首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Summary Which factors cause fast-growing plant species to achieve a higher relative growth rate than slow-growing ones? To answer this question 24 wild species were grown from seed in a growth chamber under conditions of optimal nutrient supply and a growth analysis was carried out. Mean relative growth rate, corrected for possible ontogenetic drift, ranged from 113 to 356 mg g–1 day–1. Net assimilation rate, the increase in plant dry weight per unit leaf area and unit time, varied two-fold between species but no correlation with relative growth rate was found. The correlation between leaf area ratio, the ratio between total leaf area and total plant weight, and relative growth rate was very high. This positive correlation was mainly due to the specific leaf area, the ratio between leaf area and leaf weight, and to a lesser extent caused by the leaf weight ratio, the fraction of plant biomass allocated to the leaves. Differences in relative growth rate under conditions of optimum nutrient supply were correlated with the soil fertility in the natural habitat of these species. It is postulated that natural selection in a nutrient-rich environment has favoured species with a high specific leaf area and a high leaf weight ratio, and consequently a high leaf area ratio, whereas selection in nutrient-poor habitats has led to species with an inherently low specific leaf area and a higher fraction of root mass, and thus a low leaf area ratio.  相似文献   

2.
3.
This study investigates the nitrogen economy of six altitudinally contrasting Poa species which differ in their relative growth rate (R). Two alpine (Poa fawcettiae and P. costiniana), one sub-alpine (P. alpina)and three temperate lowland species (P. pratensis, P. campressa and P. trivialis) were grown hydroponically under identical conditions in a growth room. The low R exhibited by the alpine species was associated with lower plant organic nitrogen concentration (np) and lower nitrogen productivity (Πp, amount of biomass accumulation per mol organic nitrogen and time). The differences in Πp between the alpine and lowland species did not appear to be due to differences in the carbon concentration or the proportion of total plant organic nitrogen allocated to the leaves, stems or roots. Variations in ΠP were also not due to variations in photosynthetic nitrogen use efficiency (ΨN, the rate of photosynthesis per unit organic leaf nitrogen) or shoot or root respiration rates per unit organic nitrogen (ΛSH and ΛR, respectively) per se. Rather, the lower Λp in the alpine species was probably due to a combination of small variations in several of the parameters (e.g. slightly lower ΨN, slightly higher ΛSH and ΛR, and slightly higher proportions of total plant organic nitrogen allocated to the roots). The alpine species exhibited lower organic acid and mineral concentrations. However, no differences in whole-plant construction costs (grams of glucose needed to synthesize one gram of biomass) were observed between She alpine and lowland Poa species. The lack of sub-stantial differences in ΨN between the alpine and lowland species contrasts with the large differences in ΨN between slow- and fast-growing lowland species that have been reported in the literature. The reasons for the unusually high ΨN values exhibited by the alpine Poa species are discussed.  相似文献   

4.
Field experiments reporting the relative growth rate (RGR) patterns in plants are scarce. In this study, 22 herbaceous species (20 Aegilops species, Amblyopyrum muticum and Triticum aestivum) were grown under field conditions to assess their RGR, and to find out if the differences in RGR amongst species were explained by morphological or physiological traits. Plants were cultivated during two months, and five harvests (every 13–19 days) were carried out. Factors explaining between-species differences in RGR varied, depending on whether short (13–19 days) or longer periods (62 days) were considered. RGR for short periods (4 growth periods of 13–19 days each) showed a positive correlation with net assimilation rate (NAR), but there was no significant correlation with leaf area ratio (LAR) (with the exception of the first growth period). In contrast, when growth was investigated over two months, RGR was positively correlated with morphological traits (LAR, and specific leaf area, SLA), but not with physiological traits (NAR). A possible explanation for these contrasting results is that during short growth periods, NAR exhibited strong variations possibly caused by the variable field conditions, and, consequently NAR mainly determined RGR. In contrast, during a longer growth period (62 days) the importance of NAR was not apparent (there was no significant correlation between RGR and NAR), while allocation traits, such as LAR and SLA, became most relevant.  相似文献   

