP-1 expression integrates two signals originating from structures adjacent to the segmental mesoderm: a positive signal from the notochord and a negative signal from intermediate and/or lateral mesoderm. In explant cultures of somitic mesoderm, Shh protein induces cSWiP-1, while a blocking antibody to Shh inhibits the induction of cSWiP-1 by the notochord. These results show that the positive signal from the notochord is mediated by Shh. We also show that in limb buds cSWiP-1 is upregulated by ectopic Shh. This occurs in about the same time period as upregulation of BMP2, placing cSWiP-1 among the earliest markers for the change of limb pattern caused by ectopic Shh. We also describe a human homologue of cSWiP-1 and a mouse gene, mSWiP-2, that is more distantly related to SWiP-1, suggesting that SWiP-1 belongs to a novel subfamily of WD-proteins.  相似文献   

13.
14.
15.
We have analyzed a new limb mutant in the chicken that we name oligozeugodactyly (ozd). The limbs of this mutant have a longitudinal postaxial defect, lacking the posterior element in the zeugopod (ulna/fibula) and all digits except digit 1 in the leg. Classical recombination experiments show that the limb mesoderm is the defective tissue layer in ozd limb buds. Molecular analysis revealed that the ozd limbs develop in the absence of Shh expression, while all other organs express Shh and develop normally. Neither Ptc1 nor Gli1 are detectable in mutant limb buds. However, Bmp2 and dHAND are expressed in the posterior wing and leg bud mesoderm, although at lower levels than in normal embryos. Activation of Hoxd11-13 occurs normally in ozd limbs but progressively declines with time. Phase III of expression is more affected than phase II, and expression is more severely affected in the more 5' genes. Interestingly, re-expression of Hoxd13 occurs at late stages in the distal mesoderm of ozd leg buds, correlating with formation of digit 1. Fgf8 and Fgf4 expression are initiated normally in the mutant AER but their expression is progressively downregulated in the anterior AER. Recombinant Shh protein or ZPA grafts restore normal pattern to ozd limbs; however, retinoic acid fails to induce Shh in ozd limb mesoderm. We conclude that Shh function is required for limb development distal to the elbow/knee joints, similar to the Shh(-/-) mouse. Accordingly we classify the limb skeletal elements as Shh dependent or independent, with the ulna/fibula and digits other than digit 1 in the leg being Shh dependent. Finally we propose that the ozd mutation is most likely a defect in a regulatory element that controls limb-specific expression of Shh.  相似文献   

16.
17.
18.
19.
20.
Hemimelic extra toes (Hx) arose spontaneously as a dominant mutation in B10.D2/nSnJ mice in 1967. It specifically affects the appendicular skeleton, causing variable foreshortening of the tibia (radius) and preaxial polydactylism. Early anatomical studies revealed anterior overgrowth of the autopod, with decreased apoptosis and increased mitosis in the anterior apical ectodermal ridge and underlying mesenchyme; overextension of apoptosis in the central zeugopod accounted for hemimelia. The Hx mutant phenotype was coarsely mapped to mouse chromosome (Chr) 5 and closely linked to engrailed‐2 (En2) and Sonic hedgehog (Shh). This region is syntenic to human Chr 7q36 that harbors several dominant mutations affecting the hand. High‐resolution genome mapping identified the Hx mutation as a G → A base pair transition within Intron 5 of the murine Lmbr1 locus. The critical effect is on a multifunctional conserved regulatory element that acts as a limb‐specific, long‐distance cis‐acting enhancer of Shh expression. As such, the Hx mutant phenotype results from ectopic Shh signals at the anterior margin of the limb bud that directly or indirectly alter FGF4 signaling from the apical ectodermal ridge. Given significant advances in understanding of embryonic development in general and limb development in particular, this review article reveals how research that once attracted interest of teratologists has advanced across the decades to pinpoint a critical molecular lesion and reveal a potential mechanism of a specific malformation that is found commonly in experimental teratology. Birth Defects Research (Part C) 90:155–162, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号