首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Stem cell biology and neurodegenerative disease   总被引:5,自引:0,他引:5  
The fundamental basis of our work is that organs are generated by multipotent stem cells, whose properties we must understand to control tissue assembly or repair. Central nervous system (CNS) stem cells are now recognized as a well-defined population of precursors that differentiate into cells that are indisputably neurons and glial cells. Work from our group played an important role in defining stem cells of the CNS. Embryonic stem (ES) cells also differentiate to specific neuron and glial types through defined intermediates that are similar to the cellular precursors that normally occur in brain development. There is convincing evidence that the differentiated progeny of ES cells and CNS stem cells show expected functions of neurons and glia. Recent progress has been made on three fundamental developmental processes: (i) cell cycle control; (ii) the control of cell fate; and (iii) early steps in neural differentiation. In addition, our work on CNS stem cells has developed to a stage where there are clinical implications for Parkinson's and other degenerative disorders. These advances establish that stem cell biology contributes to our understanding of brain development and has great clinical promise.  相似文献   

3.
4.
The utilization of neural stem cells and their progeny in applications such as disease modelling, drug screening or safety assessment will require the development of robust methods for consistent, high quality uniform cell production. Previously, we described the generation of adherent, homogeneous, non-immortalized mouse and human neural stem cells derived from both brain tissue and pluripotent embryonic stem cells ( [Conti et al., 2005] and [Sun et al., 2008]). In this study, we report the isolation or derivation of stable neurogenic human NS (hNS) lines from different regions of the 8-9 gestational week fetal human central nervous system (CNS) using new serum-free media formulations including animal component-free conditions. We generated more than 20 adherent hNS lines from whole brain, cortex, lobe, midbrain, hindbrain and spinal cord. We also compared the adherent hNS to some aspects of the human CNS-stem cells grown as neurospheres (hCNS-SCns), which were derived from prospectively isolated CD133+CD24−/lo cells from 16 to 20 gestational week fetal brain. We found, by RT-PCR and Taqman low-density array, that some of the regionally isolated lines maintained their regional identity along the anteroposterior axis. These NS cells exhibit the signature marker profile of neurogenic radial glia and maintain neurogenic and multipotential differentiation ability after extensive long-term expansion. Similarly, hCNS-SC can be expanded either as neurospheres or in extended adherent monolayer with a morphology and marker expression profile consistent with radial glia NS cells. We demonstrate that these lines can be efficiently genetically modified with standard nucleofection protocols for both protein overexpression and siRNA knockdown of exogenously expressed and endogenous genes exemplified with GFP and Nestin. To investigate the functional maturation of neuronal progeny derived from hNS we (a) performed Agilent whole genome microarray gene expression analysis from cultures undergoing neuronal differentiation for up to 32 days and found increased expression over time for a number of drugable target genes including neurotransmitter receptors and ion channels and (b) conducted a neuropharmacology study utilizing Fura-2 Ca2+ imaging which revealed a clear shift from an initial glial reaction to carbachol to mature neuron-specific responses to glutamate and potassium after prolonged neuronal differentiation. Fully automated culture and scale-up of select hNS was achieved; cells supplied by the robot maintained the molecular profile of multipotent NS cells and performed faithfully in neuronal differentiation experiments. Here, we present validation and utility of a human neural lineage-restricted stem cell-based assay platform, including scale-up and automation, genetic engineering and functional characterization of differentiated progeny.  相似文献   

5.
Understanding the molecular programs of the generation of human dopaminergic neurons (DAn) from their ventral mesencephalic (VM) precursors is of key importance for basic studies, progress in cell therapy, drug screening and pharmacology in the context of Parkinson's disease. The nature of human DAn precursors in vitro is poorly understood, their properties unstable, and their availability highly limited. Here we present positive evidence that human VM precursors retaining their genuine properties and long-term capacity to generate A9 type Substantia nigra human DAn (hVM1 model cell line) can be propagated in culture. During a one month differentiation, these cells activate all key genes needed to progress from pro-neural and pro-dopaminergic precursors to mature and functional DAn. For the first time, we demonstrate that gene cascades are correctly activated during differentiation, resulting in the generation of mature DAn. These DAn have morphological and functional properties undistinguishable from those generated by VM primary neuronal cultures. In addition, we have found that the forced expression of Bcl-X(L) induces an increase in the expression of key developmental genes (MSX1, NGN2), maintenance of PITX3 expression temporal profile, and also enhances genes involved in DAn long-term function, maintenance and survival (EN1, LMX1B, NURR1 and PITX3). As a result, Bcl-X(L) anticipates and enhances DAn generation.  相似文献   

