首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Energy budgets of wetlands in temperate deciduous forests are dominated by terrestrially derived leaf litter that decays under different drying conditions depending on autumn precipitation. We compared decay rates and microbial colonization of maple leaves under different inundation schedules in a field experiment, and then conducted a laboratory study on shredder preference. In the field, litter bags either remained submerged (permanent), were moved to a dried part of the basin once and then returned (semi-permanent), or were alternated between wet and dry conditions for 8 weeks (temporary).
2. There was no difference in decay rates among treatments, but leaves incubated under permanent and semi-permanent conditions had higher fungal and bacterial biomass, and lower C : N ratios than those incubated under alternating drying and wetting conditions.
3. To determine the effects of these differences in litter nutritional quality on shredder preference, we conducted a laboratory preference test with larvae of leaf-shredding caddisflies that inhabit the wetland. Caddisflies spent twice as much time foraging on permanent and semi-permanent litter than on litter incubated under temporary conditions.
4. There is considerable variation among previous studies in how basin drying affects litter breakdown in wetlands, and no previous information on shredder preference. We found that frequent drying in a shallow wetland reduces the nutritional quality of leaf litter (lower microbial biomass and nitrogen content), and therefore preference by invertebrate shredders. These results suggest that inter-annual shifts in drying regime should alter detritus processing rates, and hence the mobilization of the energy and nutrients in leaf litter to the wetland food web.  相似文献   

2.
1.  Both resources and abiotic factors may affect biotic interactions. One interaction that occurs in treehole habitats involves leaf shredders that facilitate growth of detritivores, and it may be affected by both leaf litter quantity and changes in water quality.
2.  Water chemistry in central Pennsylvania treeholes has been impacted by acid deposition, and the most common insects therein have differential survival under low pH conditions. Experimental microcosms that mimic treehole habitats were used to test the hypothesis that this abiotic factor, pH, also affects facilitative interactions. Leaf litter resources and pH were varied independently of presence of leaf-shredding scirtid beetles ( Helodes pulchella and Prionocyphon discoideus ), and the mosquito Aedes triseriatus , to examine interactions among pH, resources and insects.
3.  pH affected the interaction between the insects, such that effects of scirtids were more evident at pH 4·5 than at 6·5. Female mosquitoes were larger in the presence of scirtids, low resource and low pH conditions than in absence of scirtids, low resource and low pH conditions.
4.  There were also effects of A. triseriatus on scirtids. The size of individual scirtids was smaller in the presence of A. triseriatus , but total scirtid biomass was unaffected as survival was also higher in the presence of A. triseriatus .
5.  The effects observed on a resource-mediated biotic interaction led to the conclusion that this interaction is pH dependent, and gives support to the concept that abiotic factors play a role in determining the outcome of biotic interactions, and that acidification can have complex effects on communities.  相似文献   

3.
SUMMARY. 1. Differences in decay rates of autumn and spring balsam poplar (Populus balsamifera L.) leaf litter input to a stream and their effects on a lotic detritivore Tipula commiscibilis Diane were investigated.
2. Autumnal leaf litter decay rates were significantly greater than spring decay rates despite higher initial quality of spring leaves. Reduced spring/summer decomposition rates were the result of decreased microbial activity and biomass, and significantly lower numbers, kinds and biomass of macroinvertebrate detritivores.
3. Growth of the detritivore Tipula commiscibilis was significantly lower when fed spring leaves indicating that they were a poorer quality food source than autumn leaves.
4. Lower numbers of detritivores coupled with reduced leaf quality resulted in lower leaf litter decay rates characteristic of spring/summer.  相似文献   

4.
SUMMARY. 1. Exposure to simulated acid rain resulted in changes in the chemical content of riparian vegetation and terrestrial leaf litter and had significant effects on leaf litter decay rates in a well-buffered lotic ecosystem.
2. Foliar nitrogen and phosphorus decreased with decreasing pH of the simulated acid rain and microbial activity was greater on leaf litter exposed to rain of pi I 5.4 than on leaf litter exposed to pH 3.0 or pH 4.0.
3. Detritivore numbers and biomass were significantly higher on leaf litter exposed to pH 5.4, probably due to the greater palatability of the leaf substrate.
4. Decay rates of leaf litter processed in the summer months were significantly lower than decay rates of leaf litter processed during the autumn/winter due to reduction in nitrogen content and microbial respiration.  相似文献   

