首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding of the molecular determinants responsible for antagonist binding to the oxytocin receptor should provide important insights that facilitate rational design of potential therapeutic agents for the treatment of preterm labor. To study ligand/receptor interactions, we used a novel photosensitive radioiodinated antagonist of the human oxytocin receptor, d(CH(2))(5) [Tyr(Me)(2),Thr(4),Orn(8),Phe(3(125)I,4N(3))-NH(2)9]vasotocin. This ligand had an equivalent high affinity for human oxytocin and V(1a) vasopressin receptors expressed in Chinese hamster ovary cells. Taking advantage of this dual specificity, we conducted photoaffinity labeling experiments on both receptors. Photolabeled oxytocin and V(1a) receptors appeared as a unique protein band at 70-75 kDa and two labeled protein bands at 85-90 and 46 kDa, respectively. To identify contact sites between the antagonist and the receptors, the labeled 70-75- and the 46-kDa proteins were cleaved with CNBr and digested with Lys-C and Arg-C endoproteinases. The fragmentation patterns allowed the identification of a covalently labeled region in the oxytocin receptor transmembrane domain III consisting of the residues Leu(114)-Val(115)-Lys(116). Analysis of contact sites in the V(1a) receptor led to the identification of the homologous region consisting of the residues Val(126)-Val(127)-Lys(128). Binding domains were confirmed by mutation of several CNBr cleavage sites in the oxytocin receptor and of one Lys-C cleavage site in the V(1a) receptor. The results are in agreement with previous experimental data and three-dimensional models of agonist and antagonist binding to members of the oxytocin/vasopressin receptor family.  相似文献   

2.
To identify and characterize V1 vasopressin receptors, photoreactive antagonists of the glycogenolytic and vasoconstrictor activity of vasopressin have been synthesized. The following analogues with 3-mercapto-3,3-cyclopentamethylene-propionic acid (Mca) and N-methylalanine (MeAla) in position 1 and 7 of vasopressin (VP) were effective V1 antagonists: [Mca1, D-Tyr2, MeAla7, Lys8]VP (1), [Mca1, MeAla7, Arg8, Lys9]VP (2), [Mca1, MeAla7, Arg8, D-Lys9]VP (3). Introduction of the photoreactive 4-azidophenylamidino group into the side-chain of Lys8 in analogue 1 or into Lys9 in analogues 2 and 3 increased the potency (for analogue 1 a tenfold increase in the antiglycogenolytic effect and a fivefold increase in the antivasopressor effect) and binding affinity for the rat hepatic V1 receptor. Mono-iodination at Tyr2 with 125I resulted in photoreactive antagonists of high specific radioactivity, which had roughly the same binding affinity as vasopressin for the rat hepatic V1 receptor (Kd = 0.9-1.8 nM). In photoaffinity labelling experiments with purified rat liver membranes, containing 2--3 pmol V1 receptor/mg protein, the analogues labelled specifically two proteins with the relative molecular masses (Mr) of 30,000 and 38,000. These results and the results of a recent study using 3H-labelled photoreactive vasopressin agonists [Boer, R. and Fahrenholz, F. (1985) J. Biol. Chem. 260, 15051-15054] provide evidence that both vasopressin agonists and antagonists can interact with the same two subunits of the heterodimeric hepatic V1 receptor. Furthermore the radioiodinated photoreactive V1 antagonists should be helpful to identify V1 receptor proteins in membranes of other cell types.  相似文献   