5.
6.
Vegetative plants of Poa pratensis L. cv. Holt were cultivated in short days (SD; 8 h summer daylight) and in long days (LD; 8 h summer daylight + low intensity extension of 5 μmol m-2 s-1) at 12, 18 and 24°C in one experiment and at 9, 12, 15 and 18°C in another. Relative growth rate (RGR) as the mean of both experiments and all temperatures was 32% higher in LD than in SD between start of daylength treatment and first harvest, and 18% higher in LD than in SD between first and second harvest. Early in the daylength treatment period, more assimilates were allocated to storage in SD than in LD, so that at first harvest leaf sheaths and stems had 175% higher concentration of fructans in SD. Later this allocation pattern changed, and for the larger plants at the second harvest the differences in fructan concentrations were much smaller between the two daylengths. Both sugar and fructan concentrations were highest at low temperatures. The distribution of sugars and fructans varied from mostly sugars in the leaves to mostly fructans in leaf sheaths and stems and roots. The fructans were mainly high degree polymerization fructans. At least two series of fructans were present, and the dominant one was probably based upon kestose. It is concluded that allocation of assimilates to growth in leaf area instead of to storage may be important for the observed LD stimulation of dry matter production.  相似文献   

7.
高寒草甸地下根系生长动态对积雪变化的响应   总被引:1,自引:0,他引:1  
2013年11月至2014年8月在青藏高原东缘红原县高寒草甸通过人工堆积的方法,进行了积雪量野外控制试验。以自然降雪的积雪量为对照(CK),设置了S1、S2和S3(积雪量分别为自然对照的2倍、3倍和4倍)3个处理,运用微根窗法追踪研究了积雪量改变后高寒草甸植被根系生长动态,并测定了积雪变化对土壤温度的影响。结果表明:高寒草甸植被根系生长存在明显的季节性变化,随着时间的推移,根系表面积、根尖数量及现存量逐渐增加并在8—9月达到最大值;当冬季积雪量达到143.4mm(S1),对根系生长最为有利(根系表面积、根尖数量、现存量及生产量最大),根系生长旺盛期(净生产速率较高)有所提前和延长,但随着积雪量进一步增加,积雪对根系生长的正效应逐渐降低,根系生长旺盛期逐渐推迟甚至消失;研究还发现,随着积雪量增加,0—10 cm土层土壤温度逐渐降低,相似的变化规律也出现在10—20 cm土层,但在时间上有所延迟;相关性分析表明,在不同土层中,根系生长与土壤温度均呈正相关。因此,积雪变化通过改变土壤温度影响高寒草甸植物根系的生长发育,最终可能会影响高寒草甸生态系统的碳分配与碳循环过程。  相似文献   

8.
典型高寒植物生长繁殖特征对模拟气候变化的短期响应   总被引:1,自引:0,他引:1  
高寒植物的生长繁殖策略对气候变化的响应十分敏感但研究较少。在青藏高原东北的祁连山南麓坡地,于2007年沿3200~3800m海拔进行了植被的等距双向移栽实验并研究了典型高寒植物的生长繁殖策略对模拟气候变化的响应。结果表明,移栽样线年平均气温随海拔升高的递减率为0.51℃/100m。高寒植物移栽到高海拔后,其株高、基叶数、最大(小)叶面积等生长性状指标均发生显著变化,呈现出在3400m海拔处最高,其余3海拔处较低的趋势;而生殖枝数、花数和有性繁殖投入等生殖策略的响应则不明显,但具有随海拔升高而降低,最后在3800m处升高的变化。结果印证了气候变化对高寒植物生长性状的影响比生殖策略快速的假说。  相似文献   

9.
1. Plants of Bellis perennis, Dactylis glomerata and Poa annua were grown from seed in controlled-environment cabinets at either 16 or 20 °C; at the higher temperature all three species had increased total dry mass and leaf area when assessed on the basis of chronological time. On the basis of thermal time (summation of degree-days above 0 °C; days °C) temperature decreased the dry mass in P. annua.
2. Partitioning was assessed as a change in the allometric coefficients relating shoot and root dry mass, leaf and plant mass, leaf area and plant mass, and leaf area and leaf mass. Of the 12 relationships examined only three were affected by temperature: there was increased partitioning towards the shoot relative to the root in D. glomerata and increased partitioning towards leaf area rather than leaf mass in D. glomerata and B.perennis .
3. Root respiration was unaffected by temperature of growth in D. glomerata and P.annua but was lower in B. perennis grown at elevated temperature.
4. Root respiration acclimated to temperature in P. annua and B. perennis (i.e. when measured at the same temperature, respiration was higher in plants grown at 16 °C).
5. Root soluble carbohydrate concentration was unaffected by temperature of growth in any of the species. Feeding sucrose to the roots for a short period had no effect on the rate of respiration of B. perennis or D. glomerata but increased root respiration of P. annua .  相似文献   