6.
The developing vertebrate retina produces appropriate ratios of seven phenotypically and functionally distinct cell types. Retinal progenitors remain multipotent up until the last cell division, favoring the idea that extrinsic cues direct cell fate. We demonstrated previously that fibroblast growth factor (FGF) receptors are necessary for transduction of signals in the developing Xenopus retina that bias cell fate decisions (S. McFarlane et al., 1998, Development 125, 3967-3975). However, the precise identity of the signal remains unknown. To test whether an FGF signal is sufficient to influence cell fate choices in the developing retina, FGF-2 was overexpressed in Xenopus retinal precursors by injecting, at the embryonic 16-cell stage, a cDNA plasmid encoding FGF-2 into cells fated to form the retina. We found that FGF-2 overexpression in retinal precursors altered the relative numbers of transgene-expressing retinal ganglion cells (RGC) and Müller glia; RGCs were increased by 35% and Müller glia decreased by 50%. In contrast, the proportion of retinal precursors that became photoreceptors was unchanged. Within the photoreceptor population, however, we found a twofold increase in rod photoreceptors at the expense of cone photoreceptors. These data are consistent with an endogenous FGF signal influencing cell fate decisions in the developing vertebrate retina.  相似文献   

7.
Bcl-X(L) mice display a similar neurodevelopmental phenotype as rb, DNA ligase IV, and XRCC4 mutant embryos, suggesting that endogenous Bcl-X(L) expression may protect immature neurons from death caused by DNA damage and/or cell cycle dysregulation. To test this hypothesis, we generated bcl-x/p53 double mutants and examined neuronal cell death in vivo and in vitro. Bcl-X(L)-deficient primary telencephalic neuron cultures were highly susceptible to the apoptotic effects of cytosine arabinoside (AraC), a known genotoxic agent. In contrast, neurons lacking p53, or both Bcl-X(L) and p53, were markedly, and equivalently, resistant to AraC-induced caspase-3 activation and death in vitro indicating that Bcl-X(L) lies downstream of p53 in DNA damage-induced neuronal death. Despite the ability of p53 deficiency to protect Bcl-X(L)-deficient neurons from DNA damage-induced apoptosis in vitro, p53 deficiency had no effect on the increased caspase-3 activation and neuronal cell death observed in the developing Bcl-X(L)-deficient nervous system. These findings suggest that Bcl-X(L) expression in the developing nervous system critically regulates neuronal responsiveness to an apoptotic stimulus other than inadequate DNA repair or cell cycle abnormalities.  相似文献   

8.
Cortical progenitor cells give rise to neurons during embryonic development and to glia after birth. While lineage studies indicate that multipotent progenitor cells are capable of generating both neurons and glia, the role of extracellular signals in regulating the sequential differentiation of these cells is poorly understood. To investigate how factors in the developing cortex might influence cell fate, we developed a cortical slice overlay assay in which cortical progenitor cells are cultured over cortical slices from different developmental stages. We find that embryonic cortical progenitors cultured over embryonic cortical slices differentiate into neurons and those cultured over postnatal cortical slices differentiate into glia, suggesting that the fate of embryonic progenitors can be influenced by developmentally regulated signals. In contrast, postnatal progenitor cells differentiate into glial cells when cultured over either embryonic or postnatal cortical slices. Clonal analysis indicates that the postnatal cortex produces a diffusible factor that induces progenitor cells to adopt glial fates at the expense of neuronal fates. The effects of the postnatal cortical signals on glial cell differentiation are mimicked by FGF2 and CNTF, which induce glial fate specification and terminal glial differentiation respectively. These observations indicate that cell fate specification and terminal differentiation can be independently regulated and suggest that the sequential generation of neurons and glia in the cortex is regulated by a developmental increase in gliogenic signals.  相似文献   