3.
The hepatic glucagon receptor was covalently labeled with [125I-Try10]monoiodoglucagon [( 125I]MIG) by use of the heterobifunctional cross-linker hydroxysuccinimidyl p-azidobenzoate. Labeling of the Mr = 63,000 peptide was sensitive to glucagon and GTP at concentrations at which they affect [125I]MIG binding to the receptor. The labeled receptor was solubilized with Lubrol-PX, and the hydrodynamic characteristics of the receptor were determined. The molecular parameters of the solubilized receptor are: S20,w = 4.3 +/- 0.1, Stokes radius = 6.3 +/- 0.1 nm, frictional coefficient f/f0 = 1.8, and a calculated Mr = 119,000. Incubation of liver membranes at 32 degrees C for 15 min prior to the addition of [125I]MIG permitted us to identify the high molecular weight form (Mr = approximately 113,000) of the receptor by direct sodium dodecyl sulfate-gel electrophoretic analysis. The Mr = 63,000 peptide can be adsorbed to wheat germ lectin-Sepharose. The glycoprotein nature of the receptor has been utilized to develop an assay for the detergent-solubilized receptor that uses wheat germ lectin-Sepharose as a solid matrix to adsorb the [125I] MIG-receptor complex. The free hormone remains in the liquid phase and is removed in the supernatant after low speed centrifugation. 3-[(3-Cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS) solubilizes receptors with retention of [125I]MIG binding activity. [125I]MIG binding to the CHAPS-solubilized receptor is specifically affected by unlabeled glucagon. Interaction of [125I]MIG with the soluble receptor is insensitive to the presence of GTP. IC50 for glucagon using the soluble receptor was 33-70 nM, irrespective of the presence or absence of GTP, while when the membrane-bound receptor was used, the IC50 in the absence of GTP was 2-4 nM and in the presence of GTP was 35-80 nM. These data allow us to conclude that the hepatic glucagon receptor in the membrane and in the nondenaturing detergent solution is a dimer of the Mr = 63,000 hormone-binding subunit and a glycoprotein. The soluble receptor does not display any functional interaction with the stimulatory regulator.  相似文献   

4.
We report the solid phase synthesis of six analogs of the potent and selective linear AVP vasopressor (V1a receptor) antagonist: Phaa1-D-Tyr(Et)2-Phe3-Gln4-Asn5-Lys6-Pro7-Arg-NH(8)2(A) (where Phaa = phenylacetyl) in which the Phaa1 residue is replaced by hydroxyphenylacetyl (HO-Phaa), hydroxyphenylpropionyl (HO-Phpa) and phenylpropionyl (Phpa) and the D-Tyr(Et)2 and Lys6 residues by D-Tyr(Me)2 and Arg6 substituents. The phenolic-containing peptides were synthesized to test the feasibility of using this approach for the design of high affinity selective ligands for AVP V1a receptors. The following analogs of A were synthesized: 11 [(HO)Phaa1]; 2. [(HO)Phaa1,D-Tyr(Me)2]; 3. [(HO)Phaa1,D-Tyr(Me)2, Arg6]; 4. [(HO)Phaa1,Arg6]; 5. [Phpa1]; 6. [(HO)Phpa1]. All six peptides were examined for agonistic and antagonistic potencies in vasopressor (V1a-receptor) and antidiuretic (V2-receptor) and in vitro oxytocic assays in rats. The affinities of the phenolic-containing peptides for hepatic V1a and uterine receptors were also determined. The phenolic-containing peptides all exhibit potent V1a antagonism. Their anti-V1a pA2 values range from 8.23 to 8.63 (the anti-V1a pA2 value of A = 8.69). Their inhibition constants (Ki in nM) range 0.4 to 1.0. They are weak antidiuretic agonists with activities ranging from 0.022 U/mg to 0.13 U/mg (A = 0.033 U/mg). They all exhibit OT antagonism in vitro. Their anti-OT pA2 values range from 7.28 to 7.71 (A = 7.62). All five phenolic compounds were iodinated using iodine chloride and tested in the same in vivo and in vitro assay system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The ligand binding subunit of the D2 subtype of the dopamine receptor has been identified by photoaffinity labeling. In order to develop a specific covalent receptor probe, an analogue of the potent D2 selective antagonist spiperone, N-(p-aminophenethyl)spiperone (NAPS) has been synthesized. The aminophenethyl substituent of NAPS can be radioiodinated to theoretical specific radioactivity (2,175 Ci/mmol) and then the arylamine group converted to an arylazide to yield a photosensitive probe [( 125I]N3-NAPS). In rat striatal membranes, the nonradiolabeled azide probe (N3-NAPS) binds to the receptor with high affinity (KD congruent to 1.6 +/- 0.05 nM) and upon photoactivation irreversibly decreases the number of available receptors in these membranes as measured by [3H]spiperone binding. More importantly, however, incubation of rat striatal membranes with [125I]N3-NAPS leads to the photodependent covalent incorporation of the probe into a peptide of Mr = 94,000 as assessed by autoradiography of gels after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Labeling of this Mr = 94,000 peptide can be blocked specifically and stereoselectively by dopaminergic antagonists such as (+)- and (-)-butaclamol but not by non-dopaminergic antagonists. Moreover, dopaminergic agonists also attenuate the covalent labeling of this peptide with an order of potency which is typically D2-dopaminergic. Therefore, the specificity of [125I]N3-NAPS labeling of the Mr = 94,000 peptide suggests that this peptide represents the ligand binding subunit of the D2-dopamine receptor.  相似文献   