10.
The supply of N in alpine soils is influenced by environmental factors (freeze-thaw, drying-rewetting, release of N from winter snowpack) which lead to a pulsed nature in plant N availability. To address the ability of alpine species to acquire N and grow when N is supplied in a pulsed manner, six alpine graminoid species, 3 sedges (Cyperaceae) and 3 grasses (Poaceae), were grown under 3 treatments: low and high N supply applied 3 times weekly, and a pulsed N supply applied once weekly at the same concentration as the high N treatment, but with the same total N supply as the low N treatment. Growth, biomass allocation, and N uptake were the same in all species for plants grown under a pulsed N treatment relative to a constant N supply with the same amount of total N. Root:shoot ratios and uptake of experimentally applied 15N indicated there were no adjustments in growth allocation or root uptake capacity in the plants to enhance the uptake of N when supplied in a pulsed relative to a more constant supply. The fertility of the site from which the graminoids were collected did not influence the plants' ability to respond to a high versus a low N supply, but instead growth form was more important. Grasses exhibited variation in growth, biomass allocation, and N uptake in response to changes in N supply, while sedges did not.  相似文献   

11.
张远东  庞瑞  顾峰雪  刘世荣 《生态学报》2016,36(6):1515-1525
水分利用效率是深入理解生态系统水碳循环耦合关系的重要指标。西南高山地区是响应气候变化的重点区域,研究西南高山地区水分利用效率动态及其对气候变化的响应,对于评估区域碳水耦合关系及对全球气候变化的响应具有重要意义。应用生态系统模型CEVSA(Carbon Exchange between Vegetation,Soil,and the Atmosphere)估算了1954—2010年西南高山地区水分利用效率(Water use efficiency,WUE)的时空变化,分析了其对气候变化的响应。结果表明:(1)西南高山地区1954—2010年水分利用效率均值为1.13 g C mm-1m-2。3种主要植被类型草地、常绿针叶林和常绿阔叶林的WUE分别为1.35、1.14、0.99 g C mm-1m-2。在空间分布上,WUE与海拔显著正相关(r=0.156,P0.05),而与温度则显著负相关(r=-0.386,P0.01)。(2)在时间尺度上,1954—2010年西南高山地区整体WUE降低趋势显著(P0.01),变动区间为0.83-1.46g C mm-1m-2,平均每年下降0.006g C mm-1m-2。整体WUE年际变化与温度呈显著负相关(r=-0.727,P0.01),与降水量相关性不显著;整体WUE下降主要原因是温度上升引起的ET增加速率大于NPP增加速率。(3)1954—2010年西南高山地区3种主要植被类型草地、常绿针叶林及常绿阔叶林WUE均显著下降(P0.01),下降速度分别为-1.03×10-2、-6.17×10-3、-1.37×10-3g C mm-1m-2a-1。西南高山地区76.3%格点WUE年际变化与温度显著负相关(P0.05),34.1%格点WUE年际变化与降水量显著正相关(P0.05)。草地和常绿针叶林WUE年际变化与温度显著负相关(r=-0.889,P0.01;r=-0.863,P0.01),与降水量相关性不显著。由于西南高山地区降水较为丰富,且过去57年降水变化不显著,因此该地区WUE的时空格局主要受温度变化的影响。1954—2010年期间温度升高造成的ET增加显著高于NPP的增加是该地区WUE下降的主要原因。未来需要获取更高空间分辨率的气候、土壤、植被数据,从而更加准确和精确地模拟西南高山地区水碳循环及其耦合关系对气候变化的响应。  相似文献   

12.
13.
The effect of ration on the growth of pairs of juvenile sea bass Dicentrarchus labrax fed squid mantle was recorded at four temperatures: 6, 10, 14 and 18) C, covering the range typical of Welsh coastal waters. Initial weight of the fish ranged from 2.8 to 15.9 g. A predictive model for the maximum meal size (Mmax) at temperatures between 10 and 18) C, accounted for 95% of the variance in lnMmax. Even when offered excess food, bass at 6) C had a low rate of food consumption [0.19% body weight (BW) day?1] and lost weight (G=?0.04% day?1). Predictive regression models for specific growth rate (G) accounted for 86% of the variance at reduced rations and 70% at maximum meals. The relationship between G (calculated for total biomass per tank) and ration was a decelerating curve. G at maximum meals increased with temperature, at lower rations G decreased with temperature. For a pair of bass with a combined weight of 15 g, predicted maintenance ration ranged between 0.7 and 2.3% BW day?1 and increased with temperature. Maximum meal size was more sensitive to temperature than maintenance ration. At 18) C optimum ration was 7.4% BW day?1. At lower temperatures, the optimum ration was the maximum meal. The maximum gross growth efficiency was 17.4% at 18) C. Mean absorption efficiency was 94.8%. Ration level had no significant effect on absorption efficiency, which was lowest at 6) C. Condition indices (Fulton condition factor, wet and dry liver—somatic indices and body depth index) increased with meal size at all temperatures except 6) C. An increase in temperature between 10 and 18) C generally resulted in a decrease in condition indices at a given ration. When comparisons were made at a given standard length, gut and carcass weight increased with ration. Visceral fat and gut weight decreased with increased temperature.  相似文献   