5.
SUMMARY. 1. Although the bulk of litter input to stream ecosystems is in the form of fresh leaves, current understanding of organic matter processing is largely founded on experimental studies made with pre-dried leaves. This paradox points to the critical need for evaluating to what extent those experiments with dried leaves reflect natural litter decomposition.
2. The mass loss rates, patterns of mass loss, and chemical changes during processing of fresh leaf litter were compared with air-dried leaf litter in a stream ecosystem.
3. Although overall mass loss rates were similar between treatments ( k = 0.0213 day−1 and 0.0206 day−1), fresh leaves lost mass at a constant rate, whereas the decay of dried leaves proceeded in two distinct phases. Soluble organic carbon, phosphorus, and potassium were rapidly leached from dried litter, but were largely retained in fresh material for more than a week. Kinetics of concentrations of cellulose and changes in amounts of lignin remaining per leaf pack revealed further differences in decomposition dynamics between treatments, apparently related, either directly or indirectly, to differences in leaching behaviour.
4. Dynamics of nitrogen and protein contents were similar between treatments, indicating that microbial colonization was not greatly delayed on fresh leaves.
5. It is concluded that the retention of labile carbon and nutrients in fresh leaf litter facilitates their utilization by leaf-associated micro-organisms and invertebrates, resulting in an increased importance of biotic processes relative to physical processes such as leaching.
6. At the ecosystem level, retention of carbon and nutrients in streams would be increased, allowing greater overall productivity. Conversely, the availability of labile organic carbon would be reduced in compartments such as the epilithon, fine sediments, and the water column.  相似文献   

6.
1. Leaf litter decomposition is one of the most important ecosystem processes in streams. Recent studies suggest that facilitation, in which litter is processed by a succession of species with differing abilities and requirements, may be important in making the nutrients bound in litter available to the stream assemblage.
2. We predicted that stream invertebrates that feed on terrestrial leaf litter (shredders) and tadpoles would facilitate leaf litter decomposition by changing the quality of leaf material directly via physical contact or indirectly via nutrient release. We experimentally examined the ability of shredders and tadpoles to break down leaves, independently and together, in artificial streams beside a natural forest stream.
3. The decomposition rate was greater when shredders and tadpoles were together than was expected from rates in single-species treatments, indicating that facilitation occurred. This facilitation operated in one direction only: the rate of leaf breakdown by tadpoles was higher when leaves had been partly processed by shredders, but there was no similar effect when leaves previously occupied by tadpoles were processed by shredders. We did not detect facilitation caused by indirect nutrient release.
4. Shredders may have benefited tadpoles by roughening leaf surfaces, making them easier for the tadpoles to consume and enhancing leaf breakdown in the presence of both taxa. This indicates that the loss of a single species can have impacts on ecosystem functioning that go beyond the loss of its direct contribution.  相似文献   

7.
Abstract.  1. Like many invertebrate predators, the wolf spider Pardosa littoralis Banks (Araneae: Lycosidae) accumulates in complex-structured habitats replete with leaf litter (thatch). Here we test the hypothesis that P. littoralis accumulates in complex habitats to gain refuge from cannibalism.
2. A laboratory experiment examined the effects of habitat complexity (thatch present or absent) and size-class pairing of conspecific spiders (large vs. small, small vs. small, and large vs. large) on the incidence of cannibalism. Spider survival was significantly higher (22%) in complex-structured habitats with thatch than in simple-structured habitats lacking thatch. Furthermore, cannibalism occurred more frequently in P. littoralis when the size of conspecifics was asymmetric (large vs. small spiders) than when spiders were of equal size. There was no interactive effect of habitat complexity and size-class pairing on spider survival.
3. A field experiment examined the effects of habitat complexity, conspecific density, and access to alternative prey on the prevalence of cannibalism in P. littoralis . Access to alternative prey significantly increased the number of spiders recovered from field enclosures, as did the presence of leaf litter thatch. That fewer spiders were recovered when thatch and alternative prey were absent suggests that cannibalism was most prevalent under these conditions.
4. Overall, results suggest that habitat complexity reduces agonistic interactions and cannibalism among wolf spiders, providing encouragement to pest managers that the structure of agricultural habitats can be managed to maximise densities of generalist predators for enhanced pest suppression.  相似文献   