6.
Only 5 to 10% of the apolipoprotein A-I (ApoA-I) of intact high density lipoprotein (HDL) is detectable by radioimmunoassay. In addition, when isolated ApoA-I is recombined with lipids in vitro, its immunologic reactivity is decreased by 30 to 95%. Thus, ApoA-I is less reactive immunologically in the presence of lipids. Our aim was to ascertain whether the COOH- or NH2-terminal regions of ApoA-I were equally reactive in intact HDL2. CNBr fragments of ApoA-I were produced by the method of Baker et al. (Baker, H.N., Jackson, R.L., and Gotto, A.M. (1973) Biochemistry 12, 3866-3871) and iodinated with lactoperoxidase. Double-antibody radioimmunoassays were set up using anti ApoA-I antisera and 125I-CNBr I (COOH-terminal region) or 125I-CNBr II (NH2-terminal). Both labels were bound by the antisera. Affinity columns were prepared by binding CNBr I or CNBr II to Sepharose 4B. Antibodies specific against CNBr I or CNBr II were isolated by means of these columns, suggesting that ApoA-I had at least two antigenic sites. In other assays using labeled fragments and anti ApoA-I antisera, 125I-CNBr I was displaced by CNBr I, ApoA-I , and HDL2 but not CNBr II. Conversely, 125I-CNBr II was displaced by CNBr II, ApoA-I, and HDL2 but not by CNBr I. Thus the assays were region-specific. The reactivities of isolated ApoA-I and the ApoA-I in intact HDL2-ApoA-I) were compared in these assays. On a molar basis, HDL2-ApoA-I was consistently more reactive (2- to 5-fold) in the 125I-CNBr I than in the 125I-CNBr II assays. The findings suggest (a) that the two terminal regions of ApoA-I are immunologically distinct, (b) that the two regions can be assayed independently of each other in intact HDL2, and (c) that the COOH-terminal region is more reactive immunologically than is the NH2-terminal. The results are compatible with a more "exposed" position for the COOH-terminal region on the surface of HDL2.  相似文献   

7.
Compounds 1-4 were synthesized and investigated for selectivity and potency for the oxytocin receptor (OTR) to determine their viability as radioactive ligands. Binding assays determined 1-4 to have high binding affinity for both the human and rodent OTR and also have high selectivity for the human OTR over human vasopressin V1a receptors (V1aR). Inadequate selectivity for OTR over V1aR was found for rodent receptors in all four compounds. The radioactive (C-11, F-18, and I-125) derivatives of 1-4 were synthesized and investigated for use as autoradiography and positron emission tomography (PET) ligands. Receptor autoradiography performed with [(125)I]1 and [(125)I]2 on rodent brain slices provided the first small molecule radioligand images of the OTR and V1aR. Biodistribution studies determined [(125)I]1 and [(125)I]2 were adequate for in vivo peripheral investigations, but not for central investigations due to low uptake within the brain. A biodistribution study with [(18)F]3 suggested brain uptake occurred slowly over time. PET imaging studies with [(18)F]3 and [(11)C]4 using a rat model provided insufficient uptake in the brain over a 90 and 45 min scan times respectively to merit further investigations in non-human primates.  相似文献   