14.
Cotton (Gossypium hirsutum L. var. `Stoneville 213'), velvetleaf (Abutilon theophrasti Medic.), redroot pigweed (Amaranthus retroflexus L.), and hemp sesbania (Sesbania exaltata [Raf.] Cory) were grown in a controlled environment room at 31/25 C day/night temperature and three irradiances: 90, 320, and 750 μeinsteins meter−2 second−1. From total dry weights and leaf areas determined at intervals during the first exponential phase of growth, we used mathematical growth analysis techniques to calculate net assimilation rates (NAR), relative growth rates (Rw), relative leaf area expansion rates (Ra), leaf area partition coefficients (LAP), and leaf area ratios (LAR). In all four species, Rw, Ra, and NAR decreased with decreasing growth irradiance, while LAP and LAR increased. Within each species, Rw was positively correlated with NAR but negatively correlated with LAP and LAR. In comparisons among the four species within each growth irradiance, Rw was positively correlated with LAP. We discuss the relationship between LAP and LAR and show that LAP = (Ra/Rw) (LAR).  相似文献   

15.
氮添加对高寒草甸土壤微生物呼吸及其温度敏感性的影响   总被引:3,自引:0,他引:3  
土壤氮素的可利用性是控制土壤微生物呼吸的重要因素之一,大量研究已经表明增加土壤活性氮的含量可以降低微生物呼吸,但是土壤氮输入对土壤微生物呼吸温度敏感性的影响还不清楚。以青藏高原高寒草甸为研究对象,通过野外施氮试验和室内控制试验相结合的方式,在5℃、15℃和25℃条件下对3种施氮水平的土壤(对照,0g N m~(-2)a~(-1);低氮,5g N m~(-2)a~(-1);高氮,15g N m~(-2)a~(-1))进行培养,探讨土壤微生物呼吸及其温度敏感性对不同氮添加水平的响应情况。结果表明:(1)3个温度培养下的土壤微生物呼吸速率和累积碳释放量均随施氮量的增加而显著降低(P0.05);(2)氮添加对5℃和15℃培养条件下的微生物呼吸温度敏感性没有显著影响,但显著地增加了15℃和25℃培养条件下的微生物呼吸温度敏感性(P0.05);(3)线性相关分析表明,土壤累积碳释放量与土壤有机碳的难降解性显著负相关(P0.05),而15℃和25℃培养条件下的微生物呼吸温度敏感性与土壤有机碳的难降解性显著正相关(P0.05)。结果表明,在全球气候变暖的背景下,土壤氮输入将增加预测青藏高原高寒草甸地区土壤碳排放的不确定性。  相似文献   

16.
Biomass temporal stability plays a key role in maintaining sustainable ecosystem functions and services of grasslands, and climate change has exerted a profound impact on plant biomass. However, it remains unclear how the community biomass stability in alpine meadows responds to changes in some climate factors (e.g., temperature and precipitation). Long‐term field aboveground biomass monitoring was conducted in four alpine meadows (Haiyan [HY], Henan [HN], Gande [GD], and Qumalai [QML]) on the Qinghai‐Tibet Plateau. We found that climate factors and ecological factors together affected the community biomass stability and only the stability of HY had a significant decrease over the study period. The community biomass stability at each site was positively correlated with both the stability of the dominant functional group and functional groups asynchrony. The effect of dominant functional groups on community stability decreased with the increase of the effect of functional groups asynchrony on community stability and there may be a ‘trade‐off’ relationship between the effects of these two factors on community stability. Climatic factors directly or indirectly affect community biomass stability by influencing the stability of the dominant functional group or functional groups asynchrony. Air temperature and precipitation indirectly affected the community stability of HY and HN, but air temperature in the growing season and nongrowing season had direct negative and direct positive effects on the community stability of GD and QML, respectively. The underlying mechanisms varied between community composition and local climate conditions. Our findings highlighted the role of dominant functional group and functional groups asynchrony in maintaining community biomass stability in alpine meadows and we highlighted the importance of the environmental context when exploring the stability influence mechanism. Studies of community stability in alpine meadows along with different precipitation and temperature gradients are needed to improve our comprehensive understanding of the mechanisms controlling alpine meadow stability.  相似文献   