8.
Abstract. 1. We determined mortality and distributional patterns of leaf miners on three oak host species (Quercus falcata, Q.nigra and Q.hemisphaerica) in northern Florida, U.S.A.
2. Patterns of intra- and interspecific occurrence within leaves, and mortality of five most abundant leaf miner species were analysed as a test of competition.
3. Miners co-occurred on leaves more often that expected by chance (P<0.05) in six of ten possible species combinations and log-linear model analysis showed no negative higher-order interactions.
4. All five miner species had highly clumped distributions between leaves (P<0.01).
5. Leaf miner survival was less than expected for four of five species when co-occurring on leaves with conspecifics than when mining with heterospecifics or alone (P<0.05).
6. We conclude that interspecific competition is unapparent within this leaf miner guild and that intraspecific competition occurs in four of the five major leaf miner species. We discuss leaf miner selection of common leaves, perhaps based on chemical/physical leaf characters, as a cause of intra- and interspecific aggregation.  相似文献   

9.
1. Large-scale invasions of riparian trees can alter the quantity and quality of allochthonous inputs of leaf litter to streams and thus have the potential to alter stream organic matter dynamics. Non-native saltcedar ( Tamarix sp.) and Russian olive ( Elaeagnus angustifolia ) are now among the most common trees in riparian zones in western North America, yet their impacts on energy flow in streams are virtually unknown.
2. We conducted a laboratory feeding experiment to compare the growth of the aquatic crane fly Tipula (Diptera: Tipulidae) on leaf litter from native cottonwood ( Populus ) and non-native Tamarix and Elaeagnus . Tipula showed positive growth on leaf litter of all three species; however, after 7 weeks, larvae fed Tamarix leaves averaged 1.7 and 2.5 times the mass of those fed Elaeagnus and Populus , respectively. Tipula survival was highest on Populus , intermediate on Tamarix and lowest on Elaeagnus .
3. High Tipula growth on Tamarix probably reflects a combination of leaf chemistry and morphology. Conditioned Tamarix leaf litter had intermediate carbon : nitrogen values (33 : 1) compared to Populus (40 : 1) and Elaeagnus (26 : 1), and it had intermediate proportions of structural carbon (42%) compared to Elaeagnus (57%) and Populus (35%). Tamarix leaves are also relatively small and possibly more easily ingested by Tipula than either Elaeagnus or Populus .
4. Field surveys of streams in the western U.S.A. revealed that Tamarix and Elaeagnus leaf packs were rare compared to native Populus , probably due to the elongate shape and small size of the non-native leaves. Thus we conclude that, in general, the impact of non-native riparian invasion on aquatic shredders will depend not only on leaf decomposition rate and palatability but also on rates of leaf litter input to the stream coupled with streambed retention and subsequent availability to consumers.  相似文献   

10.
1. The breakdown of oak ( Quercus robur L.), chestnut ( Castanea sativa Miller) and eucalypt ( Eucalyptus globulus Labill.) litter enclosed in 5-mm mesh bags was compared between first-order headwaters (two with native riparian forest and two with eucalypt plantations) and a third-order reach of Agüera stream. Weight loss and dynamics of phosphorus and nitrogen in litter were studied for a period of 155 days.
2. Among the different sites, processing rates ranged from 0.0045 to 0.0080 day–1 for chestnut leaf litter, from 0.0036 to 0.0051 day–1 for oak, and from 0.0027 to 0.0158 day–1 for eucalypt.
3. The availability of nutrients in water clearly influenced nitrogen and phosphorus dynamics in litter. In headwater reaches, net immobilization was not observed and losses of phosphorus and nitrogen followed mass loss. However, there was an enrichment of litter at the low reach, where influence of human settlements—located upstream—could lead to a greater availability of phosphorus in water.
4. The enhancement of litter decay by the exogenous nutrient supply depended on leaf quality, as only the processing rate of eucalypt increased at the nutrient-rich site.
5. The processing rates differed little among headwaters, suggesting that riparian forest type, i.e. deciduous forest v eucalypt plantations, did not affect litter decay in the stream.  相似文献   