8.
Vasoactive intestinal peptide (VIP) is a prominent neuropeptide whose actions are mediated by VPAC receptors belonging to class II G protein-coupled receptors. To identify contact sites between VIP and its VPAC1 receptor, an analog of VIP substituted with a photoreactive para-benzoyl-l-Phe (Bpa) at position 22 has been synthesized and evaluated in Chinese hamster ovary cells stably expressing the recombinant human receptor. Bpa22-VIP and native VIP are equipotent in stimulating adenylyl cyclase activity in cell membranes. Cyanogen bromide cleavage of the covalent 125I-[Bpa22-VIP]-hVPAC1R complex yielded a single labeled fragment of 30 kDa that shifted to 11 after deglycosylation, most consistent with the 67-137 fragment of the receptor N-terminal ectodomain. Further cleavage of this fragment with V8 endoproteinase and creation of receptor mutants with new CNBr cleavage sites (XàMet), demonstrated that 125I-[Bpa22-VIP] was covalently attached to the short receptor 109-120 fragment (GWTHLEPGPYPI). In a three-dimensional model of the receptor N-terminal ectodomain, this fragment is located on one edge of the putative VIP binding groove and encompasses several amino acids previously shown to be crucial for VIP binding (reviewed in Laburthe, M., Couvineau, A., and Marie, J. C. (2002) Receptors Channels 8, 137-153). Our data provide the first direct evidence for a physical contact between VIP and the N-terminal ectodomain of the hVPAC1 receptor.  相似文献   

9.
Covalent photolabeling of the melibiose permease (MelB) of Escherichia coli has been undertaken with the sugar analogue [(3)H]-p-azidophenyl alpha-D-galactopyranoside ([(3)H]-alpha-PAPG) with the purpose of identifying the domains forming the MelB sugar-binding site. We show that alpha-PAPG is a high-affinity substrate of MelB (K(d) = 1 x 10(-)(6) M). Its binding to or transport by MelB is Na-dependent and is competitively prevented by melibiose or by the high-affinity ligand p-nitrophenyl alpha-D-galactopyranoside (alpha-NPG). Membrane vesicles containing overexpressed histidine-tagged recombinant MelB were photolabeled in the presence of [(3)H]-alpha-PAPG by irradiation with UV light (lambda = 250 nm). Eighty-five percent of the radioactivity covalently associated with the vesicles was incorporated in a polypeptide corresponding to MelB monomer. MelB labeling was completely prevented by an excess of melibiose or alpha-NPG during the assay. Radioactivity analysis of CNBr cleavage or limited proteolysis products of the purified [(3)H]-alpha-PAPG-labeled transporter suggests that several domains of MelB are targets for labeling. One of the labeled CNBr cleavage products is a peptide with an apparent molecular mass of 5.5 kDa. It is shown that (i) its amino acid sequence is that of the Asp124-Met181 domain of MelB (7.5 kDa), which includes the cytoplasmic loop 4-5 connecting helices IV and V, the hydrophobic helix V, and the outer loop connecting helices V-VI, and (ii) that Arg141 in loop 4-5 is the only labeled amino acid of this peptide. Labeling of loop 4-5 provides independent evidence that this specific domain plays a significant role in MelB transport. Comparison with the well-characterized equivalent domain of LacY suggests that sugar transporters with similar structure and substrate specificity may have conserved domains involved in sugar recognition.  相似文献   

10.
Radioiodinated photoactivatable photoprobes can provide valuable insights regarding protein structure. Previous work in our laboratory showed that the cocaine derivative and photoprobe 3-[ (125)I]iodo-4-azidococaine ([ (125)I]IACoc) binds to the sigma-1 receptor with 2-3 orders of magnitude higher affinity than cocaine [Kahoun, J. R. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 1393-1397]. Using this photoprobe, we demonstrated the insertion site for [ (125)I]IACoc to be Asp188 [Chen, Y. (2007) Biochemistry 46, 3532-3542], which resides in the proposed steroid binding domain-like II (SBDLII) region (amino acids 176-194) [Pal, A. (2007) Mol. Pharmacol. 72, 921-933]. An additional photoprobe based on the sigma-1 receptor ligand fenpropimorph, 1- N-(2-3-[ (125)I]iodophenyl)propane ([ (125)I]IAF), was found to label a peptide in both the SBDLII and steroid binding domain-like I (SBDLI) (amino acids 91-109) [Pal, A. (2007) Mol. Pharmacol. 72, 921-933]. In this report, we describe two novel strategically positioned carrier-free, radioiodinated photoaffinity labels specifically designed to probe the putative "nitrogen interacting region" of sigma-1 receptor ligands. These two novel photoprobes are (-)-methyl 3-(benzoyloxy)-8-2-(4-azido-3-[ (125)I]iodobenzene)-1-ethyl-8-azabicyclo[3.2.1]octane-2-carboxylate ([ (125)I]-N-IACoc) and N-propyl- N-(4-azido-3-iodophenylethyl)-3-(4-fluorophenyl)propylamine ([ (125)I]IAC44). In addition to reporting their binding affinities to the sigma-1 and sigma-2 receptors, we show that both photoaffinity labels specifically and covalently derivatized the pure guinea pig sigma-1 receptor (26.1 kDa) [Ramachandran, S. (2007) Protein Expression Purif. 51, 283-292]. Cleavage of the photolabeled sigma-1 receptor using Endo Lys C and cyanogen bromide (CNBr) revealed that the [ (125)I]-N-IACoc label was located primarily in the N-terminus and SBDLI-containing peptides of the sigma-1 receptor, while [ (125)I]IAC44 was found in peptide fragments consistent with labeling of both SBDLI and SBDLII.  相似文献   