9.
Cranial irradiation remains a frontline treatment for brain cancer, but also leads to normal tissue damage. Although low-dose irradiation (≤ 10 Gy) causes minimal histopathologic change, it can elicit variable degrees of cognitive dysfunction that are associated with the depletion of neural stem cells. To decipher the mechanisms underlying radiation-induced stem cell dysfunction, human neural stem cells (hNSCs) subjected to clinically relevant irradiation (0–5 Gy) were analyzed for survival parameters, cell-cycle alterations, DNA damage and repair, and oxidative stress. hNSCs showed a marked sensitivity to low-dose irradiation that was in part due to elevated apoptosis and the inhibition of cell-cycle progression that manifested as a G2/M checkpoint delay. Efficient removal of DNA double-strand breaks was indicated by the disappearance of γ-H2AX nuclear foci. A dose-responsive and persistent increase in oxidative and nitrosative stress was found in irradiated hNSCs, possibly the result of a higher metabolic activity in the fraction of surviving cells. These data highlight the marked sensitivity of hNSCs to low-dose irradiation and suggest that long-lasting perturbations in the CNS microenvironment due to radiation-induced oxidative stress can compromise the functionality of neural stem cells.  相似文献   

10.
We generated transgenic human neural stem cells (hNSCs) stably expressing the reporter genes Luciferase for bioluminescence imaging (BLI) and GFP for fluorescence imaging, for multimodal imaging investigations. These transgenic hNSCs were further labeled with a clinically approved perfluoropolyether to perform parallel 19F MRI studies. In vitro validation demonstrated normal cell proliferation and differentiation of the transgenic and additionally labeled hNSCs, closely the same as the wild type cell line, making them suitable for in vivo application. Labeled and unlabeled transgenic hNSCs were implanted into the striatum of mouse brain. The time profile of their cell fate after intracerebral grafting was monitored during nine days following implantation with our multimodal imaging approach, assessing both functional and anatomical condition. The 19F MRI demarcated the graft location and permitted to estimate the cell number in the graft. BLI showed a pronounce cell loss during this monitoring period, indicated by the decrease of the viability signal. The in vivo obtained cell fate results were further validated and confirmed by immunohistochemistry. We could show that the surviving cells of the graft continued to differentiate into early neurons, while the severe cell loss could be explained by an inflammatory reaction to the graft, showing the graft being surrounded by activated microglia and macrophages. These results are different from earlier cell survival studies of our group where we had implanted the identical cells into the same mouse strain but in the cortex and not in the striatum. The cortical transplanted cells did not show any loss in viability but only pronounced and continuous neuronal differentiation.  相似文献   

11.
The neural system controlling song in birds has proven a useful model for investigating how neuronal growth and survival are regulated by sexual differentiation. The present study focused on one song control area, the robust nucleus of the archistriatum (RA), and explored how sex differences in the proliferation of putative glia cells in this region influence sexually dimorphic cell survival. In zebra finches (Poephila guttata), RA neuron death is much greater in young females than in males, resulting in marked sex differences in RA neuron number. An earlier study indicated that just prior to this sexually dimorphic neuron death the proliferation of putative glia cells within the RA is significantly lower in females than in males and remains so throughout the peak of neuron death. This suggests that sex differences in glia (or glia-derived molecules) might regulate neuron survival during sexual differentiation of the RA. To determine whether increased cell proliferation within the RA favors increased cell survival, we infused the potent glia mitogen fibroblast growth factor-2 (FGF-2) into the RA unilaterally in young females. We find that FGF-2 infusions increase RA cell proliferation and concurrently decrease the incidence of degenerating RA cells, results consistent with the hypothesis that glia exert neurotrophic effects on RA neurons during sexual differentiation. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 573–581, 1998  相似文献   