11.
Abstract.  1. The distribution, abundance and population dynamics of herbivorous insects may be affected by trophic interactions, by abiotic influences, or by intra-specific processes. Relatively little is known about how trophic influences vary across space. Here, we investigate spatial variation in mortality in the oak-feeding leaf miner Tischeria ekebladella as attributable to individual causal agents.
2. Leaf miners were experimentally introduced on 67 trees on an island 5 km2 in area in south-western Finland. On each tree, some larvae were protected by a muslin bag, others by a glue barrier around the branch and some left exposed.
3. In the bagged transplants, 78.4% of larvae survived, compared with only 9.6% in the other two treatments. Most of the mortality was because of airborne agents: mortality on branches sheltered by a glue barrier was as high as on fully exposed branch tips.
4. We consider mortality caused by parasitoid wasps to be the main source of larval death and the primary factor driving general patterns of survival. The effects of bird predation and premature leaf abscission were negligible.
5. We detected spatial aggregation in larval survival and parasitism rates at the level of individual trees, but not across the landscape.
6. Spatial variation in overall leaf miner survival, parasitism and leaf abscission does not suffice to explain patterns of incidence and abundance of wild T. ekebladella on experimental trees. Rather, we identify metapopulation dynamics as a likely determinant of the spatial distribution of T. ekebladella in the landscape.  相似文献   

12.
1. The breakdown of oak ( Quercus robur L.), chestnut ( Castanea sativa Miller) and eucalypt ( Eucalyptus globulus Labill.) litter enclosed in 5-mm mesh bags was compared between first-order headwaters (two with native riparian forest and two with eucalypt plantations) and a third-order reach of Agüera stream. Weight loss and dynamics of phosphorus and nitrogen in litter were studied for a period of 155 days.
2. Among the different sites, processing rates ranged from 0.0045 to 0.0080 day–1 for chestnut leaf litter, from 0.0036 to 0.0051 day–1 for oak, and from 0.0027 to 0.0158 day–1 for eucalypt.
3. The availability of nutrients in water clearly influenced nitrogen and phosphorus dynamics in litter. In headwater reaches, net immobilization was not observed and losses of phosphorus and nitrogen followed mass loss. However, there was an enrichment of litter at the low reach, where influence of human settlements—located upstream—could lead to a greater availability of phosphorus in water.
4. The enhancement of litter decay by the exogenous nutrient supply depended on leaf quality, as only the processing rate of eucalypt increased at the nutrient-rich site.
5. The processing rates differed little among headwaters, suggesting that riparian forest type, i.e. deciduous forest v eucalypt plantations, did not affect litter decay in the stream.  相似文献   

13.
In order to examine the factors influencing xenobiotic toxicity against larval mosquitoes, the larvicidal performances of two conventional insecticides (temephos and Bacillus thuringiensis var. israelensis: Bti) and a new potential phyto-insecticide (decomposed leaf litter) were compared under different conditions against three detritivorous larval mosquito types. Bioassays performed under standard conditions indicated differential tolerance levels according to the xenobiotic and the larval type. Bioassays performed under different conditions of xenobiotic dose and geometry of the water column indicated differential effects of those parameters on mortality rates. This allowed us to distinguish the performances of temephos versus those of Bti and leaf litter. These toxicological performances were examined as indicators for analysis of xenobiotic bioavailability for mosquito larvae in environmental water, and also for their comparative interest in field mosquito control.  相似文献   