11.
The adrenergic receptors of rat pineal gland were investigated using radiolabeled ligand binding and photoaffinity labeling techniques. 125I-2-[beta-(4-hydroxyphenyl)ethylaminomethyl]tetralone (125I-HEAT) and 125I-cyanopindolol (125I-CYP) labeled specific sites on rat pineal gland membranes with equilibrium dissociation constants (KD) of 48 (+/- 5) pM and 30 (+/- 5) pM, respectively. Binding site maxima were 481 (+/- 63) and 1,020 (+/- 85) fmol/mg protein. The sites labeled by 125I-HEAT had the pharmacological characteristics of alpha 1-adrenergic receptors. 125I-CYP-labeled beta-adrenergic receptors were characterized as a homogeneous population of beta 1-adrenergic receptors. The alpha 1- and beta 1-adrenergic receptors were covalently labeled with the specific photoaffinity probes 4-amino-6,7-dimethoxy-2-(4-[5-(4-azido-3-[125I]iodophenyl) pentanoyl]-1-piperazinyl) quinazoline (125I-APDQ) and 125I-p-azidobenzylcarazolol (125I-pABC). 125I-APDQ labeled an alpha 1-adrenergic receptor peptide of Mr = 74,000 (+/- 4,000), which was similar to peptides labeled in rat cerebral cortex, liver, and spleen. 125I-pABC labeled a single beta 1-adrenergic receptor peptide with a Mr = 42,000 (+/- 1,500), which differed from the 60-65,000 peptide commonly seen in mammalian tissues. Possible reasons for these differences are discussed.  相似文献   

12.
The widespread 28-amino acid neuropeptide vasoactive intestinal peptide (VIP) exerts its many biological effects through interaction with serpentine class II G protein-coupled receptors named VPAC receptors. We previously provided evidence for a physical contact between the side chain at position 22 of VIP and the N-terminal ectodomain of the hVPAC1 receptor (Tan, Y. V., Couvineau, A., Van Rampelbergh, J., and Laburthe, M. (2003) J. Biol. Chem. 278, 36531-36536). We explored here the contact site between hVPAC1 receptor and the side chain at position 6 of VIP by photoaffinity labeling. The photoreactive para-benzoyl-l-Phe (Bpa) was substituted for Phe(6) in VIP resulting in [Bpa(6)]-VIP, which was shown to be a hVPAC1 receptor agonist in Chinese hamster ovary cells stably expressing the recombinant receptor. After obtaining the covalent (125)I-[Bpa(6)-VIP].hVPAC1 receptor complex, it was sequentially cleaved by cyanogen bromide, peptide N-glycosidase F, endopeptidase Glu-C, and trypsin, and the cleavage products were analyzed by electrophoresis. The data demonstrated that (125)I-[Bpa(6)-VIP] were covalently attached to the short 104-108 fragment within the N-terminal ectodomain of the receptor. The data were confirmed by creation of a receptor mutant with new CNBr cleavage site. In a three-dimensional model of the receptor N-terminal ectodomain, this fragment was located on one edge of the putative VIP-binding groove and was adjacent to the fragment covalently attached to the side chain at position 22 of VIP. Altogether these data showed that the central part of VIP, at least between Phe(6) and Tyr(22), interacts with the N-terminal ectodomain of the hVPAC1 receptor.  相似文献   