12.
The neural crest (NC) is a model system used to investigate multipotency during vertebrate development. Environmental factors control NC cell fate decisions. Despite the well-known influence of extracellular matrix molecules in NC cell migration, the issue of whether they also influence NC cell differentiation has not been addressed at the single cell level. By analyzing mass and clonal cultures of mouse cephalic and quail trunk NC cells, we show for the first time that fibronectin (FN) promotes differentiation into the smooth muscle cell phenotype without affecting differentiation into glia, neurons, and melanocytes. Time course analysis indicated that the FN-induced effect was not related to massive cell death or proliferation of smooth muscle cells. Finally, by comparing clonal cultures of quail trunk NC cells grown on FN and collagen type IV (CLIV), we found that FN strongly increased both NC cell survival and the proportion of unipotent and oligopotent NC progenitors endowed with smooth muscle potential. In contrast, melanocytic progenitors were prominent in clonogenic NC cells grown on CLIV. Taken together, these results show that FN promotes NC cell differentiation along the smooth muscle lineage, and therefore plays an important role in fate decisions of NC progenitor cells.  相似文献   

13.
Liang P  Zhao S  Kawamoto K  Jin L  Liu E 《Human cell》2003,16(3):151-156
OBJECTIVE: To set up long-term in vitro culture system of the human neural stem cells (hNSC) and to study their biological properties. METHODS: Human fetuses aged about 20 weeks following spontaneous abortion were adopted. A serum-free medium containing basic fibroblast growth factor and epidermal growth factor was used to make the hNSCs divide continuously in the culture. The growth curve of continually passaged cells was examined. The effects of long-term culture on the cell cycle, cell differentiation were analyzed. The cell cycles of these cells were analyzed using flow cytometry. RESULTS: The cells from the human embryonic cortical tissue could be maintained and propagated in the presence of growth factors. Neurospheres were generated continually. Only one month after the primary culture, the precursors could be effectively discarded. The cells could be cultured for ten months. The cells had an exponential, consistent growth. The cell cycle analysis indicated that the hNSCs maintained remarkable proliferation. Upon differentiation, the hNSCs gave rise to mature cells. The multi-lineage potential of differentiation after different passages remained unchanged. CONCLUSION: The hNSCs isolated from the human embryonic tissues retained their biological features after long-term culture in vitro.  相似文献   

14.
Notch signalling in hematopoiesis   总被引:17,自引:0,他引:17  
The Notch pathway is a widely utilized, evolutionarily conserved regulatory system that plays a central role in the fate decisions of multipotent precursor cells. Notch often acts by inhibiting differentiation along a particular pathway while permitting or promoting self-renewal or differentiation along alternative pathways. Haematopoietic cells and stromal cells express Notch receptors and their ligands, and Notch signalling affects the survival, proliferation, and fate choices of precursors at various stages of haematopoietic development, including whether haematopoietic stem cells self-renew or differentiate, common lymphoid precursors undergo T or B cell differentiation, or monocytes differentiate into macrophage or dendritic cells. These findings suggest that the Notch pathway plays a fundamental role in regulating haematopoietic development.  相似文献   

15.
A better understanding of the molecular mechanisms governing stem cell self-renewal will foster the use of different types of stem cells in disease modeling and cell therapy strategies. Immortalization, understood as the capacity for indefinite expansion, is needed for the generation of any cell line. In the case of v-myc immortalized multipotent human Neural Stem Cells (hNSCs), we hypothesized that v-myc immortalization could induce a more de-differentiated state in v-myc hNSC lines. To test this, we investigated the expression of surface, biochemical and genetic markers of stemness and pluripotency in v-myc immortalized and control hNSCs (primary precursors, that is, neurospheres) and compared these two cell types to human Embryonic Stem Cells (hESCs) and fibroblasts. Using a Hierarchical Clustering method and a Principal Component Analysis (PCA), the v-myc hNSCs associated with their counterparts hNSCs (in the absence of v-myc) and displayed a differential expression pattern when compared to hESCs. Moreover, the expression analysis of pluripotency markers suggested no evidence supporting a reprogramming-like process despite the increment in telomerase expression. In conclusion, v-myc expression in hNSC lines ensures self-renewal through the activation of some genes involved in the maintenance of stem cell properties in multipotent cells but does not alter the expression of key pluripotency-associated genes.  相似文献   

16.