17.
Summary Twelve alfalfa cultivars inoculated with an indigenous strain (RM9) ofRhizobium meliloti, were compared for their seedling morphological characters, and growth characters, including net assimilation rate (NAR), relative growth rate (RGR), leaf area ratio (LAR) and relative nitrogen assimilation rate (RN). Highly significant differences were obtained between cultivars for most characters.Simple correlation showed that NAR influenced RGR (r=0.91) more than leaf area ratio (LAR) (r=–0.44), and that most characters measured were highly correlated with seedling dry weight. Factor analysis showed that NAR, RGR and RN contributed 25% of the total variation in the dependence structure. The grouping indicated that the higher the NAR and RN the greater was the RGR. Path-coefficient analysis showed that NAR had more important direct and indirect effects than RN in dry matter accumulation. The relationship implied that selection for plants with high NAR, or high efficiency in converting light energy to dry matter production could contribute greater N2 fixation in alfalfa.  相似文献   

18.
大气CO2浓度和温度升高对水稻干物质积累的影响因不同栽培区域和不同稻作类型而异。目前,我国双季稻轮作系统干物质生产力对温度、CO2浓度升高和二者交互作用的响应特征尚不明确。本研究以早稻‘两优287’和晚稻‘湘丰优9号’为供试材料,在湖北省荆州市利用开顶式气室(OTC)进行连续3年的大田原位模拟试验,设置大田(UC)、对照(CK,OTC控制大气温度和CO2浓度)、增温2 ℃(ET)、CO2浓度增加60 μmol·mol-1(EC)、增温2 ℃+CO2浓度增加60 μmol·mol-1(ETEC)5个处理,研究温度和CO2浓度升高对早稻和晚稻地上部生物量、叶面积和净同化速率的影响。结果表明: CO2浓度和/或温度升高对早稻和晚稻移栽-拔节阶段净同化速率影响不显著,提高了拔节-齐穗阶段净同化速率,但降低了齐穗-成熟阶段净同化速率(除早稻对高CO2浓度表现为正响应外)。CO2浓度和/或温度升高促进了各生育期叶面积的增长,以ETEC处理叶面积指数最高(除成熟期外)。在齐穗期,温度和CO2浓度升高协同促进了地上部干物质积累,ETEC处理早稻和晚稻地上部生物量比CK高10.3%~39.8%和23.6%~34.4%;在早稻成熟期,增温在一定程度上抵消了增加CO2浓度对地上部干物质积累的促进作用,ETEC比EC地上部生物量降低3.2%~14.1%;而晚稻成熟期,增温和增加CO2浓度表现为正向的交互作用,可进一步提高地上部生物量。回归分析表明,温度和CO2浓度升高在双季稻营养生长阶段对植株净同化能力以正向作用为主,在生殖生长阶段增温表现为负向作用。由于生长特性、生育期跨度和温度资源配置的差异,CO2浓度和温度升高可能提高我国双季稻轮作系统干物质生产力。  相似文献   

19.
20.
温度和湿度对高寒草甸凋落物分解的影响   总被引:1,自引:0,他引:1  
多数研究发现增温增湿加快了凋落物失重率,但对如何影响凋落物分解过程中CO2和可溶性有机碳(DOC)释放的影响研究较少。通过室内培养设置四个温度梯度(0,5,10和20℃)和两个湿度梯度(25%和40%)对高寒草甸凋落物分解进行了96 d的培养试验。结果表明,总体上高寒草甸凋落物分解速率随着温度和湿度的增加而加快;高湿度条件下凋落物分解释放CO2总量的敏感性是低湿度的2.3倍左右;湿度变化对DOC淋溶的温度敏感性影响较小。在25%和40%的湿度培养下,CO2总排放量的温度敏感性分别是DOC总淋溶量的温度敏感性的10和20倍左右,表明未来气候变化情境下凋落物中的有机质分解更多的是以CO2形式排放到大气中。因此,未来需要更系统的研究不同气候变化情境下凋落物积累与分解、DOC淋溶和土壤碳库的动态变化,从而更好的理解这些生态系统碳循环过程的变化及其对气候变化产生的反馈作用和机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号