13.
[(3)H]4-Benzoylbenzoylcholine (Bz(2)choline) was synthesized as a photoaffinity probe for the Torpedo nicotinic acetylcholine receptor (nAChR). [(3)H]Bz(2)choline acts as an nAChR competitive antagonist and binds at equilibrium with the same affinity (K(D) = 1.4 microm) to both agonist sites. Irradiation at 320 nm of nAChR-rich membranes equilibrated with [(3)H]Bz(2)choline results in the covalent incorporation of [(3)H]Bz(2)choline into the nAChR gamma- and delta-subunits that is inhibitable by agonist, with little specific incorporation in the alpha-subunits. To identify the sites of photoincorporation, gamma- and delta-subunits, isolated from nAChR-rich membranes photolabeled with [(3)H]Bz(2)choline, were digested enzymatically, and the labeled fragments were isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and/or reversed-phase high performance liquid chromatography. For the gamma-subunit, Staphylococcus aureus V8 protease produced a specifically labeled peptide beginning at gammaVal-102, whereas for the delta-subunit, endoproteinase Asp-N produced a labeled peptide beginning at deltaAsp-99. Amino-terminal sequence analysis identified the homologous residues gammaLeu-109 and deltaLeu-111 as the primary sites of [(3)H]Bz(2)choline photoincorporation. This is the first identification by affinity labeling of non-reactive amino acids within the acetylcholine-binding sites, and these results establish that when choline esters of benzoic acid are bound to the nAChR agonist sites, the para substituent is selectively oriented toward and in proximity to amino acids gammaLeu-109/deltaLeu-111.  相似文献   

14.
We have developed a reverse-phase HPLC method to purify 125I-labeled products resulting from the chloramine-T-based iodination of glucagon and have used the products [(125I)iodoTyr13]glucagon, [(125I)iodoTyr10,13]glucagon, and [(125I)iodoTyr10]glucagon) to study the receptor binding of glucagon and the cell-mediated metabolism of the hormone by isolated canine hepatocytes. The extent of binding of the three labeled glucagons to cell receptors differed at steady state (8.5, 11.9, and 12.6% of the three peptides, respectively, becoming cell-associated), but each of the labeled glucagons approached steady state binding at the same rate. Further, unlabeled glucagon competed for the binding of each of the labeled peptides in parallel under steady state conditions, and each of the peptides showed potent activity in inhibiting [14C]fructose incorporation into glycogen. Gel filtration of the acetic acid-extracted, cell-associated products of radiolabeled glucagon binding revealed 10-20% of the material as a shoulder on the descending limb of the peak of hormone for each of the three labeled peptides. Trypsin digestion of the lower molecular weight peptide derived from [(125I)iodoTyr13]glucagon resulted in a fragment containing residues 13 to 17 as the only detectable radiolabeled product. On the other hand, trypsin digestion of the analogous peptide derived from [(125I)iodoTyr10]glucagon revealed, in addition to the radiolabeled fragment containing residues 1 to 12, a major fragment identified by radiosequence analysis to contain residues 4 to 12 and a minor fragment identified to contain residues 7 to 12. We conclude that (a) notwithstanding apparent differences in affinities exhibited by [(125I)iodoTyr13]glucagon, [(125I)iodoTyr10,13]glucagon, and [(125I)iodoTyr10]glucagon for binding to canine hepatocytes, the interactions of all three peptides with the glucagon receptor are functionally equivalent, and (b) the cell-mediated metabolism of receptor-bound glucagon involves the formation of hormone-derived peptides in which the biologically important NH2-terminal region of the hormone has been modified by limited proteolytic cleavage.  相似文献   