14.
The decomposition rates of plant litter mixtures often deviate from the averaged rates of monocultures of their component litter species. The mechanisms behind these non‐additive effects in decomposition of litter mixtures are lively debated. One plausible explanation for non‐additive effects is given by the improved microenvironmental condition (IMC) theory. According to this theory, plant litter species, whose physical characteristics improve the microclimatic conditions for decomposers, will promote the decomposition of their co‐occurring litter species. We tested the IMC theory in relation to leaf litter and soil moisture in two contrasting moisture conditions in a dry subarctic mountain birch forest with vascular plant leaf litters of poor and high quality. The non‐additive effects in mass loss of litter mixtures increased when moisture conditions in litter and soil became more favourable for plant litter decomposition. The sign of this increase (antagonistic or synergistic) in non‐additive effects was more predictable for litter mixtures of poor litter quality. Although the specific mechanisms underlying the IMC theory depended on the litter quality of the litter mixtures, a standardized water holding capacity (WHC) was the litter trait most closely related to the non‐additive effects in mixtures of both poor and high quality litter types. Furthermore, we found that higher dissimilarity in WHC traits between the component litter species in a mixture increased synergistic effects in litter mixtures under limiting moisture conditions. However, under improved moisture conditions, increased antagonistic effects were observed. Thus, we found clear support for the IMC theory and showed that climatic conditions and leaf litter physical traits determine whether the non‐additive effects in litter mixtures are antagonistic or synergistic. Our study emphasizes the need to include litter physical traits into predictive models of mixing effects on plant litter decomposition and in general suggests climate specificity into these models.  相似文献   

15.
1. Scirtid beetles (Coleoptera: Scirtidae) are common inhabitants of water-filled treeholes and interact with other detritivores in a processing chain commensalism. The strength of the commensalism is determined by resource quantity and the organisms involved have different tolerances to low pH. To determine the effects and interactions of resource quantity and pH on one of these leaf-shredding scirtid beetles, Helodes pulchella (Guerin), leaf litter and pH were varied independently in experimental microcosms which mimic treehole habitats.
2. Helodes pulchella growth was affected by both resources and pH in two similar experiments conducted in different years. Scirtid larvae grew more slowly in low resource treatments and also grew more slowly in low pH treatments. Scirtid survival was not affected by pH, but was lower in high resource microcosms in the 1997 experiment. Consumption of leaf litter was much higher in high resource microcosms, even though not all leaf litter was consumed in low leaf litter treatments.
3. Thus, water chemistry and leaf litter quantity could have strong effects on resource availability through effects on these beetle facilitators, in turn affecting other insects living in these detritus-based communities.  相似文献   

16.
We used exogenous gonadotropin hormones to physiologically enlarge litter size in the bank vole (Clethrionomys glareolus). This method allowed the study design to include possible production costs of reproduction and a trade-off between offspring number and body size at birth. Furthermore, progeny rearing and survival and postpartum survival of the females took place in outdoor enclosures to capture salient naturalistic effects that might be present during the fall and early winter. The aim of the study was to assess the effects of the manipulation on the growth and survival of the offspring and on the reproductive effort, survival, and future fecundity of the mothers. Mean offspring body size was smaller in enlarged litters compared to control litters at weaning, but the differences disappeared by the winter. Differences in litter sizes disappeared before weaning age due to higher mortality in enlarged litters. In addition to the effects of the litter size, offspring performance was probably also influenced by the ability of the mother to support the litter. Experimental females had higher reproductive effort at birth, and they also tended to have higher mortality during nursing. Combined effects of high reproductive effort at birth and high investment in nursing the litter entailed costs for the experimental females in terms of decreased probability of producing a second litter and a decreased body mass gain. Thus, enlarged litter size had both survival and fecundity costs for the mothers. Our results suggest that the evolution of litter size and reproductive effort is determined by reproductive costs for the mothers as well as by a trade-off between offspring number and quality.  相似文献   

17.
SUMMARY. 1. The insecticide methoxychlor was applied seasonally to one of three small headwater streams in the southern Appalachian Mountains in North Carolina, U.S.A. The initial application caused massive invertebrate drift (>1,000,000 organisms/week) and resulted in a community with few shredders and reduced abundances of most insect taxa.
2. Bacterial densities and microbial respiration rates were not affected by treatment.
3. Disruption of the invertebrate community resulted in significant reductions in leaf litter processing rates (50–74% reduction depending on leaf species) and in the amount of leaf litter processed annually (reduction of 25–28%).
4. Reductions in leaf litter processing rates resulted in significant reductions in fine particulate organic matter (FPOM) export. Declines in both concentration and total export were detectable within 1 week of treatment. Annual FPOM export was reduced to 33% of pretreatment levels. Alteration to the invertebrate community had a much greater effect on FPOM export than a severe (50–200 year) drought.
6. Course particulate organic matter (CPOM) export was not significantly influenced by treatment but was influenced by hydrologic differences among years.  相似文献   