Background

Distinguishing human neural stem/progenitor cell (huNSPC) populations that will predominantly generate neurons from those that produce glia is currently hampered by a lack of sufficient cell type-specific surface markers predictive of fate potential. This limits investigation of lineage-biased progenitors and their potential use as therapeutic agents. A live-cell biophysical and label-free measure of fate potential would solve this problem by obviating the need for specific cell surface markers.

Methodology/Principal Findings

We used dielectrophoresis (DEP) to analyze the biophysical, specifically electrophysiological, properties of cortical human and mouse NSPCs that vary in differentiation potential. Our data demonstrate that the electrophysiological property membrane capacitance inversely correlates with the neurogenic potential of NSPCs. Furthermore, as huNSPCs are continually passaged they decrease neuron generation and increase membrane capacitance, confirming that this parameter dynamically predicts and negatively correlates with neurogenic potential. In contrast, differences in membrane conductance between NSPCs do not consistently correlate with the ability of the cells to generate neurons. DEP crossover frequency, which is a quantitative measure of cell behavior in DEP, directly correlates with neuron generation of NSPCs, indicating a potential mechanism to separate stem cells biased to particular differentiated cell fates.

Conclusions/Significance

We show here that whole cell membrane capacitance, but not membrane conductance, reflects and predicts the neurogenic potential of human and mouse NSPCs. Stem cell biophysical characteristics therefore provide a completely novel and quantitative measure of stem cell fate potential and a label-free means to identify neuron- or glial-biased progenitors.  相似文献   

17.
Murine neural crest stem cells (NCSCs) are a multipotent transient population of stem cells. After being formed during early embryogenesis as a consequence of neurulation at the apical neural fold, the cells rapidly disperse throughout the embryo, migrating along specific pathways and differentiating into a wide variety of cell types. In vitro the multipotency is lost rapidly, making it difficult to study differentiation potential as well as cell fate decisions. Using a transgenic mouse line, allowing for spatio-temporal control of the transforming c-myc oncogene, we derived a cell line (JoMa1), which expressed NCSC markers in a transgene-activity dependent manner. JoMa1 cells express early NCSC markers and can be instructed to differentiate into neurons, glia, smooth muscle cells, melanocytes, and also chondrocytes. A cell-line, clonally derived from JoMa1 culture, termed JoMa1.3 showed identical behavior and was studied in more detail. This system therefore represents a powerful tool to study NCSC biology and signaling pathways. We observed that when proliferative and differentiation stimuli were given, enhanced cell death could be detected, suggesting that the two signals are incompatible in the cellular context. However, the cells regain their differentiation potential after inactivation of c-MycER(T). In summary, we have established a system, which allows for the biochemical analysis of the molecular pathways governing NCSC biology. In addition, we should be able to obtain NCSC lines from crossing the c-MycER(T) mice with mice harboring mutations affecting neural crest development enabling further insight into genetic pathways controlling neural crest differentiation.  相似文献   

18.
19.
Isolation of multipotent adult stem cells from the dermis of mammalian skin   总被引:2,自引:0,他引:2  
We describe here the isolation of stem cells from juvenile and adult rodent skin. These cells derive from the dermis, and clones of individual cells can proliferate and differentiate in culture to produce neurons, glia, smooth muscle cells and adipocytes. Similar precursors that produce neuron-specific proteins upon differentiation can be isolated from adult human scalp. Because these cells (termed SKPs for skin-derived precursors) generate both neural and mesodermal progeny, we propose that they represent a novel multipotent adult stem cell and suggest that skin may provide an accessible, autologous source of stem cells for transplantation.  相似文献   

20.
The integration of extrinsic and intrinsic signals is required to preserve the self-renewal and tissue regenerative capacity of adult stem cells, while protecting them from malignant conversion or loss of proliferative potential by death, differentiation or senescence. Here we review emerging signaling circuitries regulating stem cell fate, with emphasis on epithelial stem cells. Wnt, mTOR, GPCRs, Notch, Rho GTPases, YAP and DNA and histone methylases are some of the mechanisms that allow stem cells to balance their regenerative potential and the initiation of terminal differentiation programs, guaranteeing appropriate tissue homeostasis. Understanding the signaling circuitries regulating stem cell fate decisions might provide important insights into cancer initiation and numerous human pathologies that involve the progressive loss of tissue-specific adult stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号