15.
A synthetic peptide analog of the precursor region of preproparathyroid hormone has been shown to be a specific substrate for hen oviduct signal peptidase. The sequence of the 31-residue peptide is Ser-Ala-Lys-Asp-norleucine (Nle)-Val-Lys-Val-Nle-Ile-Val-Nle-Leu-Ala-Ile-Ala-Phe-Leu-Ala-Arg-Ser-As p-Gly-Lys-Ser-Val-Lys-Lys-Arg-D-Tyr-amide (Caulfield, M. P., Duong, L. T., O'Brien, R., Majzoub, J. A., and Rosenblatt, M. (1988) Mol. Endocrinol. 2, 452-458). This sulfur-free signal peptide analog can be labeled with 125I on the C-terminal D-tyrosine and is cleaved by purified hen oviduct signal peptidase between Gly and Lys, the correct site of cleavage of preproparathyroid hormone in vivo. Amino acid sequence analysis of the cleavage product released 125I at the seventh cycle of Edman degradation, confirming that enzymatic cleavage occurs at the physiological site. Synthetic peptide analogs of the substrate with Lys, Pro, or Asp substituted for Nle-18 were poor substrates for the enzyme and were also poor competitive inhibitors of catalysis, suggesting that modifications at position -18, 12 amino acids from the site of cleavage, directly influence binding by the enzyme. Analysis of the reactivity of signal peptidase with these synthetic peptides provides insight into the cleavage specificity requirements of this eukaryotic signal peptidase.  相似文献   

16.
M Yamaguchi  S Chen  Y Hatefi 《Biochemistry》1986,25(17):4864-4868
In the dark, arylazido-beta-alanylnicotinamide adenine dinucleotide (N3-NAD) can replace NAD as cofactor for D-(-)-beta-hydroxybutyrate dehydrogenase (BDH) purified from bovine heart mitochondria. When photoirradiated with visible light, N3-NAD forms a nitrene species that binds covalently to BDH and inhibits the enzyme. NAD(H) protects BDH against photolabeling and inhibition by N3-NAD [Yamaguchi, M., Chen, S., & Hatefi, Y. (1985) Biochemistry 24, 4912-4916]. In the present study, a tryptic peptide of purified BDH photolabeled with arylazido-beta-[3-3H] alanyl-NAD [( 3H]N3-NAD) was isolated and sequenced. The same tryptic peptide was also isolated from BDH not labeled with [3H]N3-NAD and sequenced. Both peptides indicated the sequence Met-Glu-Ser-Tyr-Cys-Thr-Ser-Gly-Ser-Thr-Asp-Thr-Ser-Pro-Val-Ile-Lys. The residue labeled with [3H]N3-NAD was Cys. This heptadecapeptide contains 14 uncharged residues and is marked by having in an undecapeptide segment 8 hydroxy amino acids located symmetrically around a central glycine.  相似文献   

17.
Vasopressin antisense peptide interactions with the V1 receptor   总被引:1,自引:0,他引:1  
The molecular recognition hypothesis, that peptide ligands and their receptor binding sites are encoded by complementary nucleotide sequences, was tested for arginine vasopressin (AVP) and its V1 receptor. Binding of [125I] [d(CH2)5,Sar7]AVP (a selective V1 vasopressin antagonist radioligand) or [3H]AVP to rat liver plasma membranes was inhibited by peptides known to bind to V1 receptors but not by the AVP complementary peptide (Ser-Ser-Trp-Ala-Val-Leu-Glu-Val-Ala) (PVA). Rabbit anti-PVA antibodies were nonimmunoreactive with any protein in rat liver membranes or in a partially purified preparation from rat liver containing reconstitutable vasopressin binding activity. Furthermore, there was no suppression of the AVP pressor effect by PVA in vivo using a rat blood pressure bioassay. These findings do not support the hypothesis that the V1 receptor binding site is encoded by the antisense DNA strand to AVP.  相似文献   