18.
SUMMARY. 1. Brown Hill Creck, a small intermittent stream in dry sclernphyll forest in South Australia, flows for about 6 months during winter and spring. When flow ceases the stream dries to isolated pools which receive high summer inputs of Eucalyptus obliqua litter. Decomposition of this material in remnant pools causes extremely dark waters and depressed oxygen concentrations for up to 90 days.
2. Only two fully aquatic insect species, Lepntorussa darlingtoni and Lectrides varians (Trichoptera: Leptoceridae), persist under these conditions. Both utilize litter as food, but have different feeding strategies. The more abundant L. darlingtoni ingests organic and microbial material from leaf surfaces, whereas L. varians is a leaf shredder.
3. Larval processing budgets based on laboratory and fleid experiments indicated that L. variant has a greater impact on litter decomposition rates than L. darlingtoni . However, because of low density, low oxygen concentrations in pools during summer, and rapid flushing of litter from pools once flow recommences. L. variaus larvae process a small proportion of the total litter input.  相似文献   

19.
Abstract 1. A series of laboratory experiments was conducted to examine the influences of leaf litter input and flushing of medium on the priority effects of the two bamboo-stump breeding mosquitoes, Aedes albopictus and Tripteroides bambusa , using 150-ml microcosms. Larvae of either species were introduced to microcosms on day 0 (early cohort), at different densities, and day 14 (late cohort). The effects of the early cohort on survival, pupation, and biomass yield of the late cohort were compared among various combinations of the two species and among different treatments (water exchange, leaf addition, both of them, neither of them) on days 14 and 44.
2. Survivorship and pupation success of the late A. albopictus cohort were affected negatively by the presence of either species of the early cohort to a greater extent than those of the late T. bambusa cohort.
3. Water exchange reduced mortality of the late A. albopictus cohort over a short term in the presence of the early cohort of either species, indicating that a toxic substance was involved in the inhibitory priority effects. The addition of leaf litter enhanced survivorship and pupation of the late A. albopictus cohort, whether or not water was exchanged. The late T. bambusa cohort showed high survival rate with all treatments.
4. The results indicate that leaf-litter input moderates the inhibitory priority effects on A. albopictus larvae, not only by supplying food resources but also by alleviating the toxicity of accumulated dissolved substances.  相似文献   

20.
Abstract. 1. Larvae of the grazing caddis‐fly Melampophylax mucoreus were reared in a laboratory experiment investigating the effect of food availability on different substrates and cannibalism on the size and biomass of emergent adults. All experiments were performed in stream‐water filled, aerated aquaria under controlled temperature and light conditions. Larvae (fourth and fifth instar) were reared in aquaria (50 larvae in each) with three substrate scenarios: (i) limestone (LS), (ii) limestone and leaf litter (LS + L), and (iii) silicate stone (SS). 2. Cannibalism among the larvae in the LS scenario led to the highest adult dry masses (male = 5.13 ± 0.25 mg, female = 7.64 ± 0.63 mg) and to the highest mortality rate (88.7%). The SS scenario displayed the most unfavourable condition for larval growth indicated by the lowest adult dry masses (males = 3.12 ± 0.15 mg, females = 4.69 ± 0.25 mg) and a high mortality rate (81.7%). The limestone supplemented with leaf litter (ii) offered the most balanced nutrients to complete larval development and enough shelter to avoid excessive encounter rates of larvae within the aquaria, indicated by the lowest mortality rate (43.6%). Adults from the LS + L scenario showed biomasses (male = 3.94 ± 0.12 mg, female = 6.48 ± 0.24 mg) intermediate between the two other scenarios. 3. The results implied that cannibalism among larvae can lead to higher adult biomasses and therefore to increased fitness, if cannibalism supplements larval feeding requirements. Larvae developing under insufficient food availability can not compensate for this by cannibalism. Additionally, leaf litter not only provided a complementary food source for developing larvae, but also provided shelter, which reduced encounter rates. 4. Increased stress induced by high larval encounter rates (resulting in enhanced cannibalism) in the LS scenario and low food availability in the SS scenario could be indicated by premature emergence times compared with the LS + L scenario.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号