18.
Novel photoactivatable antagonists of human/rat corticotropin-releasing factor (h/rCRF) have been synthesized and characterized. The N-terminal amino acid D-phenylalanine in astressin ?cyclo(30-33) [D-Phe12, Nle21,38, Glu30, Lys33]h/rCRF-(12-41)?, a potent CRF peptide antagonist, was replaced by a phenyldiazirine, the 4-(1-azi-2,2,2-trifluoroethyl)benzoyl (ATB) residue. Additionally, His32 of astressin was substituted by either alanine or tyrosine for specific radioactive labeling with 125I at either His13 or Tyr32, respectively. The photoactivatable CRF antagonists were tested for their ability to displace 125I-labeled Tyr0 ovine CRF ([125I-labeled Tyr0]oCRF) in binding experiments and to inhibit oCRF-stimulated adenylate cyclase activity in human embryonic kidney (HEK) 293 cells, permanently transfected with cDNA coding for rat CRF receptor, type 1 (rCRFR1) or human Y-79 retinoblastoma cells known to carry endogenous functional human CRFR1 (hCRFR1). ATB-cyclo(30-33)[Nle21,38, Glu30, Ala32, Lys33]h/rCRF-(13-41) (compound 1) was found to bind with higher affinity to rat or human CRFR1 when compared with ATB-cyclo(30-33)[Nle21,38, Glu30, Tyr32, Lys33]h/rCRF-(13-41) (compound 2) and exhibited higher inhibition of oCRF-stimulated cAMP accumulation in HEK 293 cells stably transfected with cDNA coding for rCRFR1 (HEK-rCRFR1 cells) or Y-79 cells. A highly glycosylated, 66-kDa protein was identified with SDS/PAGE, when the radioactively iodinated compounds 1 or 2 were covalently linked to rCRFR1. The specificity of the photoactivatable 125I-labeled CRF antagonists was demonstrated with SDS/PAGE by the finding that these analogs could be displaced from the receptor by their corresponding nonlabeled form, but not other unrelated peptides such as vasoactive intestinal peptide. The observed molecular size of the receptor was in agreement with the size of CRFR1 found in rat pituitary (66 kDa), but was significantly larger than the size of CRFR1 found in rat cerebellum and olfactory bulb (53 kDa).  相似文献   

19.
To identify the binding site of the human V1a vasopressin receptor for the selective nonpeptide antagonist SR49059, we have developed a site-directed irreversible labeling strategy that combines mutagenesis of the receptor and use of sulfydryl-reactive ligands. Based on a three-dimensional model of the antagonist docked into the receptor, hypothetical ligand-receptor interactions were investigated by replacing the residues potentially involved in the binding of the antagonist into cysteines and designing analogues of SR49059 derivatized with isothiocyanate or alpha-chloroacetamide moieties. The F225C, F308C, and K128C mutants of the V1a receptor were expressed in COS-7 or Chinese hamster ovary cells, and their pharmacological properties toward SR49059 and its sulfydryl-reactive analogues were analyzed. We demonstrated that treatment of the F225C mutant with the isothiocyanate-derivative compound led to dose-dependent inhibition of the residual binding of the radio-labeled antagonist [125I]HO-LVA. This inhibition is probably the consequence of a covalent irreversible chemical modification, which is only possible when close contacts and optimal orientations exist between reactive groups created both on the ligand and the receptor. This result validated the three-dimensional model hypothesis. Thus, we propose that residue Phe225, located in transmembrane domain V, directly participates in the binding of the V1a-selective nonpeptide antagonist SR49059. This conclusion is in complete agreement with all our previous data on the definition of the agonist/antagonist binding to members of the oxytocin/vasopressin receptor family.  相似文献   

20.
Tissue plasminogen activator, separated into variants I and II (differing in Mr by 2000-3000), was reduced and [14C]carboxymethylated. Fragments from cleavages with enzymes and cyanogen bromide (CNBr) were separated by reverse-phase high-performance liquid chromatography and subjected to sequence degradations. All seven CNBr fragments were purified and found to be compatible with the cDNA-derived amino acid sequence [Pennica, D., Holmes, W. E., Kohr, W. J., Harkins, R. N., Vehar, G. A., Ward, C. A., Bennett, W. F., Ylverton, E., Seeburg, P. H., Heynecker, H. L., Goeddel, D. V., & Collen, D. (1983) Nature (London) 301, 214-221]. Chemical characterization of 93% of the 527 residues recovered in 50 peptides confirmed the indirectly deduced primary structure of the protein. The tryptic peptide patterns from the two variants were found to differ for one peptide (T15). Since carbohydrate was present in this peptide for variant I and since a marked difference in chromatographic behavior for T15 was observed in variant II, we conclude that carbohydrate differences in this peptide (i.e., Asn-184 in the numbering system of the cDNA-derived amino acid sequence) are the explanation for the size differences between variants I and II. Carbohydrate was also found at two other positions in the protein, corresponding to Asn-117 and Asn-448. However, a fourth potential glycosylation site, Asn-218, is apparently not utilized for carbohydrate attachment. The enzyme is inactivated by diisopropyl phosphorofluoridate, which covalently modifies the serine residue corresponding to position 478, identifying this as the active site serine residue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号